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Backward dynamic program – setting

On a filtered probability space in discrete time (Ω,F ,Fi ,P)i=0,...,n

we consider a dynamic program of the form

Yi = F (i ,Ei [βi+1Yi+1]), 0 ≤ i ≤ n − 1; Yn = ξ

where

ξ is an Fn-measurable integrable random variable;

(βi )i=1,...,n is an adapted bounded, R1+D-valued process;

F (i , ω, z) is Lipschitz in z (with constant independent of ω)
and Fi -measurable for fixed z ∈ R1+D .

Ei [·] denotes conditional expectation given Fi .
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Example 1: Bermudan options

Denote by Si the discounted payoff of a Bermudan option at
the ith exercise date, i = 1, . . . , n.

The holder of the option can choose the time, at which she
exercises the option, which leads to an optimal stopping
problem for the Bermudan option price

Y0 = sup
τ

E [Si ],

where τ runs over the set of {0, . . . , n} valued stopping times
and expectation is taken with respect to a fixed risk-neutral
pricing measure.

Y0 can be represented via the dynamic program

Yi = max{Ei [Yi+1], Si}.

Here: D = 0, β0,i = 1, F (i , z) = max{z , Si}.
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Example 2: Parabolic PDEs

Suppose W is a D-dimensional Brownian motion on [0,T ].
Define h = T/n and ti = ih, i = 0, 1, . . . , n, and
∆Wi+1 = Wti+1 −Wti . Consider the dynamic program

Yj = Ej [Yj+1]

+f

(
tj ,Wtj ,Ej [Yj+1],Ej

[
∆Wj+1

h
Yj+1

]
,Ej

[
∆Wj+1∆W>j+1 − hID

h2
Yj+1

])
h

with terminal condition Yn = g(WT ) for appropriate
deterministic functions f , g .

Then there are determinstic functions uj(x) such that
Yj = uj(Wtj ).
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Example 2: Parabolic PDEs

Given uj+1 we can compute uj as follows. Denote by ūj the
solution of the heat equation

∂

∂t
ūj(t, x) +

1

2
∆ūj(t, x) = 0, (t, x) ∈ [tj , tj+1)× RD

ūj(tj+1, x) = uj+1(x)

Let

uj(x) = ūj(tj , x) + f (tj , x , ū
j(tj , x), ūjx(tj , x), ūjxx(tj , x))h

Under appropriate conditions (ellipticity of the nonlinearity,
etc.), Y0 = Y0(h) converges to v(0, 0), where v is the
(viscosity) solution of the fully nonlinear parabolic Cauchy
problem

∂

∂t
v +

1

2
∆v + f (t, x , v , vx , vxx) = 0, v(T , ·) = g ,

see Fahim, Touzi, Warin (2011) and Tan (2014).
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Example 2: Parabolic PDEs

In this example the weight vector β consists of 1, the D Delta
weights

∆Wj+1

h
,

for the first spatial derivative, and the D2 Gamma weights

∆Wj+1∆W>
j+1 − hID

h2

for the second spatial derivative.

Many pricing problems under credit risk and funding costs can
be formulated in terms of such type of second order parabolic
PDEs, see the minicourse by Damiano Brigo.
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Example 3: Uncertain volatility

Suppose g is the discounted payoff function of a European
option. Under uncertain volatility, the European option
pricing problem becomes

Y0 = sup
σ

E

[
g

(
S0 exp

{∫ T

0
σtdWt −

1

2

∫ T

0
σ2
t dt

})]
,

where σ runs over the set of progressively measurable
processes such that σ ≤ σt ≤ σ. The constants σ ≤ σ
determine the possible range of the uncertain volatility.
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Example 3: Uncertain volatility

The Hamilton-Jacobi-Bellmann equation for this control
problem can be transformed into the form

vt +
1

2
vxx +

1

2
max

ρ∈{σ,σ}

((
ρ2

σ̂2
− 1

)
(vxx − σ̂vx)

)
= 0,

v(T , x) = g(S0e
σ̂x −σ̂2T/2)

for any fixed reference volatility σ̂ > 0.

Then Y0 = v(0, 0).

Hence, the previous example leads to the discretization

Yi = Ei [Yi+1] +
1

2
max

ρ∈{σ,σ}
((
ρ2

σ̂2
− 1)Ei [Yi+1(

∆W 2
i+1

h
− σ̂∆Wi+1 − 1)])

Yn = g(S0 exp{σ̂WT − σ̂2T/2}),

cp. Guyon, Henry-Labordere (2011).
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Backward dynamic program

Recall the dynamic programming equation:

Yi = F (i ,Ei [βi+1Yi+1]), 0 ≤ i ≤ n − 1; Yn = ξ

Aim: Approximate Y0 numerically.

Approximate dynamic programming: Replace the conditional
expectation by some approximation, which can be computed.

Primal-dual methodology: Take the solution of the
approximate dynamic program as an input in order to
construct a confidence interval for the price Y0.
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Approximate dynamic programming

Difficulties: High order nesting of conditional expectations
within the dynamic program (when n is large).

Plain Monte Carlo is not applicable ...
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Approximate dynamic programming

Typical situation: There is a deterministic function
z(i , ·) : RD → R1+D and a RD-valued stochastic process such
that

Ei [βi+1Yi+1] = z(i ,Xi ).

Example: Xi Markovian, F (i , ·) and ξ depend on ω through
Xi (resp. Xn) only, βi+1 independent of Fi .

Numerical algorithms typically try to approximate z(i , x).

Conditional expectation must be replaced by an approximate
operator which can be nested without exploding cost.

Throughout the talk we apply least-squares Monte Carlo
(Longstaff-Schwartz, 2001; Lemor, Gobet, Warin, 2006), but
other choices are possible: quantization (Bally, Pages, 2003),
Malliavin Monte Carlo (Bouchard, Touzi, 2004), cubature on
Wiener space (Crisan, Manolarakis, 2012), ...
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Conditional expectations via least squares Monte Carlo

Pseudo-Algorithm

1 Choose (1 + D) row vectors of basis functions

ψd(i , x) = (ψd ,1(i , x), . . . , ψd ,K (i , x)); x ∈ RD, d = 0, . . . ,D;

2 Simulate L independent copies of (Xi , βi ):
(Xi (λ), βi (λ); i = 1, . . . , n), λ = 1, . . . , L.

3 Solve the (D + 1) least squares problems

ad(i ; z) = arg min
a∈RK

1

L

L∑
λ=1

(
β

(d)
i+1(λ)G (Xi+1(λ))− ψd(i ,Xi (λ))a

)2

≈ arg min
a∈RK

E

[(
β

(d)
i+1G (Xi+1)− ψd(i ,Xi )a

)2
]

;

4 Define, as approximation for E [βi+1G (Xi+1)|Xi = x ],

Ê [βi+1G (Xi+1)|Xi = x ] = (ψ0(i , x)a0(i ; z), . . . , ψD(i , x)aD(i ; z))> .
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The curse of dimensionality

In the PDE example suppose that the nonlinearity does not
depend on vxx and add some Lipschitz conditions.

Lemor, Gobet, Warin (2006): Apply least-squares MC with
indicator functions of hypercubes as basis functions.

Problem: The number of regression paths Λ, which is required
to make the whole scheme converge at the order of n−1/2

increases like n2D+3.

Infeasible for e.g. D = 5.

Gobet and Turkedjiev (2014) show that the complexity and
the number of paths which need be stored at the same time
can be reduced by applying a variant of the forward scheme of
Bender and Denk (2007). E.g. for D = 5, n4.5 samples need
be stored at the same time. (404.5 ≈ 16 Mio.)

There is a curse of dimensionality, when a fine time grid is
necessary or the dimension of X is large.
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The primal-dual approach for Bermudan options

Recall: The dynamic program for Bermudan option pricing is

Yi = max{Si ,Ei [Yi+1]}, Yn = Sn,

for some adapted process S (discounted payoff).

Primal problem: Yi is the value process of the following
maximization problem (optimal stopping):

Yi = esssup
τ

Ei [Sτ ],

where τ runs over the set of {i , . . . , n}-valued stopping times.
An optimal stopping time is given by

τ∗i = inf{j ≥ i ; Sj ≥ Ej [Yj+1]} ∧ n
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The primal-dual approach for Bermudan option case

Dual problem: Yi is the value process of the following
minimization problem (information relaxation dual):

Yi = essinf
M

Ei [ max
j=i ,...,n

(Sj −Mj)] + Mi

where M runs over the set of martingales (Rogers, 2002;
Haugh, Kogan, 2004). The martingale part M∗ of the Doob
decomposition of Y is optimal, even in a pathwise sense:

Yi = max
j=i ,...,n

(Sj −M∗j ) + M∗i

Christian Bender Primal-dual methods for nonlinear pricing problems



The primal-dual approach for Bermudan options

Andersen/Broadie-algorithm (2004); very roughly speaking:
Apply the approximation ẑ(i , x) to z(i , x) = E [Yi+1|Xi = x ]
in order to construct a stopping time τ̂0 and a martingale M̂,
which are ‘close’ to the optimal ones τ∗0 and M∗.

Estimate
E [Sτ̂0 ]

by plain Monte Carlo to get a lower confidence bound for Y0

and
E [ max

j=0,...,n
(Sj − M̂j)] + E [M̂0]

to get an upper confidence bound.

In practice: Use only a moderate effort to pre-calculate ẑ , e.g.
least-squares MC with just a couple of well-chosen basis
functions and a few thousand regression paths. Check
whether the confidence interval by the primal-dual approach is
sufficiently tight for the application under consideration.
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The Bermudan option case – proof of the dual
representation

For any martingale M with M0 = 0 it holds, by optional
sampling, that

Y0 = sup
τ

E [Sτ −Mτ ] ≤ E [ max
i=0,...,n

(Si −Mi )]

Suppose
Yi = Y0 + M∗i − A∗i

is the Doob decomposition of Yi . Then, by the
supermartingale property of Y ,

Y0 = max
i=0,...,n

(Y0 − A∗i )

= max
i=0,...,n

(Yi −M∗i ) ≥ max
i=0,...,n

(Si −M∗i )
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The Bermudan option case – pathwise dynamic
programming

Alternative approach to the dual representation.

Define for a martingale M:

θupi := max
j=i ,...,n

(Sj −Mj) + Mi := max{Si , θupi+1− (Mi+1−Mi )}.

Then for Y up
i := Ei [θ

up
i ] by convexity of z 7→ max{Si , z}

Y up
i ≥ max{Si ,Ei [θ

up
i+1 − (Mi+1 −Mi )]} = max{Si ,Ei [Y

up
i+1]}.

Hence, Y up
i is a ‘supersolution’ for the dynamic program, and

by backward induction and monotonicity of z 7→ max{Si , z},

Y up
i ≥ max{Si ,Ei [Y

up
i+1]} ≥ max{Si ,Ei [Yi+1]} = Yi
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Back to the general setting

Dynamic program:

Yi = F (i ,Ei [βi+1Yi+1]), 0 ≤ i ≤ n − 1; Yn = ξ

Adapted processes Y up
i (resp. Y low

i ) are called supersolution
(resp. subsolution) to the above dynamic program, if

Y up
i ≥ F (i ,Ei [βi+1Y

up
i+1]), 0 ≤ i ≤ n − 1; Y up

n ≥ ξ;

and with ‘≥’ replaced by ‘≤’ for the subsolution.

(Conv) The map z 7→ F (i , z) is convex.
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Pathwise dynamic programming: The convex case

Suppose (Conv). Given a R1+D-valued martingale M define
θupi := θupi (M) via the pathwise dynamic program

θupi = F (i , βi+1θ
up
i+1−(Mi+1−Mi )), 0 ≤ i ≤ n−1; θupn = ξ;

Then, by (Conv),

Ei [θ
up
i ] ≥ F (i ,Ei [βi+1Ei+1[θupi+1]])

and hence Y up
i = Ei [θ

up
i ] is a supersolution.

Important: Calculating Y up
0 only requires the evaluation of

one expectation (and not of nested ones), but of course also
the choice of a martingale M.
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Pathwise dynamic programming: The convex case

Now take M∗ as the Doob martingale of βY , i.e.

M∗i+1 −M∗i = βi+1Yi+1 − Ei [βi+1Yi+1].

Then, P-almost surely,

θ∗,upi := θupi (M∗) = Yi ,

because by backward induction on i ,

θ∗,upi = F (i , βi+1θ
up,∗
i+1 − (βi+1Yi+1 − Ei [βi+1Yi+1]))

= F (i ,Ei [βi+1Yi+1])) = Yi

Question: Under which assumptions does a comparison
principle hold, i.e. are supersolution above the solution and
subsolutions below the solution?
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Pathwise dynamic programming: The convex case

Theorem

Suppose (Conv). Then, the following assertions are equivalent:

(Comp) For any subsolution Y low
i and any supersolution Y up

i :
Y up
i ≥ Y low

i P-a.s.

(Mono) If y , ỹ are two integrable random variables such that
y ≥ ỹ P-a.s., then

F (i ,Ei [βi+1y ]) ≥ F (i ,Ei [βi+1ỹ ]) P-a.s.

In this case
Yi = essinf

M
Ei [θ

up
i (M)],

where M runs over the set of R1+D-valued martingales. Moreover,
the Doob martingale of βiYi is a minimizer (and is ‘surely
optimal’).
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Pathwise dynamic programming: The convex case

Question: How to construct subsolutions?

Define the convex conjugate of F by

F#(i , ρ) = sup
z∈R1+D

(
ρ>z − F (i , z)

)
.

An adapted process ρ is said to be an admissible control, if

n−1∑
j=0

E [|F#(j , ρj)|] <∞.

Given an admissible control consider the pathwise linearization
θlow = θlow (ρ)

θlowi = ρ>i βi+1θ
low
i+1 − F#(i , ρi ), 0 ≤ i ≤ n − 1; θlown = ξ;

and define Y low
i = Ei [θ

low
i ].
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Pathwise dynamic programming: The convex case

Then, by adaptedness of ρ and noting that ρ ∈ [−L, L]1+D .

Y low
i = ρ>i Ei [βi+1θ

low
i+1]− F#(i , ρi )

= ρ>i Ei [βi+1Y
low
i+1 ]− F#(i , ρi ) ≤ F (i ,Ei [βi+1Y

low
i+1 ]),

because F## = F by convexity and since F is defined on the
whole R1+D .

Applying measurable selection of a subgradient (Cheridito,
Kupper, Vogelpoth, 2014), there is an admissible control ρ∗,
which satisfies

(ρ∗i )>Ei [βi+1Yi+1]− F#(i , ρ∗i ) = F (i ,Ei [βi+1Yi+1]),

and hence by induction turns the above inequality into
equality.
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Pathwise dynamic programming: The convex case

Theorem

Suppose (Conv) and (Mono). Then

Yi = esssup
ρ

Ei [θ
low
i (ρ)],

where ρ runs over the set of admissible controls. Any admissible ρ∗

satisfying

(ρ∗i )>Ei [βi+1Yi+1]− F#(i , ρ∗i ) = F (i ,Ei [βi+1Yi+1])

is optimal and such maximizer exists.
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Information relaxation

Solving the linear program for θlow0 (ρ) explicitly yields the
primal problem

Y0 = sup
(ρj )j=0,...,n−1

E [ξ
n−1∏
k=0

ρ>k βk+1 −
n−1∑
i=0

F#(i , ρi )
i−1∏
k=0

ρ>k βk+1],

where the sup runs over admissible controls ρ.
The information relaxation dual due to Brown, Smith, Sun
(2010), cp. also Rogers (2007), states that

Y0 = inf
p
E

[
sup

(ri )i=0,...,n−1

(
ξ

n−1∏
k=0

r>k βk+1 −
n−1∑
i=0

F#(i , ri )
i−1∏
k=0

r>k βk+1 − p(r)
)]

,

where p in general runs over a huge class of ‘penalties’.
Our results show: one can restrict to ‘martingale penalties’:

p(r) =
n−1∑
i=0

r>i (Mi+1 −Mi )
i−1∏
k=0

r>k βk+1.
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Monte Carlo implementation

Step 1: Approximate dynamic programming: Pre-compute an
approximation ẑ(i , x) of

z(i , x) = E [βi+1Yi+1|Xi = x ] = E [βi+1F (i+1, zi+1(Xi+1)|Xi = x ],

initiated at z(n, x) = 0 with the convention F (n, 0) := ξ. E.g.:

ẑ(i , x) = Ê [βi+1F (i + 1, ẑi+1(Xi+1)|Xi = x ], ẑ(n, x) = 0,

where Ê [·|Xi = x ] approximates the conditional expectation
operator. Let Ŷ0 := F (0, z(0,X0)).

We apply least-squares Monte Carlo, i.e. we have to choose
basis functions and the number of regression paths.
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Monte Carlo implementation

Step 2: Lower confidence bound: Given ẑ(i , x) there is a ρ̂i (x)
which solves

ρ̂i (x)>ẑ(i , x)− F#(i , ρ̂i (x)) = F (i , ẑ(i , x))

such that ρ̂i (Xi ) is admissible.
Simulate Λout ‘outer’ sample paths (βi (λ),Xi (λ)) of (βi ,Xi )
(independent of whatever paths might have been used to
compute ẑ) and define

θ̂lowi (λ) = ρ̂i (Xi (λ))>βi+1(λ)θlowi+1(λ)− F#(i , ρ̂i (Xi (λ)))

initiated at the terminal condition of the dynamic program.
Then, the plain MC estimator

1

Λout

Λout∑
λ=1

θ̂low0 (λ)

is biased downwards for Y0 and an asymptotic confidence
bound can be constructed in the usual way.

Christian Bender Primal-dual methods for nonlinear pricing problems



Monte Carlo implementation

Step 3: Upper confidence bound: Given ẑ(i , x) define along
each outer paths

∆M̂i (λ) = βi+1(λ)F (i + 1, ẑ(i + 1,Xi+1(λ)))

−E [βi+1F (i + 1, ẑ(i + 1,Xi+1))|Xi = Xi (λ)].

If the conditional expectation is not available in closed form,
replace it by an unbiased estimator, e.g. one layer of nested
simulation with Λin ‘inner’ sample paths.

Define

θ̂upi (λ) = F (i , βi+1(λ)θ̂upi+1(λ)−∆M̂i (λ))

initiated at the the terminal condition of the dynamic program
and proceed analogously to the ‘lower bound’ in order to
construct an estimator with bias upwards and an upper
confidence bound.
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Example: option pricing with different interest rates

D independent, identically distributed Black-Scholes stock:

X d
t = x0 exp{(µ− σ2/2)t + σW d

t }

Interest rates: Rb for borrowing money, Rl for lending; Rb > Rl .

Pricing problem of a European option with payoff ϕ(XT ):

The price process after time discretization is given by Yn = ϕ(XT ),

Yj = (1− rh)Ej [Yj+1]− µ− Rl

σ

∑
d

Zd ,jh

+(Rb − Rl)h

(
Ej [Yj+1]− 1

σ

∑
d

Zd ,j

)
−

Zd ,j = Ej

[
Wd ,tj+1

−Wd ,tj

h
Yj+1

]
,

where the Brownian increments can be suitably truncated to meet
condition (Mono).
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Numerical example

Parameters D = 5, X0 = 100, µ = 0.05, σ = 0.2, Rb = 0.06,
Rl = 0.01, T = 0.25, h = T/n, ti = ih,

European Max-Call-Spread Option:

ϕ(XT ) =

(
max
d

Xd ,T − 95

)+

− 2

(
max
d

Xd ,T − 115

)+

Bermudan version of this option with 4 exercise dates.
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Numerical example

Approximate dynamic programming: LSMC with 2 or 7 basis
functions: 1, Ej [ϕ(XT )] and the five underlyings for Y -part.
Derivatives of these for “Z -part”, 105 regression paths.
Similar choice for Bermudan option.

Lower and upper bounds calculated with 104 outer paths. 100
inner paths along each outer paths to approximate the Doob
martingales of Ŷ , βŶ .

Control variates... see paper.

40 80 120

Eur. 2 13.7783
(0.0022)

13.8172
(0.0024)

13.7817
(0.0022)

13.8443
(0.0027)

13.7848
(0.0024)

13.8682
(0.0029)

Eur. 7 13.7818
(0.0020)

13.8140
(0.0021)

13.7767
(0.0020)

13.8321
(0.0022)

13.7789
(0.0022)

13.8560
(0.0025)

Ber. 15.5362
(0.0028)

15.5664
(0.0028)

15.5441
(0.0037)

15.6160
(0.0035)

15.5246
(0.0041)

15.6396
(0.0042)

Table: Price bounds for n time steps. Standard deviations are in brackets.
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Beyond the monotonicity condition

Suppose (Conv), but that (Mono) is violated and thus the
comparison principle is not in force: This can easily happen in
the presence of gamma weights.

Given an R1+D-valued martingale M with increments ∆M
and an admissible control ρ define θup = θup(M, ρ) and
θlow = θlow (M, ρ) via

θupi = max{F (i , βi+1θ
up
i+1 −∆Mi+1), F (i , βi+1θ

low
i+1 −∆Mi+1)}

θlowi = (ρ>i βi+1)+θ
low
i+1 − (ρ>i βi+1)−θ

up
i+1 − ρ

>
i ∆Mi+1 − F#(i , ρi ),

with θupn = θlown = ξ.

Then, Ei [θ
up
i (M, ρ)] is a supersolution, Ei [θ

low
i (M, ρ)] is a

subsolution and

Ei [θ
low
i (M, ρ)] ≤ Yi ≤ Ei [θ

up
i (M, ρ)].
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Beyond the monotonicity condition

Theorem

Suppose (Conv). Then

Yi = esssup
M,ρ

Ei [θ
low
i (M, ρ)] = essinf

M,ρ
Ei [θ

up
i (M, ρ)]

where ρ runs over the set of admissible controls and M over the
set of R1+D-valued martingales M . Optimizers (M∗, ρ∗) for both
problems are given by the Doob martingale M∗ of βY and any
admissible ρ∗ satisfying

(ρ∗i )>Ei [βi+1Yi+1]− F#(i , ρ∗i ) = F (i ,Ei [βi+1Yi+1]).

These optimizers are ‘surely’ optimal, i.e. P-almost surely

Yi = θlowi (M∗, ρ∗) = θupi (M∗, ρ∗)
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A numerical example: uncertain volatility

Recall the pricing problem under uncrtain volatility

sup
σ

E

[
g

(
S0 exp

{∫ T

0
σsdWs −

∫ T

0

σ2
s

2
ds

})]
,

where σ runs over the progressively measurable processes with
values in [σ, σ].

Time discretization with reference volatility σ̂

Yi = Ei [Yi+1] +
1

2
max

ρ∈{σ,σ}
((
ρ2

σ̂2
− 1)Ei [Yi+1(

∆W 2
i+1

h
− σ̂∆Wi+1 − 1)])

Yn = g(S0 exp{σ̂WT − σ̂2T/2}),

Least-squares Monte Carlo for the approximate dynamic
program suffers from large variances due to the gamma
weight, see the discussion in Alanko and Avellaneda (2013).
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A variant of least-squares Monte Carlo

LSMC approximates the true regression functions via

ẑ(i , x) = Ê [βi+1F (i + 1, ẑi+1(Xi+1))|Xi = x ], ẑ(n, x) = 0,

where Ê denotes a empirical regression on a set of basis
functions.

Suppose that basis functions ψk(i , x), k = 1, . . . ,K are
chosen such that

E [βi+1ψk(i + 1,Xi+1)|Xi = x ]

is available in closed form.

Define an alternative approximation by

z̃(i , x) = E [βi+1Ê [F (i+1, z̃i+1(Xi+1))|Xi+1]|Xi = x ], z̃(n, x) = 0,

where Ê [·|Xi+1] denotes empirical regression on the basis
functions at time i + 1, cp. Glasserman, Yu (2004), Bender,
Steiner (2012).
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Back to the numerical example

Choice of the parameters:

σ = 0.3, σ = 0.4, T = 1, S0 = 100

Call spread option:

g(x) = (x − 90)+ − (x − 110)+

Approximate dynamic programming: above variant of
least-squares MC, 100.000 regression paths,
basis functions: 1, x , and the prices of call options with 160
different strikes between 20.5 and 230.5.

Computation of the confidence bounds: 100.000 outer paths,
martingale available in closed form.

Christian Bender Primal-dual methods for nonlinear pricing problems



A numerical example

σ̂ = 0.35:

n Ŷ0 Ŷ low
0 Ŷ up

0 Ŷ LGW
0

20 9.6924 9.6922
(<0.0001)

9.6930
(<0.0001)

9.8013

40 9.7409 9.7406
(<0.0001)

9.7435
(0.0001)

10.1383

60 9.7574 9.7571
(0.0001)

9.7707
(0.0006)

10.5239

80 9.7653 9.7644
(0.0002)

9.8651
(0.0088)

10.8792

σ̂ = 0.4/
√

3 ≈ 0.23:

n Ŷ0 Ŷ low
0 Ŷ up

0 Ŷ LGW
0

6 9.7183 9.7181
(0.0003)

9.7202
(0.0003)

9.6165

12 9.7584 9.7589
(0.0003)

9.7663
(0.0022)

9.8452

18 9.7686 9.7685
(0.0004)

9.7799
(0.0014)

10.3520

24 9.7745 9.7749
(0.0004)

9.8073
(0.0065)

11.2847

True option price (Vanden, 2006): 9.7906
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Beyond the convexity condition

Suppose (Mono), which ensures the comparison pinciple, even
if (Conv) is violated. Denote by L a Lipschitz constant of F .

Fix an integrable process Z̃i , which we think of an
approximation of Zi = Ei [βi+1Yi+1]

Consider the auxiliary convex dynamic program

Y Z̃
i = F (i , Z̃i ) + L

∣∣∣Z̃i − Ei [βi+1Y
Z̃
i+1]

∣∣∣ , Y Z̃
n = ξ.

Then Y Z̃ is a supersolution to the original dynamic program
for any Z̃ and Y Z = Y .

Hence
Yi = essinf

Z̃
essinf

M
Ei [θ

up,Z̃
i (M)].

For the ‘lower bound’ one considers the auxiliary concave
dynamic program

Y Z̃
i = F (i , Z̃i )− L

∣∣∣Z̃i − Ei [βi+1Y
Z̃
i+1]

∣∣∣ , Y Z̃
n = ξ.
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Conclusion

Generalizing from the Bermudan option case, we presented a
methodology which complements any numerical method for
approximating discrete time dynamic programs with a
confidence interval for the quantity of interest Y0 (e.g. an
option price).

In particular, a ‘cheap’ approximation method for the
conditional expectations in the approximate dynamic program
can be justified a-posteriori, if the confidence interval is
sufficiently tight for the application under consideration.
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Thank you for your attention

This talk was based on:

Bender, Schweizer, Zhuo, A primal-dual algorithm for BSDEs, under
revision. Preprint available on arXiv.

work in progress with C. Gärtner and N. Schweizer.

This research is supported by the Deutsche Forschungsgemeinschaft via the

priority program 1324.
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