

Optimal Consumption and Investment During Retirement

Servaas van Bilsen

13th Winter School on Mathematical Finance

Monday 20th of January, 2014

MOTIVATION

The Economy

The State Variables Bond Price Dynamics

Specification

DISCOUNT RATE

INVESTMENT STRATEGY

Preferences

SUMMARY

MOTIVATION

The Economy

The State Variables Bond Price Dynamics

Specification

DISCOUNT RATE

INVESTMENT STRATEGY

Preferences

SUMMARY

MOTIVATION

Main question typically asked in consumption and portfolio choice literature:

how should an individual spend a given amount of (initial) wealth in order to maximize expected utility?

Preferences \Rightarrow Optimal Consumption (and Portfolio) Choice

Motivation (2)

We propose an **inverse** approach to optimal consumption and portfolio choice problems.

As a starting point, we assume a general specification of the consumption profile in retirement.

Questions:

- What is the optimal wealth profile?
 - The optimal wealth profile implies a market-consistent discount rate.
- What is the optimal investment strategy?
- Which preference models are consistent with our consumption profile?

MOTIVATION

The Economy

The State Variables Bond Price Dynamics

SPECIFICATION

DISCOUNT RATE

INVESTMENT STRATEGY

Preferences

SUMMARY

THE ECONOMY: THE STATE VARIABLES

We define an economy following Brennan and Xia (2002).

The state of the economy is characterized by the *real interest rate r*, the *expected rate of inflation* π , the *stock price S* and *the consumer price index* Π .

$$dr_t = \kappa(\bar{r} - r_t)dt + \sigma_r dW_t^r;$$

$$d\pi_t = \theta(\bar{\pi} - \pi_t)dt + \sigma_\pi dW_t^\pi;$$

$$\frac{dS_t}{S_t} = (R_t^f + \lambda_S \sigma_S) dt + \sigma_S dW_t^S;$$

$$\frac{d\Pi_t}{\Pi_t} = \pi_t dt + \sigma_\Pi dW_t^\Pi = \pi_t dt + \xi_r dW_t^r + \xi_\pi dW_t^\pi + \xi_S dW_t^S + \xi_u dW_t^u.$$

Assumption: dW_t^u is orthogonal to dW_t^r , dW_t^{π} and dW_t^S .

Motivation	The Economy ○●	Specification	Discount Rate	Investment Strategy	Preferences	Summary
Bond Price Dynamics						

The Economy: Bond Price Dynamics

The agent has the opportunity to invest in four risky assets: a real bond, two nominal bonds (with distinct maturities) and a stock.

• Nominal bond price $P_{t,h}$ satisfies:

$$\frac{\mathrm{d}P_{t,h}}{P_{t,h}} = \left(r_t + \pi_t - [\lambda^\top \xi + \lambda_u \xi_u] - B_h h \sigma_r \lambda_r - C_h h \sigma_\pi \lambda_\pi\right) \mathrm{d}t$$
$$- B_h h \sigma_r \mathrm{d}W_t^r - C_h h \sigma_\pi \mathrm{d}W_t^\pi.$$

Real bond price p_{t,h} satisfies:

$$\frac{\mathrm{d}\boldsymbol{p}_{t,h}}{\boldsymbol{p}_{t,h}} = (\boldsymbol{r}_t - \boldsymbol{B}_h h \sigma_r \lambda_r) \,\mathrm{d}t - \boldsymbol{B}_h h \sigma_r \mathrm{d}\boldsymbol{W}_t^r + \sigma_{\Pi} \mathrm{d}\boldsymbol{W}_t^{\Pi}.$$

Here, B_h , $C_h \in [0, 1]$ are horizon-dependent constants; $\lambda \equiv (\lambda_r, \lambda_{\text{ITEVAG}}, \lambda_r)$ and λ_μ represent market prices of risk. We assume that λ is known.

MOTIVATION

The Economy

The State Variables Bond Price Dynamics

Specification

DISCOUNT RATE

INVESTMENT STRATEGY

Preferences

SUMMARY

CONSUMPTION PROFILE IN RETIREMENT

The log nominal consumption profile log $Y_s^N \equiv \log [\prod_s^{\alpha} Y_s]$ is defined as follows:

$$\begin{split} \log Y_s^N &= \alpha \log \Pi_s + \log Y_s \\ &= \alpha \log \Pi_s + \log Y_0^s + \int_0^s \psi_{s-v} \left(r_v + [1-\alpha] \pi_v \right) \mathrm{d}v \\ &\int_0^s q_{s-v} \left(w_r \mathrm{d}W_t^r + w_\pi \mathrm{d}W_t^\pi + w_S \mathrm{d}W_t^S + w_u \mathrm{d}W_t^u \right). \end{split}$$

Here, $\alpha, q_j \in [0, 1]$. We assume that q_j is non-decreasing with the horizon j.

PARAMETER INTERPRETATIONS

- α represents the extent to which pension is linked to the price index.
 - $\alpha = 1$: real pension; $\alpha = 0$: nominal pension.
- ψ_i represents the sensitivity of pension to the interest rate.
 - ▶ $\psi_j > 0$: pension tends to increase as return on savings rises.
- q_i represents the exposure to (current) financial shocks.
 - Pension consumption in the distant future is more affected by current shocks than pension consumption in the near future.
- w_r , w_{π} , w_S and w_u represent long-term exposures.

CONSUMPTION PROFILE: SPECIAL CASES

- Nominal Defined Benefit Pension Scheme. α = 0, ψ_j = 0 and q_j = 0 for all j.
- ▶ Real Defined Benefit Pension Scheme. $\alpha = 1$, $\psi_i = 0$ and $q_i = 0$ for all j.
- The Level Method. $\psi_j = 0$ and $q_j = 1$ for all j.
- The Exponential Method. $\psi_j = 0$ and $q_j = 1 - e^{-\eta j}$ for all j.
- ► The *N*-years Exponential Method. $\psi_j = 0$ and $q_j = (1 - e^{-\eta j}) \mathbb{1}_{[j \le N]} + (1 - e^{-\eta N}) \mathbb{1}_{[j > N]}$ for all *j*.

The Level Method

The Exponential Method

The N-years Exponential Method

MOTIVATION

The Economy

The State Variables Bond Price Dynamics

Specification

DISCOUNT RATE

INVESTMENT STRATEGY

Preferences

SUMMARY

MARKET-CONSISTENT DISCOUNT RATE

The market-consistent discount rate can be determined as follows:

$$L_t = \mathbb{E}_t \left[\int_t^T \frac{M_s}{M_t} Y_s^N \mathrm{d}s \right] = \Pi_t^\alpha \int_t^T e^{-\mu_t^s(s-t)} \mathbb{M}_t Y_s \mathrm{d}s.$$

Here, M denotes the nominal pricing kernel and \mathbb{M}_t stands for the conditional median.

Straightforward computations show that

$$\mu_t^s = R_t^s + risk premium$$

INTERPRETATION

- ► The first term R_t^s corresponds to the discount rate required to finance the log pension ambition $\log Y_0^s + \int_t^s \psi_{s-\nu} (r_{\nu} + [1 \alpha]\pi_{\nu}) \mathrm{d}\nu.$
- ▶ When $\alpha = 0$ and $\psi_j = 0$, R_t^s collapses to the nominal term structure of interest rates.
- When α = 1 and ψ_j = 0, R^s_t boils down to the real term structure of interest rates.
- The last term represents a horizon-dependent risk premium. This term arises because we allow the agent to take speculative risk.
- ▶ The risk premium increases with *q*_i.

MOTIVATION

The Economy

The State Variables Bond Price Dynamics

SPECIFICATION

DISCOUNT RATE

INVESTMENT STRATEGY

Preferences

SUMMARY

INVESTMENT STRATEGY

The investment strategy is determined in such a way that the individual's wealth matches the market value of the liabilities.

Explicit analytical expressions for the optimal portfolio weights are provided in the paper.

Portfolio Strategy = Hedge Component + Speculative Component.

OBSERVATIONS

- ► Hedge component → Liability-driven investment. The real interest rate and the expected inflation rate duration largely determine the hedge component.
- Expected hedge component decreases as the individual ages.
 The liabilities of old individuals are less sensitive to interest rate and expected inflation rate shocks.
- ▶ ψ_j determines the hedge component, while q_j determines the speculative component.
- Speculative portfolio is proportional to q_t where

$$q_t \equiv \frac{1}{L_t} \int_t^T q_{s-t} \Phi_{t,s} \mathrm{d}s.$$

 q_t typically decreases as the agent ages ightarrow life cycle strategy, burg \bullet . University

EFFICIENT INVESTMENT STRATEGY

The efficient investment strategy can be obtained by maximizing the expected excess return subject to $w^{\top}\rho w + w_u^2 = w_1^2$. Specifically, the individual considers the following maximization problem:

$$\begin{array}{ll} \underset{w_r,w_{\pi},w_{S},w_{u}}{\text{maximize}} & q_t w^{\top} \left(\lambda - \alpha \rho \xi \right) + q_t w_u \left(\lambda_u - \alpha \xi_u \right) \\ \text{subject to} & w^{\top} \rho w + w_u^2 = w_1^2. \end{array}$$

The optimal solution is given by

$$w_i = rac{(1-lpha)\xi_i - \phi_i}{\phi_1}w_1, \quad ext{ for } i = r, \pi, S, \Pi.$$

Here, $\phi = \xi - \rho^{-1}\lambda$. The efficient investment portfolio can be obtained by substituting the expressions for w_r , w_π , w_S and w_u into the expressions for the portfolio weights.

MOTIVATION

The Economy

The State Variables Bond Price Dynamics

Specification

DISCOUNT RATE

INVESTMENT STRATEGY

Preferences

SUMMARY

Preferences

- Our consumption profile is consistent with CRRA utility.
 - ▶ $\psi_j = \frac{1}{\gamma}$ and $q_j = 1$ for all *j*. Here, γ denotes the coefficient of relative risk aversion.
- Under the assumption of linearizing the budget constraint, we can show that (multiplicative) habit formation is consistent with our consumption profile.

•
$$q_j = c + (1 - c) [1 - e^{-\eta j}]$$
 for all *j*, for some *c*.

MOTIVATION

The Economy

The State Variables Bond Price Dynamics

SPECIFICATION

DISCOUNT RATE

INVESTMENT STRATEGY

Preferences

SUMMARY

SUMMARY

- We have determined the market-consistent discount rate and the investment strategy for a general specification of the consumption profile.
- The consumption profile is controlled by four preference parameters.
 - α: nominal vs. real;
 - ψ_i : sensitivity to the interest rate;
 - q_i : relative exposure to shocks and
 - w_1 : long-term exposure.
- All results are analytical!

Thank you for your attention!

