

Optimal investment under stochastic mortality and stochastic interest rates

Winter School Mathematical Finance Lunteren, January 20, 2014

Jan de Kort

University of Amsterdam

Introduction			Conclusion	
Introdu	ction			

Merton's portfolio problem on a finite horizon [0, T]:

- Single agent;
- Invest in a bond and a stock starting from initial wealth x following the (admissible) strategy $\pi(t)$ while consuming c(t);
- Agent derives utility from consumption c(t) and from terminal wealth $X^{x,c,\pi}(T)$;
- Objective is to maximize expected utility

$$\sup_{c,\pi} \mathbb{E}\left[\int_0^T U_1(t,c(t))dt + U_2(X^{x,c,\pi}(T))\right].$$

Economic motivation for an extension

- Agent derives utility from consumption and from savings at the retirement date;
- Lifetime is uncertain, i.e. the agent may not survive up until retirement;
- Expected lifetime continues to improve (longevity risk) in an unpredictable way, mortality rates are stochastic;
- Exclude cases where the optimal control problem is not well-posed, e.g. if investing all wealth into the money-market account leads to infinite utility.

Relation to existing literature

	Primal method	Dual method	Consumption	Bequest	Terminal wealth	Stoch. short rate	Uncertain lifetime	Stochastic mort. rate	Non-neg. mort. rate	Closed-form solution	Verification
Yaari [Yaa65]	~		~	~			~			~	
Ye and Pliska [PY07]	~		~	~	~		~		~	~	\checkmark
Menoncin [Men08]	~	~	~			~	√	~			
Deelstra et al. [DGK00]		~			~	~				~	\checkmark
Jeanblanc and Yu [JY10]	~			~	~		~	~	~		 Image: A start of the start of
Kraft [Kra03]	~		(√)		~	~				~	 Image: A start of the start of
This talk		~	~		~	√	 ✓ 	~	~	\checkmark	

Optimal investment under stochastic mortality and stochastic interest rates

Introduction		Conclusion	

Outline

1 Model for the economy

2 Problem definition

Model for the economy		Conclusion	

Outline

1 Model for the economy

2 Problem definition

Dynamics of the short rate and mortality rate

Let $W(t) = (W_1(t), W_2(t))$ be standard Brownian motion on (Ω, \mathcal{G}, P) and let $\mathcal{F}(t)$ be the filtration generated by W(t).

Assume that the short rate $r(\cdot)$ and the mortality rate $\lambda(\cdot)$ follow Cox-Ingersoll-Ross processes under P

$$dr(t) = \kappa_1(\mu_1 - r(t))dt + \nu_1\sqrt{r(t)}dW_1(t)$$
 (2.1)

with $r(0) = r_0 > 0$, and

$$d\lambda(t) = \kappa_2(\mu_2 - \lambda(t))dt + \nu_2\sqrt{\lambda(t)}dW_2(t) \qquad (2.2)$$

with $\lambda(0) = \lambda_0 > 0$ given. The coefficients κ_i , ν_i and μ_i are deterministic and positive. Furthermore we require the Feller condition $2 \kappa_i \mu_i > \nu_i^2$ to hold for i = 1, 2.

Tradeable instruments

Assume absence of arbitrage and construct a complete market by introducing the following tradeables:

- A money market account S₀(·) based on the stochastic short rate r(·);
- A zero-coupon bond P(·, T₁) paying 1 unit of currency at maturity T₁;
- A survival bond F(·, T₁) paying at time T₁ the mortality-dependent quantity

$$R = e^{-\int_0^{T_1} \lambda(u) du}$$

.

Tradeable instruments

The price process of the **money market account** $S_0(\cdot)$ satisfies

$$S_0(t) = e^{\int_0^t r(u) du} . \qquad (2.3)$$

The price of the **zero-coupon bond** $P(t, T_1)$ is given by

$$P(t, T_1) = \mathbb{E}_{\widetilde{P}} \left[\left. e^{-\int_t^{T_1} r(u) du} \right| \mathcal{F}(t) \right]$$
(2.4)

in which $\widetilde{P} \sim P$ is the (unique) risk neutral measure.

Tradeable instruments

The price of the survival bond is given by

$$F(t, T_1) = \mathbb{E}_{\widetilde{P}}\left[R e^{-\int_t^{T_1} r(u) du} \middle| \mathcal{F}_t\right].$$
 (2.5)

Outline

Model for the economy

2 Problem definition

Main problem

Let τ (time of death) be a stopping time satisfying

$$\overline{F}(t) := P(\tau > t \mid \mathcal{F}_t) = e^{-\int_0^t \lambda(s) ds}.$$
(3.1)

Find the consumption and terminal wealth maximising power utility on the horizon $[0, T \wedge \tau]$ where $0 < T < T_1$.

This problem can be formulated as:

$$\sup_{c,\pi \text{ admissible}} \mathbb{E}\left[\int_0^T U_1(t,c(t))dt + U_2(X^{x,c,\pi}(T))\right]$$
(3.2)

where
$$U_1(t,x) = \overline{F}(t)\widehat{U}_1(t,x)$$
 and $U_2(x) = \overline{F}(T)\widehat{U}_2(x)$ and
 $\widehat{U}_1(t,x) = \widehat{U}_2(x) = \frac{1}{p}x^p$, $p \in (-\infty,1) \setminus \{0\}$.

	Solution	Conclusion	

Outline

Model for the economy

2 Problem definition

Solution method:

- Step 1. Use martingale method and call on results by Karatzas and Shreve [KS98] to establish existence of solution provided that an 'implicit' integrability condition is satisfied;
- Step 2. Replace 'implicit' integrability condition by a condition stated explicitly in terms of model parameters using results by Kraft [Kra03] and Hurd et al. [HK08] on the Laplace transform of a CIR process;
- Step 3. Exploit affine structure of CIR process to derive closed-form solution for optimal consumption and wealth;
- **Step 4.** Derive dynamics of optimal wealth process and determine optimal strategy.

Step 1: Martingale method

The following result, which applies to a continuous-time diffusion setting, is due to Karatzas and Shreve [KS98]. Suppose that

$$\mathbb{E}\left[\int_{0}^{T}H_{0}(u)du + H_{0}(T)\right] < \infty \quad \text{and} \quad \mathcal{X}(1) < \infty \tag{4.1}$$

Solution

where $H_0(\cdot)$ denotes the state price density and

$$\mathcal{X}(y) = \mathbb{E}\left[\int_{0}^{T} H_{0}(t) I_{1}(t, yH_{0}(t)) dt + H_{0}(T) I_{2}(yH_{0}(T))\right], \qquad (4.2)$$

in which $I_1(t, \cdot)$ and $I_2(\cdot)$ are the inverse functions of $U'_1(t, \cdot)$ and $U'_{2}(\cdot)$. Then the optimal consumption and terminal wealth are given by

$$c(t) = l_1(t, \mathcal{Y}(x)H_0(t)), \qquad (4.3)$$

$$X(T) = I_2(\mathcal{Y}(x)H_0(T)) .$$
 (4.4)

where

$$\mathcal{Y}(x) = \left(\frac{x}{\mathcal{X}(1)}\right)^{p-1}$$

is the inverse of $\mathcal{X}(\cdot)$.

Optimal investment under stochastic mortality and stochastic interest rates

Step 2: Laplace transform of CIR process

In our economy the state price density is given by

$$H_{0}(t) = \exp\left\{-\int_{0}^{t} r(u)du - \int_{0}^{t} \theta(u)dW(u) - \frac{1}{2}\int_{0}^{t} ||\theta(u)||^{2}du\right\},$$
(4.5)

in which, for positive constants $\overline{\theta}_1$, $\overline{\theta}_2$, ν_1 , ν_2 , the market price of risk is

$$\theta(t) = \left(-\frac{\overline{\theta}_1}{\nu_1} \sqrt{r(t)}, -\frac{\overline{\theta}_2}{\nu_2} \sqrt{\lambda(t)} \right) . \tag{4.6}$$

Solution

Introduction Model for the economy Problem definition

Step 2: Laplace transform of CIR process

It can be shown that for some constants K_1 and K_2

$$\mathbb{E}\left[H_0(t)I_1(t,H_0(t))\right] = \mathbb{E}_{\widetilde{P}_0}\left[\exp\left\{-K_1\int_0^t r(u)du - K_2\int_0^t \lambda(u)du\right\}\right].$$
(4.7)

Solution

in which, $\frac{dP_0}{dP}~=~Z(T)$ and, for every $p<1,~p\neq0,$ the stochastic exponential

$$Z(t) = \mathcal{E}\left(\frac{p}{1-p} \theta(t) \cdot W(t)\right) ,$$

is a martingale (see Revuz and Yor [RY99, Ch. VIII, Ex. 1.40]).

Hence by changing the probability measure, the evaluation of $\mathcal{X}(y)$ can be recast into the evaluation of a Laplace transform of $\int r(u)du$ and $\int \lambda(u)du$.

Introduction

Step 2: Laplace transform of CIR process

Let $\kappa > 0$, $\theta > 0$ and $\nu > 0$ such that $2\kappa\theta > \nu^2$. Suppose that $\zeta(\cdot)$ follows a Cox-Ingersoll-Ross process

$$d\zeta(t) = \kappa(\theta - \zeta(t)) dt + \nu \sqrt{\zeta(t)} dW(t). \qquad (4.8)$$

The Laplace transform

$$\phi(t, T, \zeta) = \mathbb{E}\left[\exp\left\{-\alpha\zeta(T) - \beta\int_{t}^{T}\zeta(s)ds\right\} \middle| \zeta(t) = \zeta\right],$$
(4.9)

of $(\zeta(T), \int_t^T \zeta(s) ds)$ is finite-valued if

(i)
$$-\beta < rac{\kappa^2}{2 \nu^2}$$
 and (ii) $-\alpha < rac{\kappa+\mathsf{a}}{\nu^2}$,

where $a = \sqrt{\kappa^2 + 2\beta\nu^2}$. Moreover, $\phi(t, T, \zeta)$ has an affine representation $\phi(t, T, \zeta) = e^{-A(t,T)-B(t,T)r}$.

Proof: Combine results in Kraft [Kra03] and Hurd et al. [HK08].

Step 3: Optimal consumption and terminal wealth

If the following conditions are satisfied

$$p\left[2\nu_{1}^{2}+(\kappa_{1}+\overline{\theta}_{1})^{2}\right] < \kappa_{1}^{2},$$
 (4.10)

Solution

$$-2\nu_2^2 + p\left(\kappa_2 + \overline{\theta}_2\right)^2 < \kappa_2^2 \quad \text{and} \quad \widetilde{\kappa}_2 + \widetilde{a}_2 > 0, \qquad (4.11)$$

Then the optimal consumption strategy is given by

$$c(t) = \frac{m(t)}{n(t)}X(t)$$
, (4.12)

in which

$$X(t) = \frac{x n(t) \Lambda(t)}{n(0) H_0(t)}, \qquad (4.13)$$

is the optimal wealth process, and value function is given by

$$V(x) = \frac{1}{p} n(0)^{1-p} x^{p} , \qquad (4.14)$$

19/26Jan de Kort

where

$$\begin{split} \Lambda(t) &= \exp\left\{\frac{p}{1-p} \int_{0}^{t} \theta(u) dW(u) - \frac{1}{2} \left(\frac{p}{1-p}\right)^{2} \int_{0}^{t} ||\theta(u)||^{2} du\right\} \\ m(t) &= \exp\left\{-\frac{1}{1-p} \int_{0}^{t} \lambda(u) du + \frac{p}{1-p} \int_{0}^{t} r(u) du + \frac{p}{2(1-p)^{2}} \int_{0}^{t} ||\theta(u)||^{2} du\right\} \\ n(t) &= \int_{t}^{T} L(t, u) du + L(t, T) \end{split}$$

and $L(\cdot, T)$ has an affine representation

$$L(t, T) = e^{-\overline{A}_1(t, T) - \overline{A}_2(t, T) - \overline{B}_1(t, T)r(t) - \overline{B}_2(t, T)\lambda(t)}$$

in which

$$\overline{A}_{i}(t, T) = \frac{-\kappa_{i}\mu_{i}\left(\tilde{\kappa}_{i} - \tilde{a}_{i}\right)\left(T - t\right)}{\nu_{i}^{2}} + \frac{2\kappa_{i}\mu_{i}}{\nu_{i}^{2}}\log\left(\frac{1 - q_{i}e^{-\tilde{a}_{i}\left(T - t\right)}}{1 - q_{i}}\right)$$
$$\overline{B}_{i}(t, T) = 2\kappa_{i}\frac{e^{\tilde{a}_{i}\left(T - t\right)} - 1}{e^{\tilde{a}_{i}\left(T - t\right)}\left(\tilde{\kappa}_{i} + \tilde{a}_{i}\right) - \tilde{\kappa}_{i} + \tilde{a}_{i}}$$

for i = 1, 2 and

$$q_i = \frac{\widetilde{\kappa}_i - \widetilde{a}_i}{\widetilde{\kappa}_i + \widetilde{a}_i} \quad , \quad \widetilde{a}_i = \sqrt{\widetilde{\kappa}_i^2 + 2K_i\nu_i^2} \; , \quad \widetilde{\kappa}_i = \kappa_i - \frac{p}{1-p}\,\overline{\theta}_i$$

Optimal investment under stochastic mortality and stochastic interest rates

Solution

Step 4: Optimal investment strategy

For all $0 < T < \infty$ define the process $L(\cdot, T)$ by

 $dL(t, T) = \widetilde{\mu}(t, T) dt + \widetilde{\nu}(t, T) dW(t)$

where $W(t) = (W_1(t), W_2(t))$ is a Brownian motion, $\tilde{\mu}$ is an adapted, non-negative function $[0, T] \times [0, T] \times \Omega \rightarrow R$ and $\tilde{\nu}$ is an adapted, non-negative function $[0, T] \times [0, T] \times \Omega \rightarrow R^2$. If for i = 1, 2

$$\int_0^t \left\{ \widetilde{\nu}_i(u,s) \right\}^2 du < \infty \quad \text{a.s. for all } t \in [0,T] \text{ and } s \in [0,T] , \qquad (4.15)$$

$$\int_0^t \left\{ \int_0^T \widetilde{\nu}_i(u,s) \, ds \right\}^2 \, du \ < \ \infty \quad \text{a.s. for all } t \in [0,T] \ , \tag{4.16}$$

Solution

Step 4: Optimal investment strategy

If furthermore

$$t\mapsto \int_0^T \left\{ \int_0^t \widetilde{\nu}_i(u,s) \, dW_i(u) \right\}^2 ds$$

is almost surely continuous then

$$d\left(\int_{t}^{T} L(t,s)ds\right) = \left\{-L(t,t) + \int_{t}^{T} \widetilde{\mu}(t,s)ds\right\} dt + \sum_{i=1}^{2} \left\{\int_{t}^{T} \widetilde{\nu}_{i}(t,s)ds\right\} dW_{i}(t) .$$
(4.17)

Proof: Combine results in Munk [Mun03, Thm. 3.3] and Heath et al. [HJM92, Appendix A].

Solution

Step 4: Optimal investment strategy

Apply Itô's lemma and Leibniz' rule to the dynamics of optimal wealth process to obtain:

$$\frac{d\left(X(t) + \int_0^t c(u)du\right)}{X(t)} \;\; = \; \left(1 - Q_1(t)\right) \frac{dS_0(t)}{S_0(t)} + \left(Q_1(t) - Q_2(t)\right) \frac{dP(t, T_1)}{P(t, T_1)} + Q_2(t) \frac{dF(t, T_1)}{F(t, T_1)} \; ,$$

where, for i = 1, 2, the hedging strategies take the following explicit form:

$$Q_i(t) = \frac{1}{B_i(t, T_1)} \left(\frac{1}{1-p} \frac{\overline{\theta}_1}{\nu_i^2} + \frac{\overline{\Xi}_i(t)}{n(t)} \right)$$

in which

$$\Xi_i(t) = \overline{B}_i(t, T)L(t, T) + \int_t^T \overline{B}_i(t, u)L(t, u) du .$$

The short rate and mortality rate are observable due to the affine relation between the (observable) bond price and S-forward price.

More results

- Bounds on the hedging demand can be derived in terms of model parameters.
- A rolling bond can be used (instead of a long-term bond) to trade interest rate risk.
- Stocks can be added to the asset mix.
- The proportionality constants in the market price of risk can be assumed to be time-dependent, provided that the resulting Riccati equation has a continuous solution; conditions under which this holds are left for future research.

		Conclusion	

Outline

Model for the economy

2 Problem definition

		Conclusion	

Conclusion

- A solution to the optimal consumption and investment problem with (non-negative) Cox-Ingersoll-Ross short rate and mortality rate exists under conditions which can be expressed explicitly in terms of model parameters;
- The optimal consumption and investment strategy has been derived in closed-form.

G. Deelstra, M. Grasselli, and P.F. Koehl.

Optimal investment strategies in a CIR framework.

- J. Appl. Prob., 37:936-946, 2000.
- D. Heath, R. Jarrow, and A. Morton.

Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation.

Econometrica. 60:77-105. 1992.

T.R. Hurd and A. Kuznetsov.

Explicit formulas for Laplace transforms of stochastic integrals.

Markov Processes and Related Fields, 14:277–290, 2008.

M. Jeanblanc and Z. Yu.

Optimal investment problems with uncertain time horizon.

Working paper, 2010.

I. Karatzas, J.P. Lehoczky, S.E. Shreve, and G.L. Xu.

Martingale and duality methods for utility maximization in an incomplete market.

SIAM Journal on Control and Optimization, 29(3):702–730, 1991.

🔒 H. Kraft.

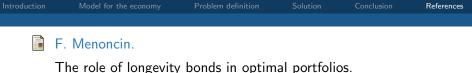
Optimal portfolios with stochastic interest rates and default able assets.

Springer, 2003.

I. Karatzas and S.E. Shreve.

Methods of Mathematical Finance.

Springer, 1998.



The role of longevity bonds in optimal portfolios.

Insurance: Mathematics and Economics, 42:343–358, 2008.

C. Munk.

Fixed income analysis: securities, pricing and risk

management.

Lecture notes. 2003.

S.R. Pliska and J. Ye.

Optimal life insurance purchase and consumption/investment under uncertain lifetime.

Journal of Banking and Finance, 31:1307–1319, 2007.

D. Revuz and M. Yor.

Continuous martingales and Brownian motion.

M.E. Yaari.

Uncertain lifetime, life insurance and the theory of the

consumer.

Review of Economic Studies, 32:137–150, 1965.