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Introduction

“During the financial crisis, however, roughly two-thirds of losses
attributed to counterparty credit risk were due to CVA losses and
only about one-third were due to actual defaults.”-Bank for
International settlements

According to Basel II and Basel III, counterparty credit risk
(CCR) is the risk that a counterparty in an over-the-counter
(OTC) derivatives transaction will default before the
expiration of the instrument and will not make the current and
future payments required by the contract. Exchange-traded
derivatives are not subject to CCR because the payments
promised by the derivatives are guaranteed by the exchange.

Quantification of counterparty credit risk: potential future
exposure (PFE), expected exposure (EE), and credit value
adjustment (CVA). An efficient computation method for
counterparty credit exposure is required for exotic instruments.



Introduction

CVA is the difference between the risk free portfolio value, V , and
the true portfolio value that takes into account the counterparty’s
default, Ṽ , i.e., CVA = V − Ṽ
Assuming no correlation between the exposure and default risk, an
approximation of CVA in Gregory (2009, p. 194):

CVA ≈ (1− δ)

M∑

m=1

D(0, tm)EEtm

(
Sur (tm−1)− Sur (tm)

)

with D(0, tm) the discounted factor, Sur (tm) = Q[τ > tm] the
risk-neutral survival function, and the expected exposure EEtm .

Multi-asset portfolios: need efficient calculation of EEtm .

Here we consider the efficient computation of EEtm of
multi-asset Bermudan equity options; the default risk part will
not be discussed. All of the discussion is from the contract
holder’s point of view.



Definition

Define a stochastic process V (t), 0 ≤ t ≤ T , as the value of a
derivative security at time t, under the risk-neutral measure Q.

V (t) is driven by risk factors X (t), 0 ≤ t ≤ T , such as stock
prices, foreign exchange rates, and interest rates[4].

We call (t,X (t)) the state of the economy at time t.

V (t) = EQ
[
CASHFLOWS (t,T )|Ft

]
, with CASHFLOWS (t,T ) as

the derivative’s discounted net cashflow between t and T .



Definition

The credit exposure, Et , of a derivative security at time t to a
counterparty is defined as the non-negative value of the
risk-neutral expected discounted value of future cashflows, i.e.,

Et = max(V (t), 0) = V (t)+, 0 ≤ t ≤ T (1)

Definition

The potential future exposure (PFE) at time t as seen from time
zero is defined as

PFEα,t = inf {x : P(Et ≤ x) ≥ α)}, 0 ≤ t ≤ T (2)

where α is the given confidence level, and P is the real-world
measure.



Definition

The expected exposure (EE) at time t as seen from time zero, is
given by:

EEt = EP
[
Et

]
, 0 ≤ t ≤ T (3)

here the expectation is taken under the real-world measure P; For
CVA calculation, the expectation should be taken under the
risk-neutral measure Q.

Definition

The exposure profile of counterparty credit exposure is defined as
the the graph of PFEα,t or EEt , as a function of t.



Computation of PFEα,t and EEt is equivalent to the
computation of the probability distribution of Et (or V (t))
under measure P or Q.

Empirical distribution of the sample results of Et (or V (t)) on
each simulated state (t,X (t)).

Assuming underlying risk factors X (t), 0 ≤ t ≤ T , two basic steps
needed in the modelling framework, see Antonov (2012) [1], Cesari
(2010) [2]:

1 Scenario simulation of X (t) under the real-world measure Q.

2 Calculation of derivative’s value (under the risk-neutral
measure Q) for each simulated state (t,X (t)), or the
mark-to-market value.



The modelling framework
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Figure: The modeling framework.



Credit Exposure of Bermudan Option

Dynamic programming recursion for Bermudan option pricing,
initial stock price S0, T = {t1, ..., tM},
0 = t0 ≤ t1 < ... < tM = T , the exercise dates are equally spaced
with interval ∆t, see Fang & Oosterlee (2009) [3]:

VM(SM) = max(h(tM ,SM), 0)

c(tm−1,Sm−1) = exp(−r∆t)EQ
[
Vm(Sm)|Ftm−1

]
,m = M,M − 1, ..., 1

Vm−1(Sm−1) = max{h(tm−1,Sm−1), c(tm−1,Sm−1)}

V0(S0) = c(t0,S0)

On each exercise date, the credit exposure, Etm = max(Vm(Sm), 0),
can be calculated as a by-product of the option pricing procedure.



Let sm−1(p) be the stock price at possible exercise time tm−1,
on sample path p, m = 1, ...,M, p = 1, ...,P . For each path
p, the earliest exercise time τp can be written as,

τp = min{k ∈ {1, ...,M}|h(tk , sk(p)) ≥ c(tk , sk(p))}.

On each path p, the option will be exercised at τp, and the
option will not exist after exercise event, the exposure of
Bermudan option on path p can be written as,

Ep
tm=

{
max(Vm(sm(p)), 0) tm ≤ τp

0 tm > τp



An efficient algorithm for multi-asset case

The continuation value for multi-asset case:

c(tm−1, sm−1(p)) = exp(−r∆t)EQ
[
Vm(Sm)|Sm−1 = sm−1(p)

]
,

with

sm−1(p) = (s1m−1(p), ..., s
d
m−1(p))

Difficulty in Longstaff-Schwartz regression:

1 As the dimension increases, the number of basis functions
necessary for obtaining a given accuracy will increase. It
becomes more difficult to chose a tractable set of basic
functions;

2 Regression to almost the whole data set may generate bigger
approximation error, comparing to more sophisticated
regression methods, such as localized regression.



More sophisticated regression methods, such as,

Cesari (2010): Longstaff-Schwartz regression, enhanced by
bundling method.

The Stochastic Grid Bundling method (SGBM) by Jain &
Oosterlee (2013) [5]: A different regression method, enhanced
by bundling method.

We are interested in the advantage of SGBM for exposure
calculation of multi-asset portfolios, which includes two basic
steps:

1 Regression along the payoff

2 Bundling, i.e., partition the state space into several
non-overlapping groups.



Regression Along the Payoff

Suppose Vm(Sm) is a continuous function of Sm, then Vm(Sm) can
be approximated by regressing on a set of basis function of fi(Sm),

Vm(Sm) ≈ V̂m(Sm)

= Reg
(
Vm(Sm);Ψk,l (Sm)

)
,

with

Ψk,l(Sm) = (fl(Sm))
k , l = 1, ..., L, k = 0, 1, ...,K

and fi : R
d → R, i = 1, ..., L are continuous functions that map the

multi-dimensional process into a scalar. ‘Reg’ is the regression
operator.

EQ
[
Vm(Sm)|Sm−1 = sm−1(p)

]
≈

EQ
[
V̂m(Sm)|Sm−1 = sm−1(p)

]
,



Since V̂m is a polynomial function of basis function f , analytical
formula or approximation of EQ

[
V̂m(Sm)|Sm−1 = sm−1(p)

]
exists

for a large set of Markov process.
Example: call-on-max payoff, with GBM model for underlying
stock price process

h(St) = max(S1
t , ...,S

d
t )− K ,

For 2 dimension case, the choice of basis functions could be:

f1(St) = log
(
max(S1

t ,S
2
t ))(

f1(St)
)2

(
f1(St)

)3

f2(St) =
(
S1
t S

2
t

) 1
2

f3(St) = S1
t

f4(St) = S2
t



Enhance the accuracy

EQ
[
V̂m(Sm)|Sm−1 = sm−1(p)

]
=

∫

Rd

V̂m(x)P[Sm ∈ dx | Sm−1 = sm−1(p)]

The regression approximation V̂m should be as accurate as possible
for the region where Sm has the ‘most’ probability mass,
originating from the source sm−1(p).

We do not have the grid points original from sm−1(p), but we
have the grid points original from the ‘neighbourhood’ of
sm−1(p).

The probability distribution of grid points original from grid
point sm−1(p) could be approximated by the probability
distribution of grid points original from the ‘neighbourhood’ of
sm−1(p)
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Figure: The regression approximation V̂m should be as accurate as
possible for the region where Sm has the ‘most’ probability mass,
originating from the source sm−1(p).



Bundling
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Figure: Grid points Sm(p) are original from bundle Bh
m−1; I

h
m−1 is the set

of path indices in bundle Bh
m−1

‘localized regression’: V̂ h
m is the regression approximation of

V̂m that originates from Bh
m−1 (the ‘neighbourhood’ of

sm−1(p)).



Suppose the whole state space has been separated into H
non-overlapping bundles.

The continuation value of the grid points in each bundle
Bh
m−1, h = 1, ...,H,

ch(tm−1, sm−1(p)) ≈ exp(−r∆t)

× EQ
[
V̂ h
m(Sm)|Sm−1 = sm−1(p)

]

where V̂ h
m(Sm) is the regression approximation of function

form of Vm(Sm), with Sm original from bundle Bh
m−1.

The continuation value for the all grid points at tm−1 is
denoted as c(tm−1, sm−1(p)) , which is a combination of
ch(tm−1, sm−1(p)), h = 1, ...,H.



Bundling the state space

To bundle P grid points sm(p) = (s1m(p), s
2
m(p)), p = 1, 2, ..,P at

time step tm, m = 1, ...,M, the following steps need to be
performed recursively:

1 Estimate the mean value for each stock i at time tm, i.e.,

µ̂i
m =

1

P

P∑

p=1

s im(p), i = 1, 2

2 Define the following subsets of grid points:

G i
m =

{
sm(p) : s

i
m(p) > µ̂i

m

}
, G

i

m =
{
sm(p) : sm(p) /∈ G i

m

}



Figure: Combination of different subsets



3 The 4 (i.e., 22) unique bundles are obtained through
combinations of different subsets, i.e.,

B1
m = G 1

m ∩ G 2
m B2

m = G
1

m ∩ G 2
m

B3
m = G 1

m ∩ G
2

m B4
m = G

1

m ∩ G
2

m

4 If more bundles are required, the same procedure, from (1) to
(3), can be performed, either for each bundles, B1

m, ...,B
4
m or

some of them.



In summary, we have the following SGBM algorithm for exposure
calculation of multi-asset Bermudan options, see Shen,
Anderluh,and Van Der Weide (2013) [7]:

1 Simulate sample paths for the stock price, s0, s1(p), ..., sM (p),
at time steps 0 = t0, ..., tM = T , with indices of paths
p = 1, ...,P , under the risk-neutral measure Q.

2 At terminal date tM = T , set

VM(sM(p)) = max(h(tM , sM(p)), 0)

for p = 1, ...,P .



3 Apply backward induction, i.e., m → m − 1 for m = M, ..., 1.
1 1 Bundling the grid points at tm−1, into H distinct bundles

2 For each bundle B
h
m−1, h = 1, ...,H, compute the regression

approximation V̂ h
m(Sm)

3 For every grid point sm−1(p) ∈ B
h
m−1, by using the regression

functions and moment calculation, compute the continuation
value ch(tm−1, sm−1(p))

2 For each sample path p = 1, ...,P , set

Vm−1(sm−1(p)) = max(h(tm−1, sm−1(p)), c(tm−1, sm−1(p)));

if h(tm−1, sm−1(p)) > c(tm−1, sm−1(p)), set

Vm(sm(p)) = 0,Vm+1(sm+1(p)) = 0, ...,VM(sM(p)) = 0.



4 The initial option price, V0(s0) = c(0, s0) (exercise is not
allowed at t0.).

5 Ep
tm = max(Vm(sm(p)), 0) is the credit exposures, at time step

tm, on sample path p.

In the end, based on the results of credit exposures obtained from
the algorithm, we can estimate the risk measures, such as expected
exposure (EE) or potential future exposure (PFE), under the risk
neutral measure Q. And for the probability distribution under the
real world measure P, we can use change of measure.



Numerical Examples

Parameter setting of single-asset Bermudan option: GBM stock
price process, initial price s0 = 100, strike price K = 100, constant
interest rate r = 0.05, real world drift µ = 0.1, volatility σ = 0.2,
possible early exercise dates M = 50, 18, 000 simulation paths and
50 discrete time steps. We use SGBM exposure algorithm to
provide:

1 Q-exposure profile, i.e., the probability distribution of
exposure is under measure Q.

2 P-exposure profile, i.e., the probability distribution of exposure
is under measure P.

The benchmark result for compare is provided by combination of
Monte Carlo and Fourier COS option pricing method (MCCOS),
see Shen, van der Weide and Anderluh (2013) [8]. For all the cases,
at each time step, the results of PFE and EE from SGBM match
almost perfectly with the results from MCCOS, which means
SGBM has an excellent performance for exposure calculation.



Single-Asset Bermudan Option
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Figure: Bermudan put option, single asset, by SGBM (‘o’) and MCCOS
(‘*’). In Schöftner (2008)[6], the author showed a similar exposure profile
shape for American options, but without benchmark results. Here we
confirm the accuracy of SGBM by using an accurate result from MCCOS.



Single-Asset European Option
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Expected Exposure

Bermudan option’s EE (expected exposure) under measure P and
Q, where Q-EE is used for CVA calculation:

Time 0.1 0.2 0.3 0.4 0.5
P 5.8983 5.5188 4.7929 4.0037 3.2563
Q 6.1020 5.8501 5.1485 4.3417 3.5437

Table: Expected Exposure (EE) calculated under measure P and Q.

Time 0.6 0.7 0.8 0.9 1
P 2.5100 1.8140 1.2148 0.6762 0.1654
Q 2.7390 1.9942 1.3643 0.7519 0.1799

Table: Expected Exposure (EE) calculated under measure P and Q.

Comparing to the increasing of EE for European option, the
decreasing of EE for Bermudan option is because of the early
exercise feature.



Early Exercise

This figure shows the percentage of exercised paths at each time
step t (exercise intensity).
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Multi-asset Bermudan Option
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Figure: Exposure profiles of 2-asset Bermudan call-on-max option under
different measures. Parameter setting: GBM model, K = 100, r = 0.05,
q = 0.1, ρ = 0, T = 3, σ = [0.2, 0.2], S0 = [100, 100], 10 equally spaced
exercise opportunities, 30, 000 simulation paths, 32 bundles, and 20
simulation steps.



Conclusion

We propose an efficient algorithm for the credit exposure
calculation of multi-asset Bermudan options.

Future work: CVA of multi-asset Bermudan option, wrong
way risk for put option (i.e., correlation between default and
exposure) and early exercise feature, etc.



Alexandre Antonov, Serguei Issakov, and Serguei Mechkov.
Algorithmic Exposure and CVA for Exotic Derivatives.
Quantitative Method in Finance conference, Cairns, Australia,
2012.

Giovanni Cesari, John Aquilina, Niels Charpillon, Zlatko
Filipovic, Gordon Lee, and Ion Manda.
Modeling, Pricing, and Hedging Counterparty Creidit
Exposure: A Technical Guide.
Springer Finance, Berlin, 2010.

F. Fang and Cornelis W. Oosterlee.
Pricing early-exercise and discrete barrier options by
fourier-cosine series expansions.
Numerische Mathematik, 114(1):27–62, 2009.

J. Gregory.
Counterparty Credit Risk.
John Wiley & Sons, 2010.



S. Jain and Cornelis W. Oosterlee.
The stochastic grid bundling methods: efficient pricing of
multidimensional Bermudan options and the Greeks.
Working paper, Delft University of Technology, 2012.

Robert Schöftner.
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