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Course based on 2001-15 Research and on Books

Many papers available for free in SSRN, arXiv, Repec, damianobrigo.it
See references at the end of the course
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Financial Modeling Post 2007-08: Where now? Quick introduction to options and derivatives

Figure: A one-year maturity Gamble on an equity stock. Call Option:
Y = (ST − K )+, T = 1year, K = S0.
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Financial Modeling Post 2007-08: Where now? Quick introduction to options and derivatives

Valuation of financial products, options and derivatives

An option is a contract built on an underlying asset, for example an
equity stock S. Call Option: (ST − K )+.

To price this options we do this: we try to find a trading strategy in the
underlying stock S and on a risk free bank account B that perfectly
replicates the option at the final time T .

Replicates: Final value V of the strategy satisfies VT = (ST − K )+.

The strategy is also self-financing: It does not require any cash
injection (or allow for cash withdrawal).

The initial cost V0 of setting up the strategy then leads to the price of
the option.

This is obtained by a LINEAR (parabolic) PDE that is derived via:
The self financing condition + Ito’s formula (=The Chain rule for
Differential Equations driven by Brownian noise).

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 6 / 257



Financial Modeling Post 2007-08: Where now? Quick introduction to options and derivatives

Valuation of financial products, options and derivatives

Then we have a theorem (Feynman Kac) that allows to interpret the
solution of the PDE as a risk neutral expectation.

Namely: the price of the option is simply an expected value of the
discounted payoff D(t ,T )(ST − K )+, but under a probability measure
where the local return of S is the same as the risk free bank account B.

WE DON’T NEED TO KNOW THE LOCAL RETURN OF S TO PRICE
AN OPTION ON S’s RETURN!!!

(... which is just as well since the local return is hard to estimate, if you
can do that you become very rich...)

This contributed to the popularity of the derivatives markets.
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Financial Modeling Post 2007-08: Where now? Quick introduction to options and derivatives

One would think that Red Investor, perceiving a high local growth µ,
should be willing to pay a higher price for the call option with respect to
Blue Investor, who perceives a low µ. Instead, both have to pay the
gamble according to the green scenarios, with local growth r . The
volatility σ is a key input of the price, but not the local growth µ.

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 8 / 257



Financial Modeling Post 2007-08: Where now? Quick introduction to options and derivatives

Valuation of financial products, options and derivatives

However, all the above assumes a lot of things:

Short selling is allowed
Infinitely divisible shares
No transaction costs
No dividends in the stock
No default risk of the parties in the deal
No funding costs: Cash can be borrowed or lent at the risk free
rate r
Continous time and continuous trading/hedging
Perfect market information
....
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Financial Modeling Post 2007-08: Where now? Quick introduction to options and derivatives

Derivatives

The market introduced options and more generally financial derivatives
that may be much more complex than the above example.

Such derivatives often work on different sectors: Foreign Exchange
Rates, Interest Rates, Default Events, Metheorological events, Energy,
Mortality rates, etc.

Derivatives can be bought to protect or hedge some risk, but also for
speculation or ”gambling”.

However, the Black Scholes theory has often been extrapolated
beyond its limits to accomodate these more general derivatives
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Financial Modeling Post 2007-08: Where now? 10 × planet GDP: Thales, Bachelier and de Finetti

Options and Derivatives

Derivatives outstanding notional as of June 2011 (BIS) is estimated at
708 trillions USD (US GDP 2011: 15 Trillions; World GDP: 79 Trillions)

708000 billions, 7.08×1014 USD (staggering, despite double counting)

How did it start? It has always been there. Around 580 B.C., Thales
purchased options on the future use of olive presses and made a
fortune when the olives crop was as abundant as he had predicted,
and presses were in high demand. (Thales is also considered to be
the father of the sciences and of western philosophy, as you know).
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Financial Modeling Post 2007-08: Where now? 10 × planet GDP: Thales, Bachelier and de Finetti

Options and Derivatives valuation: precursors

Louis Bachelier (1870 – 1946) (First to introduce Brownnian
motion Wt in Finance, First in the modern study of Options);
Bruno de Finetti (1906 – 1985) (Subjective interpret of
probability; defines probabilities in a way that is very similar to
current no arbitrage theories: coherent gambling, inequalities
constraints, discrete setting, see also Frank Ramsey).

Modern theory follows Nobel awarded Black, Scholes and Merton
(and then Harrison and Kreps etc) on the correct pricing of options.
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Financial Modeling Post 2007-08: Where now? The (Black) Scholes & Merton Nobel Award & LTCM

Sometimes the timing of the Nobel committee is funny, and we are not
talking about the peace Nobel prize. Warning: anedoctal

1997: Nobel award.

1998: the US Long-Term Capital Management hedge fund has to be
bailed out after a huge loss. The fund had Merton and Scholes in their
board and made high use of leverage (derivatives). This leads us to...
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Financial Modeling Post 2007-08: Where now? Quantitative Finance and the Crisis

The Credit Crisis: Is this Mathematics fault?

Quantitative Analysts (”quants”) and Academics guilty?

Over the past few years a number of articles has disputed the role of
Mathematics in Finance, especially in relationship with Counterparty
Credit Risk and Credit Derivatives (especially CDOs).
Quants have been accused to be unaware of models limitations and to
have provided the market with a false sense of security.

“The formula that killed Wall Street”1

“The formula that fell Wall Street”2

“Wall Street Math Wizards forgot a few variables”3

“Misplaced reliance on sophisticated (mathematical) models”4

BUT WHAT IS THIS FORMULA PRECISELY?
1Recipe for disaster. Wired Magazine, 17.03.
2The Financial Times, Jones, S. (2009). April 24 2009.
3Lohr (2009), New York Times of September 12.
4Turner, J.A. (2009). The Turner Review. 03/2009. FSA, UK.

www.fsa.gov.uk/pubs/other/turner review.pdf.
(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 14 / 257



Financial Modeling Post 2007-08: Where now? The case of Collateralized Debt Obligations (CDO)

CDOs: The standard synthetic case I

Portfolio of names, say 125. Names may default, generating
losses.
A tranche is a portion of the loss between two percentages. The
3%− 6% tranche focuses on the losses between 3% (attachment
point) and 6% (detachment point).
The CDO protection seller agrees to pay to the buyer all notional
default losses (minus the recoveries) in the portfolio whenever
they occur due to one or more defaults, within 3% and 6% of the
total pool loss.
In exchange for this, the buyer pays the seller a periodic fee on the
notional given by the portion of the tranche that is still “alive” in
each relevant period.
Valuation problem: What is the fair price of this “insurance”?

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 15 / 257



Financial Modeling Post 2007-08: Where now? The case of Collateralized Debt Obligations (CDO)

CDOs: The standard synthetic case II

Pricing (marking to market) a tranche: taking expectation of the
future tranche losses under the pricing measure.
From nonlinearity, the tranche expectation will depend on the loss
distribution: marginal distributions of the single names defaults
and dependency among different names’ defaults. Dependency is
commonly called “correlation”.
Abuse of language: correlation is a complete description of
dependence for jointly Gaussians, but more generally it is not.
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Financial Modeling Post 2007-08: Where now? The case of Collateralized Debt Obligations (CDO)

Copulas

The complete description is either the whole multivariate distribution or
the so-called “copula function” (marginal distributions have been
standardized to uniform distributions).

CDO Valuation: The culprit.
One-factor Gaussian copula

∫ +∞

−∞

125∏
i=1

Φ

(
Φ−1(1− exp(−Λi(T )))−√ρim√

1− ρi

)
ϕ(m)dm.

“MEA COPULA!” From Nobel award to universal scapegoat

Introduced in Credit Risk modeling by David X. Li. Commentators went
from suggesting a Nobel award to blaming Li for the whole Crisis.
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Financial Modeling Post 2007-08: Where now? The case of Collateralized Debt Obligations (CDO)

The scapegoat

David Li, 2005, Wall Street Journal
[...] ”The most dangerous part,” Mr. Li himself says of the model, ”is
when people believe everything coming out of it.” Investors who put too
much trust in it or don’t understand all its subtleties may think they’ve
eliminated their risks when they haven’t.

Indeed, these models are static. they ignore Credit Spread Volatilities,
that in Credit can be 100%; this has further paradoxical consequences
in copula models for wrong way risk, as we will see later on.
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Financial Modeling Post 2007-08: Where now? Real problems of Market Synthetic CDO models

Tranches and Correlations

The dependence of the tranche on “correlation” is crucial. The market
assumes a Gaussian Copula connecting the defaults of the 125
names, parametrized by a correlation matrix with 125*124/2 = 7750
entries. However, when looking at a tranche:

7750 parameters −→ 1 parameter.

The unique parameter is reverse-engineered to reproduce the price of
the liquid tranche under examination. ”Implied correlation”. Once
obtained it is used to value related products.

Problem with this implied ”compound correlation”

If at a given time the 3%− 6% tranche for a five year maturity has a
given implied correlation, the 6%− 9% tranche for the same maturity
will have a different one. The two tranches on the same pool are priced
(and hedged!!!) with two inconsistent loss distributions
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Financial Modeling Post 2007-08: Where now? Real problems of Market Synthetic CDO models
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Financial Modeling Post 2007-08: Where now? Real problems of Market Synthetic CDO models

Figure: Compound correlation inconsistency
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Financial Modeling Post 2007-08: Where now? Real problems of Market Synthetic CDO models

Figure: (After Edvard Munch’s The Scream; Compound correlation DJ-iTraxx
S5, 10y on 3 Aug 2005)
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Financial Modeling Post 2007-08: Where now? Real problems of Market Synthetic CDO models

Figure: Non-invertibility compound correl DJ-iTraxx S5, 10y on 3 Aug 2005
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Financial Modeling Post 2007-08: Where now? Real problems of Market Synthetic CDO models

Base correlation I

As a possible remedy for non-invertibility of compound correlation and
other matters, the market introduced Base Correlation, which is still
prevailing in the market.

Problems with base correlation
Base correlation is easier to interpolate but is inconsistent even at
single tranche level, in that it prices the 3%− 6% tranche by
decomposing it into the 0%− 3% tranche and 0%− 6% tranche and
using two different correlations (and hence distributions) for those.
This inconsistency shows up occasionally in negative losses (i.e. in
defaulted names resurrecting).

[in the graph we use put-call parity to simplify]
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Financial Modeling Post 2007-08: Where now? Real problems of Market Synthetic CDO models

Base correlation II

Figure: Base correlation inconsistency
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Financial Modeling Post 2007-08: Where now? Real problems of Market Synthetic CDO models

Base correlation III

Figure: (Base correl DJ-iTraxx S5, 10y on 3 Aug 2005)
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Financial Modeling Post 2007-08: Where now? Real problems of Market Synthetic CDO models

Base correlation

Figure: Expected tranche loss coming from Base correlation calibration, 3d
August 2005, First published in 2006. The locally negative loss distribution
means there are defaulted names RESURRECTING with positive probability
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Financial Modeling Post 2007-08: Where now? ... but especially Policies and Managerial problems

Some facts

Proceedings of a Conference
held in London in 2006 by
Merrill Lynch.
A number of proposals to
improve the static copula
models used (and abused) for
credit derivatives have been
presented. I was there.
Quants and Academics were
well aware (and had been for
years) of the models
limitations and were trying to
overcome them.
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Financial Modeling Post 2007-08: Where now? ... but especially Policies and Managerial problems

A few journalist have very short memory...

12 Sept 2005. Wall Street Journal
How a Formula [Base correlation + Gaussian Copula] Ignited Market
That Burned Some Big Investors.

There are many other publications preceeding the crisis started in
2007. Such publications questioned the use of the Gaussian copula
and the notion of implied and base correlation. For example, see our
2006 article

Implied Correlation: A paradigm to be handled with care, 2006, SSRN,
http://ssrn.com/abstract=946755
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Financial Modeling Post 2007-08: Where now? An example of 2006 partial solution for CDOs

Figure: This book collects research published originally in 2006, warning
against the flaws of the industry credit derivatives models. Related papers in
the journals Mathematical Finance, Risk Magazine, IJTAF
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Financial Modeling Post 2007-08: Where now? An example of 2006 partial solution for CDOs

Beyond copulas: GPL and GPCL Models (2006-on)

We model the total number of defaults in the pool by t as

Zt :=
n∑

j=1

δjZj(t)

(for integers δj ) where Zj are independent Poissons. This is consistent
with the Common Poisson Shock framework, where defaults are linked
by a Marshall Olkin copula (Lindskog and McNeil).

Example : n = 125, Zt = 1 Z1(t) + 2 Z2(t) + . . .+ 125 Z125(t).

If Z1 jumps there is just one default (idiosyncratic), if Z125 jumps there
are 125 ones and the whole pool defaults one shot (total systemic
risk), otherwise for other Zi ’s we have intermediate situations (sectors).
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Financial Modeling Post 2007-08: Where now? Dynamics and structured losses: GPC and GPCL models

The GPL and GPCL Models: Default clusters?

Thrifts in the early 90s at the height of the loan and deposit crisis.
Airliners after 2001.
Autos and financials more recently. From the September, 7 2008
to the October, 8 2008, we witnessed seven credit events: Fannie
Mae, Freddie Mac, Lehman Brothers, Washington Mutual,
Landsbanki, Glitnir, Kaupthing.

S&P ratings and default clusters

Moreover, S&P issued a request for comments related to changes in
the rating criteria of corporate CDO. Tranches rated ’AAA’ should be
able to withstand the default of the largest single industry in the pool
with zero recoveries. Stressed but plausible scenario that a cluster of
defaults in the objective measure exists.
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Financial Modeling Post 2007-08: Where now? Dynamics and structured losses: GPC and GPCL models

The GPL and GPCL Models

Problem: infinite defaults. Solution 1: GPL: Modify the aggregated
pool default counting process so that this does not exceed the number
of names, by simply capping Zt to n, regardless of cluster structures:

Ct := min(Zt ,n)

Solution 2: GPCL. Force clusters to jump only once and deduce single
names defaults consistently.
The first choice is ok at top level but it does not really go down towards
single names. The second choice is a real top down model, but
combinatorially more complex.

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 28 / 257



Financial Modeling Post 2007-08: Where now? Dynamics and structured losses: GPC and GPCL models

Calibration

The GPL model is calibrated to the market quotes observed on March
1 and 6, 2006. Deterministic discount rates are listed in Brigo,
Pallavicini and Torresetti (2006). Tranche data and DJi-TRAXX fixings,
along with bid-ask spreads, are (I=index,T=Tranche,Tl=Tranchelet)

Att-Det March, 1 2006 March, 6 2006
5y 7y 3y 5y 7y

I 35(1) 48(1) 20(1) 35(1) 48(1)
T 0-3 2600(50) 4788(50) 500(20) 2655(25) 4825(25)

3-6 71.00(2.00) 210.00(5.00) 7.50(2.50) 67.50(1.00) 225.50(2.50)
6-9 22.00(2.00) 49.00(2.00) 1.25(0.75) 22.00(1.00) 51.00(1.00)

9-12 10.00(2.00) 29.00(2.00) 0.50(0.25) 10.50(1.00) 28.50(1.00)
12-22 4.25(1.00) 11.00(1.00) 0.15(0.05) 4.50(0.50) 10.25(0.50)

Tl 0-1 6100(200) 7400(300)
1-2 1085(70) 5025(300)
2-3 393(45) 850(60)
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Financial Modeling Post 2007-08: Where now? Dynamics and structured losses: GPC and GPCL models

Calibration: All standard tranches up to seven years

As a first calibration example we consider standard DJi-TRAXX
tranches up to a maturity of 7y with constant recovery rate of 40%.
The calibration procedure selects five Poisson processes. The 18
market quotes used by the calibration procedure are almost perfectly
recovered. In particular all instruments are calibrated within the
bid-ask spread (we show the ratio calibration error / bid ask spread).

Att-Det Maturities
3y 5y 7y

Index -0.4 -0.2 -0.9
Tranche 0-3 0.1 0.0 -0.7

3-6 0.0 0.0 0.7
6-9 0.0 0.0 -0.2

9-12 0.0 0.0 0.0
12-22 0.0 0.0 0.2

δ Λ(T )
3y 5y 7y

1 0.535 2.366 4.930
3 0.197 0.266 0.267

16 0.000 0.007 0.024
21 0.000 0.003 0.003
88 0.000 0.002 0.007
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Financial Modeling Post 2007-08: Where now? Dynamics and structured losses: GPC and GPCL models

Loss distribution of the calibrated GPL model at different times
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Financial Modeling Post 2007-08: Where now? Dynamics and structured losses: GPC and GPCL models
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Financial Modeling Post 2007-08: Where now? Dynamics and structured losses: GPC and GPCL models
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Financial Modeling Post 2007-08: Where now? Dynamics and structured losses: GPC and GPCL models

October 2 2006, GPL, Calibration up to 10y
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Financial Modeling Post 2007-08: Where now? Dynamics and structured losses: GPC and GPCL models

October 2 2006, GPL tail
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Financial Modeling Post 2007-08: Where now? Dynamics and structured losses: GPC and GPCL models

October 2 2006, GPCL, Calibration up to 10y
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Financial Modeling Post 2007-08: Where now? Dynamics and structured losses: GPC and GPCL models

October 2 2006, GPCL tail
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Financial Modeling Post 2007-08: Where now? Dynamics and structured losses: GPC and GPCL models

Calibration comments I

Sector / systemic calibration:
Notice the large portion of mass concentrated near the origin, the
subsequent modes (default clusters) when moving along the loss
distribution for increasing values, and the bumps in the far tail.
Modes in the tail represent risk of default for large sectors. This is
systemic risk as perceived by the dynamical model from the CDO
quotes. With the crisis these probabilities have become larger, but they
were already observable pre-crisis. Difficult to get this with parametric
copula models, and impossible with flat correlations across names.

History of calibration in-crisis with a different parametrization (α’s fixed
a priori):
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Financial Modeling Post 2007-08: Where now? Dynamics and structured losses: GPC and GPCL models

Calibration comments II
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Financial Modeling Post 2007-08: Where now? Dynamics and structured losses: GPC and GPCL models

Loss distribution in GPL through the crisis

The loss distribution in the GPL model is arbitrage free, rich in
structure and consistent with all market quotes, a feat impossible for
implied correlation models.

The following movie shows how structured the loss dynamics can be,
as highlighted by the GPL model.

Animation showing how the loss distribution evolved in 2005+ is here
http://www.youtube.com/watch?v=YZO-HeaGHkk&t=62m40s
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Financial Modeling Post 2007-08: Where now? Dynamics and structured losses: GPC and GPCL models

Calibration in-crisis

A full treatment of the calibration in crisis and a model extension is
given in the book ”Credit Models and the Crisis” by Brigo, Pallavicini
and Torresetti (2010), Wiley.
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The synthetic CDO case?

We have illustrated how a complex situation in CDO markets has
been trivialized by media and even regulators
Models (such as base correlation) were indeed inadequate, but
the industry and researchers had been looking for much more
powerful and consistent alternatives
We have seen the example of the GPL model, a fully consistent
arbitrage free dynamic model for CDOs
So why didn’t the media pick this up? Why didn’t the media realize
the glitches they were signalling were the same the Wall Street
Journal had reported years earlier in 2005?
We hope the CDO case study illustrates the lack of rigour in a
broad part of investigative journalism, especially in connection
with complex and technical subjects.
We cannot blame (even poor) modeling for policy, regulation,
incentives, banking model, governance, lack of culture...
We have a duty to make our research visible and heard to society
at large and not just the academic community(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 59 / 257
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Is Maths Guilty and Wrong?

Mathematics is not wrong. We have to be careful in understanding
what is meant when saying that one uses mathematical models.
Mathematical models are a simplification of reality, and as such,
are always ”wrong”, even if they try to capture the salient features
of the problem at hand.
”All models are wrong, but some models are useful” (Prof.
George E.P. Box)
The core mathematical theory behind derivatives valuation is
correct, but the assumptions on which the theory is based may not
reflect the real world when the market evolves over the years.
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Is Mathematics guilty?

Although the models used in Credit Derivatives and counterparty
risk have limits that have been highlighted before the crisis by
several researchers, the ongoing crisis is due to factors that go
well beyond any methodological inadequacy: the killer formula∫ +∞

−∞

125∏
i=1

Φ

(
Φ−1(1− exp(−Λi(T )))−√ρim√

1− ρi

)
ϕ(m)dm.

Versus
The Crisis:
US real estate policy, Originate to Distribute (to Hold?) system fragility,
volatile monetary policies,
myopic compensation and incentives system, lack of homogeneity in
regulation, underestimation of liquidity risk, lack of data, fraud
corrupted data...(Szegö 2009, The crash sonata in D major, JRMFI).

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 61 / 257



Financial Modeling Post 2007-08: Where now? Mathematics and Statistics guilty?

And what about the data?

Data and Inputs quality
For many financial products, and especially RMBS (Residential
Mortgage Backed Securities), quite related to the asset class that
triggered the crisis, the problem is in the data rather than in the models.

Risk of fraud
At times data for valuation in mortgages CDOs (RMBS and CDO of
RMBS) can be distorted by fraud (see for example the FBI Mortgage
fraud report, 2007,
www.fbi.gov/publications/fraud/mortgage fraud07.htm.
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Pricing a CDO on this underlying:

Figure: The above photos are from condos that were involved in a mortgage
fraud. The appraisal described ”recently renovated condominiums” to include
Brazilian hardwood, granite countertops, and a value of 275,000 USD
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And what about the data?

At times it is not even clear what is in the portfolio: From the offering
circular of a huge RMBS (more than 300.000 mortgages)

Type of property % of Total
Detached Bungalow 2.65%

Detached House 16.16%
Flat 13.25%

Maisonette 1.53%
Not Known 2.49 %

New Property 0.02%
Other 0.21%

Semi Detached Bungalow 1.45%
Semi Detached House 27.46%

Terraced House 34.78%
Total 100.00%

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 63 / 257



Financial Modeling Post 2007-08: Where now? Mathematics and Statistics guilty?

Mathematics or Magic?

All this is before modeling. Models obey a simple rule that is popularly
summarized by the acronym GIGO (Garbage In→ Garbage Out). As
Charles Babbage (1791–1871) famously put it:

On two occasions I have been asked,
“Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come out?”
I am not able rightly to apprehend
the kind of confusion of ideas
that could provoke such a question.

So, in the end, how can the crisis be mostly due to models inadequacy,
and to quantitative analysts and academics pride and unawareness of
models limitations?
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Financial Modeling Post 2007-08: Where now? Valuation Reloaded

Valuation of financial products post 2008

Pre-2007 the emphasis was PRICING/HEDGING COMPLEX
DERIVATIVES on simple risks (pure equity risk, pure interest rate risk,
etc)

Now we need to price SIMPLE DERIVATIVES such as Interest Rate
Swaps under COMPLEX RISKS (credit, liquidity, funding,
collateral, gap risk, multiple curves...)

This new task is much harder, not least because many of the new risks
are INTERCONNECTED. More on this in a minute...

New risks are often added one by one by valuation adjustments: CVA,
DVA, LVA, FVA, KVA... In this course we will see how the inclusion of
credit, liquidity, collateral and funding should work in principle,
embracing full nonlinearity and interconnectedness, and how the
industry forces an often misleading separation in more and more
adjustments.
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Credit Risk under collateralization CVA and DVA for uncollateralized OTC deals

CVA and DVA

We are a investment bank ”I” trading with a counterparty ”C”.

Credit Valuation Adjustment (CVA)
is the reduction in price we ask to ”C” for the fact that ”C” may default.
See B. and Tarenghi (2004) and B. and Masetti (2005).

Debit Valuation Adjustment (DVA)
is the increase in price we face towards ”C” for the fact that we may
default. See B. and Capponi (2008). In very simple contexts, DVA can
also be interpreted as a funding benefit.

CVA/DVA are complex options on netting sets...
containing hundreds of risk factors and with a random maturity given
by the first to default between ”I” and ”C”
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Credit Risk under collateralization CVA and DVA for uncollateralized OTC deals

CVA, DVA

CVA and DVA can be sizeable
Citigroup in its press release on the first quarter revenues of 2009
reported a positive mark to market due to its worsened credit quality:
“Revenues also included [...] a net 2.5$ billion positive CVA on
derivative positions, excluding monolines, mainly due to the widening
of Citi’s CDS spreads” (DVA)

CVA mark to market losses: BIS
”During the financial crisis, however, roughly two-thirds of losses
attributed to counterparty credit risk were due to CVA losses and only
about one-third were due to actual defaults.”
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Credit Risk under collateralization CVA and DVA for uncollateralized OTC deals

The case of symmetric counterparty risk

“I” : the investor; “C”: the counterparty;
τI , τC : default times of “I” and “C”. T : final maturity.
Π(t ,T ): Sum of the trade discounted cash flows from t to T ,
discounted back at t at the risk free rate, without credit risk of “I” or “C”.
We consider the following events partition (no simult. defaults)

Four events ordering the default times

A = {τB ≤ τC ≤ T} E = {T ≤ τB ≤ τC}
B = {τB ≤ T ≤ τC} F = {T ≤ τC ≤ τB}
C = {τC ≤ τB ≤ T}
D = {τC ≤ T ≤ τB}

Define NPV{B,C}(t) := Et [Π{B,C}(t ,T )], and recall ΠB = −ΠC .
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Credit Risk under collateralization CVA and DVA for uncollateralized OTC deals

CVA and DVA: Derivation from simple cash flows
ΠD

B (t ,T ) = 1E∪F ΠB(t ,T )

+1C∪D
[
ΠB(t , τC) + D(t , τC)

(
RECC (NPVB(τC))+ − (−NPVB(τC))+)]

+1A∪B
[
ΠB(t , τB) + D(t , τB)

(
(NPVB(τB))+ − RECB (−NPVB(τB))+)]

1 If no early default⇒ payoff of a default-free claim (1st term).
2 In case of early default of the counterparty, the payments due

before default occurs are received (second term),
3 and then if the residual net present value is positive only the

recovery value of the counterparty RECC is received (third term),
4 whereas if negative, it is paid in full by the investor/ Bank (4th

term).
5 In case of early default of the investor, the payments due before

default occurs are received (fifth term),
6 and then if the residual net present value is positive it is paid in full

by the counterparty to the investor/ Bank (sixth term),
7 whereas if it is negative only the recovery value of the investor/

Bank RECB is paid to the counterparty (seventh term).
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Credit Risk under collateralization CVA and DVA for uncollateralized OTC deals

CVA, DVA: A useful derivation in view of funding

Et

{
ΠD

I (t ,T )
}

= Et {ΠI(t ,T )}+ DVAI(t)− CVAI(t)

DVAI(t) = Et
{

LGDI · 111(t < τ 1st = τI < T) · D(t, τI) · [−NPVI(τI)]+
}

CVAI(t) = Et
{

LGDC · 111(t < τ 1st = τC < T) · D(t, τC) · [NPVI(τC)]+
}

Obtained simplifying closeout cash flows and taking expectation.
2nd term : adj due to scenarios τI < τC . This is positive to the
investor/ Bank B and is called ”Debit Valuation Adjustment” (DVA)
3d term : Counterparty risk adj due to scenarios τC < τI

Bilateral Valuation Adjustment as seen from B:
BVAI = DVAI − CVAI .
If computed from the opposite point of view of “C” having
counterparty “B”, BVAC = −BVAI . Symmetry.
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Credit Risk under collateralization Problems with DVA and “perverse incentives”?

DVA problems

Strange consequences of the formula new mid term, i.e. DVA

credit quality of investor WORSENS⇒ books POSITIVE MARK
TO MKT
credit quality of investor IMPROVES⇒ books NEGATIVE MARK
TO MKT
Citigroup in its press release on the first quarter revenues of 2009
reported a positive mark to market due to its worsened credit
quality: “Revenues also included [...] a net 2.5$ billion positive
CVA on derivative positions, excluding monolines, mainly due to
the widening of Citi’s CDS spreads”
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Credit Risk under collateralization DVA Hedging?

DVA Hedging?

October 18, 2011, 3:59 PM ET, WSJ. Goldman Sachs
Hedges Its Way to Less Volatile Earnings.

Goldman’s DVA gains in the third quarter totaled $450 million [...] That
amount is comparatively smaller than the $1.9 billion in DVA gains that
J.P. Morgan Chase and Citigroup each recorded for the third quarter.
Bank of America reported $1.7 billion of DVA gains in its investment
bank. Analysts estimated that Morgan Stanley will record $1.5 billion of
net DVA gains when it reports earnings on Wednesday [...]

Is DVA real? DVA Hedging. Buying back bonds? Proxying?

DVA hedge? One should sell protection on oneself, impossible, unless
one buys back bonds that he had issued earlier. Very Difficult.
Most times: proxying. Instead of selling protection on oneself, one
sells protection on a number of names that one thinks are highly
correlated to oneself.
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Credit Risk under collateralization DVA Hedging?

DVA?

Again from the WSJ article above:

[...] Goldman Sachs CFO David Viniar said Tuesday that the company
attempts to hedge [DVA] using a basket of different financials.
A Goldman spokesman confirmed that the company did this by selling
CDS on a range of financial firms. [...] Goldman wouldn’t say what
specific financials were in the basket, but Viniar confirmed [...] that the
basket contained ’a peer group.’

This can approximately hedge the spread risk of DVA, but not the jump
to default risk. Merrill hedging DVA risk by selling protection on
Lehman would not have been a good idea. Worsens systemic risk.
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Credit Risk under collateralization DVA Hedging?

DVA or no DVA? Accounting VS Capital Requirements

NO DVA: Basel III, page 37, July 2011 release

This CVA loss is calculated without taking into account any offsetting
debit valuation adjustments which have been deducted from capital
under paragraph 75.

YES DVA: FAS 157
Because nonperformance risk (the risk that the obligation will not be
fulfilled) includes the reporting entitys credit risk, the reporting entity
should consider the effect of its credit risk (credit standing) on the fair
value of the liability in all periods in which the liability is measured at
fair value under other accounting pronouncements FAS 157 (see also
IAS 39)
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Credit Risk under collateralization DVA Hedging?

DVA or no DVA? Accounting VS Capital Requirements

Stefan Walter says:

”The potential for perverse incentives resulting from profit being linked
to decreasing creditworthiness means capital requirements cannot
recognise it, says Stefan Walter, secretary-general of the Basel
Committee: The main reason for not recognising DVA as an offset is
that it would be inconsistent with the overarching supervisory prudence
principle under which we do not give credit for increases in regulatory
capital arising from a deterioration in the firms own credit quality.”

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 75 / 257



Credit Risk under collateralization Replacement or Risk Free Closeout?

CVA, DVA: Closeout

V̄t = Et

{
ΠD

I (t ,T )
}

=

V 0
t︷ ︸︸ ︷

Et {ΠI(t ,T )}+DVAI(t)− CVAI(t)

DVAI(t) = Et

LGDI · 111(t < τ 1st = τI < T) · D(t, τI) ·

− NPVI(τI)︸ ︷︷ ︸
V0
τI

or V̄τI ?


+

CVAI(t) = Et

LGDC · 111(t < τ 1st = τC < T) · D(t, τC) ·

NPVI(τC)︸ ︷︷ ︸
V0
τC

or V̄τC ?


+

V 0 risk free closeout (much easier but discontinuity, this is our
derviation above), V̄ replacement closeout - recursive problem but
more continuous.
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Credit Risk under collateralization Replacement or Risk Free Closeout?

CVA, DVA: Closeout

B. and Morini [28] point out several problems with both forms of
closeout. Even in a simple trade as a loan (or zero coupon bond),
there are problems with both closeouts. The default of the lender
should not impact the value of the loan. And yet:

Impact of an early default of the Lender when the loan is valued with
bilateral CVA and DVA

Dependence τI , τC → independence co-monotonicity
Closeout↓
Risk Free Negatively affects No contagion

Borrower

Replacement No contagion Further Negatively
affects Lender

For numerical examples see the paper. ISDA suggests a replacement
closeout but subsimulations...
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Credit Risk under collateralization CVA and DVA: Payout risk

PAYOUT RISK

The exact payout corresponding with the Credit and Debit valuation
adjustment is not always clear.

DVA or not?
Which Closeout?
First to default risk or not? (some banks don’t check who defaults
first in the formula)
How are collateral and funding accounted for exactly?

Worse than model risk: Payout risk. WHICH PAYOUT?
At a 2012 industry panel (WBS) on CVA it was stated that 5 banks
might compute CVA in 15 different ways.
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Credit Risk under collateralization CVA and DVA: Payout risk

Intensity Models for default times τ

In intensity models the random default time τ is assumed to be
exponentially distributed.

A strictly positive stochastic process t 7→ λt called default intensity (or
hazard rate) is given for the bond issuer or the CDS reference name.

The cumulated intensity (or hazard function) is the process
t 7→

∫ t
0 λs ds =: Λt . Since λ is positive, Λ is increasing in time.

The default time is defined as the inverse of the cumulative intensity on
an exponential random variable ξ with mean 1 and independent of λ

τ = Λ−1(ξ) (Q(ξ > u) = e−u, E(ξ) = 1).

Why is this definition interesting and suitable? More in a minute.
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Credit Risk under collateralization CVA and DVA: Payout risk

Intensity Models for default times τ

A few calculations: Probability of surviving time t :

Q(τ > t) = Q(Λ−1(ξ) > t) = Q(ξ > Λ(t)) =→

Let’s use the tower property of conditional expectation and the fact that
Λ is independent of ξ:

→= E[Q(ξ > Λ(t)|Λ(t))] = E[e−Λ(t)] = E[e−
∫ t

0 λs ds]

This looks exactly like a bond price if we replace r by λ!
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Credit Risk under collateralization CVA and DVA: Payout risk

Intensity Models for default times τ

Let’s price a defaultable zero coupon bond with zero recovery. Assume
that ξ is also independent of r .

P̄(0,T ) = E[D(0,T )1{τ>T}] = E[e−
∫ T

0 rs ds1{Λ−1(ξ)>T}] =

= E[e−
∫ T

0 rs ds1{ξ>Λ(T )}] = E[E{e−
∫ T

0 rs ds1{ξ>Λ(T )}|Λ, r}]

= E[e−
∫ T

0 rs dsE{1{ξ>Λ(T )}|Λ, r}]

= E[e−
∫ T

0 rs dsQ{ξ > Λ(T )|Λ}] = E[e−
∫ T

0 rs dse−Λ(T )] =

= E[e−
∫ T

0 rs ds−
∫ T

0 λs ds = E[e
−

∫ T
0 (rs + λs) ds

]

So the price of a defaultable bond is like the price of a default-free
bond where the risk free discount short rate r has been replaced by r
plus a spread λ.
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Credit Risk under collateralization CVA and DVA: Payout risk

Intensity Models for default times τ

This is why the intensity is interpreted as a credit spread.

Because of properties of the exponential random variable, one can
also prove that

Q(τ ∈ [t , t + dt)|τ > t , ”λ[0, t ]”) = λt dt (∗)

and the intensity λt dt is also a local probability of defaulting around t .
For example, if λ is deterministic,

Q(τ ∈ [t , t + dt)|τ > t) =
Q(τ ∈ [t , t + dt) ∩ τ > t)

Q(τ > t)
=

Q(τ ∈ [t , t + dt))

Q(τ > t)

=
−dQ(τ > t)
Q(τ > t)

= −d e−
∫ t

0 λsds

e−
∫ t

0 λsds
= λt dt

Notice also if we take (*) as a starting point (instead of τ = Λ−1(ξ)) and
proceed as in the last calculation except the last two steps, we get to
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Credit Risk under collateralization CVA and DVA: Payout risk

Intensity Models for default times τ

λtdt = Q(τ ∈ [t , t + dt)|τ > t) =
−dQ(τ > t)
Q(τ > t)

= −dS(t)
S(t)

where we called S the survival probability. Then we get the equation
dS(t) = −λtS(t)dt , leading to the exponential formula S(t) = e−

∫ t
0 λsds.

Summing up, given τ = Λ−1(ξ):

λ is an instantaneous credit spread or local default probability

ξ is pure jump to default risk
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Credit Risk under collateralization CVA and DVA: Payout risk

Intensity models and Interest Rate Models

As is now clear, the exponential structure of τ in intensity models
makes the modeling of credit risk very similar to interest rate models.

The spread/intensity λ behaves exactly like an interest rate in
discounting

Then it is possible to use a lot of techniques from interest rate
modeling for credit as well.
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Credit Risk under collateralization CVA and DVA: Payout risk

CVA, DVA: A useful derivation in view of funding

Immersion hypothesis for credit risk: work under default-free
filtration Ft as much as possible.
Assume conditional independence of defaults: spreads λ’s may be
correlated, but jump to defaults ξ’s will be independent.
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Credit Risk under collateralization CVA and DVA: Payout risk

Conditional independence of defaults I

Recall that we are assuming

Gt = Ft ∨ σ({τi ≤ u},u ≤ t)

with i indexing all the default times in the system. Working under
F-immersion usually means that the risks in the basic cash flows Π are
assumed not to be credit sensitive but to depend only on the filtration
F of pre-default or default-free market information, eg default free
interest rate swaps portfolio.
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Credit Risk under collateralization CVA and DVA: Payout risk

Conditional independence of defaults II
We are also assuming default times to be F-conditionally independent:

if τI = Λ−1
I (ξI), τC = Λ−1

C (ξC),

then this means assuming that ξI and ξC are independent. Intensities
λI(t) and λC(t) are taken Ft adapted (& can be correlated) and

Q(τ > t) = Q(min(τI , τC) > t) = Q(τI > t ∩ τC > t) =

We use the tower property + independence of ξ’s on each other and F :

= E[Q(τI > t ∩ τC > t |Ft )] = E[Q(τI > t |Ft )Q(τC > t |Ft )] =

= E[e−ΛI(t)e−ΛC(t)] = E[e−ΛI(t)−ΛC(t)] = E[e−
∫ t

0 (λI(s)+λC(s))ds]

Similarly, one can show the first to default time τ intensity λ

is Q(τ ∈ [t , t + dt)|τ > t ,Ft ) = λt dt = (λI(t) + λC(t))dt .
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Credit Risk under collateralization CVA and DVA: Payout risk

Conditional independence of defaults III

Summing up:
Whenever we use the immersion hypothesis, meaning that we switch
filtration from G to F , we assume the ξ to be conditionally independent
and the basic cash flows Π(s, t) to be Ft adapted for all s ≤ t .

Switching to the filtration F typically transforms indicators such as
1{τ>t} into their F expectations e−

∫ t
0 (λI(s)+λC(s))ds. This is often

collected in the discount term D(0, t ; r) that becomes D(0, t ; r + λ).

D(0, t ; r)1{τ>t} = e−
∫ t

0 rsds1{τ>t} goes e−
∫ t

0 rsdse−
∫ t

0 λsds = D(0, t ; r +λ)

The switching also transforms 1{τ∈dt} into λte−
∫ t

0 λsdsdt .
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Credit Risk under collateralization CVA and DVA: Payout risk

CVA, DVA: A useful derivation in view of funding
CVAI(t) = Et

{
LGDC · 111(t < τ 1st = τC < T) · D(t, τC) · [V(τC)]+

}
= Et

{
LGDC

∫ T

t
1{τ1st∈du}1{τI>u}D(t ,u) [V (u)]+

}

= LGDC

∫ T

t
Et
{

1{τC∈du}1{τI>u}D(t ,u) (V (u))+}
= LGDC

∫ T

t
Et
{
Eu
[
1{τC∈du}1{τI>u}D(t ,u) (V (u))+ |Fu+du

]}
= LGDC

∫ T

t
Et
{

D(t ,u) (V (u))+ Eu
[
1{τC∈du}1{τI>u+du}|Fu+du

]}
= . . .(

Eu
[
1{τC∈du}1{τI>u+du}|Fu+du

]
= Eu

[
1{τC∈du}|F

]
Eu
[
1{τI>u+du}|F

]
=

= λC(u)du e(−
∫ u

t λC(s)ds)e(−
∫ u

t λI(s)ds) = λC(u)du e(−
∫ u

t (λC(s)+λI(s))ds)

= λC(u)e−
∫ u

t λ(s)ds du
)

= Et

{
LGDC

∫ T

t
D(t ,u; r + λ)λC(u) (V (u))+ du

}
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Credit Risk under collateralization CVA and DVA: Payout risk

CVA, DVA: A useful derivation in view of funding

CVAI(t) = Et

{∫ T

t
D(t ,u; r + λ)LGDC λC(u) (V (u))+ du

}

DVAI(t) = Et

{∫ T

t
D(t ,u; r + λ)LGDI λI(u) (−V (u))+ du

}
and we will see later that (without collateral and under the Reduced
Borrowing Benefit case) Funding Cost and Benefit Adjustments (FCA,
FBA) are (notice the formal analogies, used in industry)

FCAI(t) = Et

{∫ T

t
D(t ,u; r + λ)LGDI λI(u) (V (u))+ du

}

FBAI(t) = Et

{∫ T

t
D(t ,u; r + λ)LGDI λI(u) (−V (u))+ du

}
= DVAI(t)
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Credit Risk under collateralization Residual CVA & DVA after Collateral: Gap Risk

CVA and DVA: Collateral and Gap Risk

Collateral is a guarantee following mark to market...
and posted from the party that is facing a negative variation of mark to
market in favour of the other party. If one party defaults, the other party
may use collateral to cover their losses.

However, even under daily collateralization...
there can be large mark to market swings due to contation that make
collateral rather ineffective. This is called GAP RISK and is one of the
reasons why Central Clearing Counterparties (CCPs) and the new
standard CSA have an initial margin as well.

Example of Gap Risk (from B. Capponi Pallavicini (2011)):
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Credit Risk under collateralization Residual CVA & DVA after Collateral: Gap Risk
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Credit Risk under collateralization Residual CVA & DVA after Collateral: Gap Risk

Collateral Management and Gap Risk
The figure refers to a payer CDS
contract as underlying See full
paper B., Capponi and Pallavicini
(2011) for more cases. Figure: rele-
vant CVA component starting at 10
and ending up at 60 under high cor-
relation. Here we plot it negative to
remind it is to be subtracted from
the standard price.

Collateral very effective in removing CVA when correlation = 0

CVA goes from 10 to 0 basis points.

Collateral not effective as default dependence grows

Collateralized and uncollateralized CVA become closer and closer, and
for high correlations we get 60 bps CVA even with collateral.
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Credit Risk under collateralization Residual CVA & DVA after Collateral: Gap Risk

Collateral Management and Gap Risk

Instantaneous contagion makes collateralization ineffective

We are “A”, buying from “B” protection (CDS) against default of “C”.

Under positive “correlation” “B”-“C”, default contagion pushes up the
intensity of the CDS protection at default of the counterparty.

Indeed, the term structure of the default probabilities for “C” after
“B”’s default lies significantly above the levels pre “B”’s default,
especially for large default correlation B-C.
⇒ the default leg of the CDS will increase in value due to
contagion at default of “B”, and instantaneously the Payer CDS
will be worth more than what is in the collateral account.
This increases the loss to us (“A”) when we buy protection from a
new bank B2, and most of the CVA value will come from this jump.
This explains the limited effectiveness of collateral.
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Introduction to Funding Costs Funding Costs: FVA?

Inclusion of Funding Cost

We now move to the inclusion of funding costs.

This is an important part of valuation, as shown by the financial news
concerning JPMorgan as from January 2014, showing that Funding
costs impacted the firm for 1.5 Billion $.

Where does the problem of funding costs originate from?
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Introduction to Funding Costs Funding Costs: FVA?

Inclusion of Funding Cost

When managing a trading position, one needs to obtain cash in order
to do a number of operations:

hedging the position,
posting collateral,
paying coupons or notionals, or interest on received collateral
set reserves in place

and so on. Where are such founds obtained from?
Obtain cash/assets from Treasury department or market.
receive cash as a consequence of being in the position:

a coupon or notional reimbursement,
a positive mark to market move,
getting some collateral or interest on posted collateral,
a closeout payment.

All such flows need to be remunerated:
if one is ”borrowing”, this will have a cost,
and if one is ”lending”, this will provide revenues.
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Introduction to Funding Costs Funding Costs: FVA?

Inclusion of Funding Cost

Funding is not just different discounting

CVA and DVA are not obtained just by adding a spread to the
discount factor of assets cash flows
Similarly, a hypothetical FVA is not simply applying spreads to
borrowing and lending cash flows.

One has to carefully and properly analyze and price the real cash
flows rather than add an artificial spread. The simple spread may
emerge for very simple deals and under simplifying assumptions (no
correlations, uni-directional cash flows, etc)
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Introduction to Funding Costs Funding Costs: FVA?

Inclusion of Funding Cost I

We restart from scratch from the product cash flows and add
collateralization, cost of collateral, CVA and DVA after collateral, and
funding costs for collateral and for the replication of the product.

In the following τI denotes the default time of our bank, or “us”.

We still denote by τC the default time of the counterparty,

while τF will be the default of the funder our bank treasury is using to
borrow externally.

Our approach is based on modelling all cash flows that happen
because of collateralization, default and funding.
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Introduction to Funding Costs Funding Costs: FVA?

Inclusion of Funding Cost II

We will use a risk neutral valuation framework and will discount at the
risk free short rate rt , assuming initially existence of a risk neutral
measure (no arbitrage) with cash numeraire the theoretical bank
account

dBt = rt Bt dt .

The related stochastic discount factor between dates s and t is
D(s, t) = exp

(
−
∫ t

s ru du
)

.

Our approach is based on a theoretical rate r that will vanish from our
final valuation equation. Our valuation will be based only on
observable market rates (invariance theorem).

However, in some useful industry approximation this invariance
theorem for r cannot be invoked, as we will see, and we will need to
make a choice for a proxy for r .
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Introduction to Funding Costs Funding Costs: FVA?

Inclusion of Funding Cost III

So in such cases the question is: What should we use as a proxy of
the short rate?

Following the default of Lehman (and 7 other financial entities in 1
month of 2008) LIBOR and Overnight rates diverged:

(From:
http://thismatter.com/money/banking/libor-ois-spread.htm

Accessed on Nov 26, 2014)
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Introduction to Funding Costs Funding Costs: FVA?

Inclusion of Funding Cost IV
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Introduction to Funding Costs Funding Costs: FVA?

Inclusion of Funding Cost V

Prior to Lehman’s default LIBOR was used for discounting

Following the above divergence, it was decided that overnight rates are
a better proxy of risk free rates.

The following table is taken by a presentation of Marco Bianchetti
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Introduction to Funding Costs Funding Costs: FVA?

Inclusion of Funding Cost VI
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Introduction to Funding Costs Funding Costs: FVA?

Inclusion of Funding Cost VII

As we said earlier, our approach is based on modelling all cash flows
that happen because of collateralization, default and funding.

We start now.

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 106 / 257



Cash Flows Analysis of Funding Costs
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Cash Flows Analysis of Funding Costs
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Cash Flows Analysis of Funding Costs Product cash flows

Basic Payout Cash Flows Π

We calculate prices by discounting cash-flows under the pricing
measure. Collateral and funding are modeled as additional
cashflows (as for CVA and DVA)
We start from derivative’s basic cash flows without credit,
collateral of funding risks

V̄t := Et [ Π(t ,T ∧ τ) + . . . ]

−→ τ := τC ∧ τI is the first default time, and
−→ Π(t ,u) is the sum of all discounted payoff terms up from t to u,

Cash flows are stopped either at the first default or at portfolio’s
expiry if defaults happen later.
Define V 0

t := Et [ Π(t ,T ) ] (credit and funding-) “risk-free” price.
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Cash Flows Analysis of Funding Costs Product cash flows
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Cash Flows Analysis of Funding Costs Collateral cash flows

Collateral costs cash flows γ I

As second contribution we consider the collateralization procedure
and we add its cash flows.

V̄t := Et [ Π(t ,T ∧ τ) ] + Et [ γ(t ,T ∧ τ ; C) + . . . ]

where
−→ Ct is the collateral account defined by the CSA,
−→ γ(t ,u; C) are the collateral margining costs up to time u.

The second expected value originates what is occasionally called
Liquidity Valuation Adjustment (LVA) in simplified versions of this
analysis. We will show this in detail later.
If C > 0 collateral has been overall posted by the counterparty to
protect us, and we have to pay interest c+.
If C < 0 we posted collateral for the counterparty (and we are
remunerated at interest c−).
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Cash Flows Analysis of Funding Costs Collateral cash flows

Collateral costs cash flows γ II

The cash flows due to the margining procedure on the time grid
{tk} are equal to

γ(t ,u; C) := −
n−1∑
k=1

1{t≤tk<u}D(t , tk )Ctk (Ptk (tk+1)(1 + αk c̃tk (tk+1))− 1)

where αk = tk+1 − tk and the collateral accrual rates are given by

c̃t := c+
t 1{Ct>0} + c−t 1{Ct<0}

A few first order approximations/linearizations allow us to simplify.

Ptk (tk+1)(1+αc) = e−rtk (tk+1)α(1+αc) ≈ e−rαecα = e(c−r)α ≈ 1+(c−r)α
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Cash Flows Analysis of Funding Costs Collateral cash flows

Collateral costs cash flows γ III

Note that this becomes exact if we take collateralization as
happening in continuous time (later).

γ(t ,u; C) ≈ −
n−1∑
k=1

1{t≤tk<u}D(t , tk )Ctkαk (c̃tk (tk+1)− rtk (tk+1))

Note that if the collateral rates in c̃ are both equal to the risk free
rate, then this term is zero.
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Cash Flows Analysis of Funding Costs Default Closeout Flows: CVA and DVA after collateral
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Cash Flows Analysis of Funding Costs Default Closeout Flows: CVA and DVA after collateral

Close-Out θ: Trading-CVA/DVA under Collateral – I

As third contribution we consider the cash flow happening at 1st
default, and we have

V̄t := Et [ Π(t ,T ∧ τ) ]

+ Et [ γ(t ,T ∧ τ ; C) ]

+ Et
[

1{τ<T}D(t , τ)θτ (C, ε) + . . .
]

where
−→ ετ is the close-out amount, or residual value of the deal at default,

which we called NPV earlier, and
−→ θτ (C, ε) is the on-default cash flow.

θτ will contain collateral adjusted CVA and DVA payouts for the
instument cash flows
We define θτ including the pre-default value of the collateral
account since it is used by the close-out netting rule to reduce
exposure
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Cash Flows Analysis of Funding Costs Default Closeout Flows: CVA and DVA after collateral

Close-Out θ: Trading-CVA/DVA under Collateral – II

The close-out amount is not a symmetric quantity w.r.t. the
exchange of the role of two parties, since it is valued by one party
after the default of the other one.

ετ := 1{τ=τC}εI,τ + 1{τ=τI}εC,τ

Without entering into the detail of close-out valuation we can
assume a close-out amount equal to the risk-free price of
remaining cash flows inclusive of collateralization and funding
costs. More details in the examples.
−→ See ISDA document “Market Review of OTC Derivative Bilateral

Collateralization Practices” (2010).
−→ See, for detailed examples, Parker and McGarry (2009) or Weeber

and Robson (2009)
−→ See, for a review, Brigo, Morini, Pallavicini (2013).
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Cash Flows Analysis of Funding Costs Default Closeout Flows: CVA and DVA after collateral

Close-Out θ: Trading-CVA/DVA under Collateral – III

At transaction maturity, or after applying close-out netting, the
originating party expects to get back the remaining collateral.
Yet, prevailing legislation’s may give to the Collateral Taker some
rights on the collateral itself.
−→ In presence of re-hypothecation the collateral account may be used

for funding, so that cash requirements are reduced, but
counterparty risk may increase.

−→ See Brigo, Capponi, Pallavicini and Papatheodorou (2011).
In case of collateral re-hypothecation the surviving party must
consider the possibility to recover only a fraction of his collateral.
−→ We name such recovery rate REC

′
I , if the investor is the Collateral

Taker, or REC
′
C in the other case.

−→ In the worst case the surviving party has no precedence on other
creditors to get back his collateral, so that

RECI ≤ REC
′
I ≤ 1 , RECC ≤ REC

′
C ≤ 1
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Cash Flows Analysis of Funding Costs Default Closeout Flows: CVA and DVA after collateral

Close-Out θ: Trading-CVA/DVA under Collateral – IV

The on-default cash flow θτ (C, ε) can be calculated by following
ISDA documentation. We obtain

θτ (C, ε) := 1{τ=τC<τI}

(
εI,τ − LGDC(ε+

I,τ − C+
τ−)+ − LGD

′
C(ε−I,τ − C−τ−)+

)
+ 1{τ=τI<τC}

(
εC,τ − LGDI(ε

−
C,τ − C−τ−)− − LGD

′
I(ε

+
C,τ − C+

τ−)−
)

where loss-given-defaults are defined as LGDC := 1− RECC , and
so on.
If both parties agree on exposure, namely εI,τ = εC,τ = ετ then

θτ (C, ε) := ετ − 1{τ=τC<τI}ΠCVAcoll + 1{τ=τI<τC}ΠDVAcoll
ΠCVAcoll = LGDC(ε+

τ − C+
τ−)+ + LGD

′
C(ε−τ − C−τ−)+

ΠDVAcoll = LGDI((−ετ )+ − (−Cτ−)+)+ + LGD
′
I(C

+
τ− − ε+

τ )+
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Cash Flows Analysis of Funding Costs Default Closeout Flows: CVA and DVA after collateral

Close-Out θ: Trading-CVA/DVA under Collateral – V

In case of re-hypothecation, when LGDC = LGD
′
C and LGDI = LGD

′
I , we

obtain a simpler relationship

θτ (C, ε) := ετ

− 1{τ=τC<τI}LGDC(εI,τ − Cτ−)+

− 1{τ=τI<τC}LGDI(εC,τ − Cτ−)−

With re-hypothecation, we can set

ΠDVAcoll = (−(ετ − Cτ−))+, ΠCVAcoll = (ετ − Cτ−)+.

Under replacement closeout, ετ = V̄τ (nonlinearity/recursion!)
Under risk-free closeout, ετ = V 0

τ (easier)
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Cash Flows Analysis of Funding Costs Replication funding cost cash flows
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Cash Flows Analysis of Funding Costs Replication funding cost cash flows

Funding Costs of the Replication Strategy ϕ – I

As fourth contribution we consider the cost of funding for the
hedging procedures and we add the relevant cash flows.

V̄t := Et [ Π(t ,T ∧ τ) ] + Et
[
γ(t ,T ∧ τ ; C) + 1{τ<T}D(t , τ)θτ (C, ε)

]
+ Et [ϕ(t ,T ∧ τ ; F ,H) ] + . . .

The last term, especially in simplified versions, is related to what
is called FVA in the industry. We will point this out once we get rid
of the rate r .
−→ Ft is the cash account for the replication of the trade,
−→ Ht is the risky-asset account in the replication,
−→ ϕ(t ,u; F ,H) are the cash F and hedging H funding costs up to u.

In classical Black Scholes on Equity, for a call option (no credit
risk, no collateral, no funding costs),

V̄ Call
t = ∆tSt + ηtBt =: Ht + Ft , τ = +∞, C = γ = ϕ = 0.
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Cash Flows Analysis of Funding Costs Replication funding cost cash flows

Funding Costs of the Replication Strategy ϕ – II

Cash flows due to funding of the replication strategy are

ϕ(t ,u) :=
m−1∑
j=1

1{t≤tj<u}D(t , tj )(Ftj + Htj )
(

1− Ptj (tj+1)(1 + αk f̃tj (tj+1))
)

−
m−1∑
j=1

1{t≤tj<u}D(t , tj )Htj

(
1− Ptj (tj+1)(1 + αk h̃tj (tj+1))

)
where the funding and lending rates for F and H are given by

f̃t := f +
t 1{Ft>0} + f−t 1{Ft<0} h̃t := h+

t 1{Ht>0} + h−t 1{Ht<0}
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Cash Flows Analysis of Funding Costs Replication funding cost cash flows

Funding Costs of the Replication Strategy ϕ – III
Continuously compounding and linearizing exponentials:

ϕ(t ,u) :=
m−1∑
j=1

1{t≤tj<u}D(t , tj )(Ftj + Htj )αk

(
rtj (tj+1)− f̃tj (tj+1)

)

−
m−1∑
j=1

1{t≤tj<u}D(t , tj )Htjαk

(
rtj (tj+1)− h̃tj (tj+1)

)
Note: the expected value of ϕ is related to the so called FVA. If the
treasury funding rates f̃ are the same as the asset
lending/borrowing rates h̃ then the funding cash flows simplify to

ϕ(t ,u) :=
m−1∑
j=1

1{t≤tj<u}D(t , tj )Ftjαk

(
rtj (tj+1)− f̃tj (tj+1)

)
If further the treasury borrows and lends at the risk free rate,
f̃ = r , then ϕ = 0 and FVA= 0.
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Cash Flows Analysis of Funding Costs Replication funding cost cash flows

Funding Costs of the Replication Strategy ϕ – IV

Our replica consists in F cash and H risky asset.
Cash is borrowed F > 0 from the treasury at an interest f + (cost) or is
lent F < 0 at a rate f− (revenue)

Risky asset position in the replica is worth H. Cash needed to buy
H > 0 is borrowed at an interest f from the treasury; in this case H can
be used for asset lending (Repo for example) at a rate h+ (revenue);

Else if risky asset in replica is worth H < 0, meaning that we should
replicate via a short position in the asset, we may borrow cash from the
repo market by posting the asset H as guarantee (rate h−, cost), and
lend the obtained cash to the treasury to be remunerated at a rate f .

One important question is: Should the rates f̃ include the credit risk of
our bank and of the funder? This question is related importantly do
double counting. We’ll look at this below.
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Cash Flows Analysis of Funding Costs Funding rates and policies

Funding rates depend on Treasury policies

In real applications the funding rate f̃t is determined by the party
managing the funding account for the investor, eg the bank’s
treasury:
−→ trading positions may be netted before funding on the mkt
−→ a Funds Transfer Pricing (FTP) process may be implemented to

gauge the performances of different business units;
−→ a maturity transformation rule can be used to link portfolios to

effective maturity dates;
−→ sources of funding can be mixed into the internal funding curve . . .
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Cash Flows Analysis of Funding Costs Funding rates and policies

Funding rates depend on Treasury policies
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Cash Flows Analysis of Funding Costs Funding rates and policies

Funding rates depend on Treasury policies
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Cash Flows Analysis of Funding Costs Funding rates and policies

Funding rates depend on Treasury policies

In part of the literature the role of the treasury is usually
neglected, leading to controversial results particularly when the
funding positions are not distinguished from the trading positions.
See partial claims “funding costs = DVA”, or “there are no funding
costs”, cited in the literature (Hull White, ”FVA =0”). We’ll clarify
these points in a minute.
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Cash Flows Analysis of Funding Costs Funding rates and policies
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Cash Flows Analysis of Funding Costs Default risk for the funding part

Default flows ψ for the Funding part I
V̄t := Et [ Π(t ,T ∧ τ) ] + Et

[
γ(t ,T ∧ τ ; C) + 1{τ<T}D(t , τ)θτ (C, ε)

]
+ Et [ϕ(t ,T ∧ τ ; F ,H) ] + Et [ψ(t , τF , τ,T ) ]

When our bank treasury is borrowing in the market from bank F, F
charges our bank a CVA due to our credit risk. Seen from our bank,
this charge is a DVAF that makes the loan more expensive.

This means that if we fix the final notional, we will be able to borrow
less than if we were default free. If we fix the amount borrowed now,
we will have to repay more at the end. Overall the loan will be more
expensive because of our bank credit risk. This is a cost.

Similarly, when our bank treasury lends externally, it measures a CVAF
on the loan due to the possibility that the borrower defaults. Loan is
more remunerative due to upfront CVAF charged to external Borrower
(External Funder Benefit).
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Cash Flows Analysis of Funding Costs Default risk for the funding part

Default flows ψ for the Funding part II

Often one assumes that H generates no funding costs because it is
fully and perfectly collateralized with re-hypothecation of collateral.

IMPORTANT
We are adding the ψ treasury DVA-CVA term to our Equation but the
Eq terms would ideally sit in different parts of the bank.

The value of the ψ part is with the treasury,
while the other parts are with the trading desk.
We will shortly see the different ways the treasury may pass the
cost/benefits in ψ to the desk
This is controlled with the rates f + and f− in the funding
cost-benefit term ϕ through suitable credit spreads
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Cash Flows Analysis of Funding Costs Default risk for the funding part

Default flows ψ for the Funding part III
Total value of claim then includes cash flows from debit and credit risk
in the funding strategy that are seen by the treasury:

ψEFB(t , τF , τ,T ) = D(t , τ)1{τ=τI<T}LGDI(Fτ )+

−D(t , τF )1{τ∧τF =τF<T}LGDF (−FτF )+

The first term on the right hand side is the funding DVA cash flow
(leading to what is called occasionally DVA2 or FDA, “Funding Debit
Adjustment”). We will call the value of this cash flow DVAF . This is
triggered when our treasury is borrowing and defaults first, causing a
loss to the external lender.

The second term on the right hand side is the funding credit valuation
adjustment cash flow, that is triggered when our treasury is lending
externally and the borrower defaults first. The value of this cash flow is
called -CVAF .
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Cash Flows Analysis of Funding Costs Default risk for the funding part

Default flows ψ for the Funding part IV

There is a possibly different definition for ψ.
If the treasury considers the desk as net borrowing, the lending of
(−F )+ will be considered not as a loan but as a reduction in borrowing.

In this sense there will be no CVAF term now, since no lending is
considered by the treasury.

In this case the cash flows of the credit adjustment for the funding part
consist only of the debit adjustment part and are called Reduced
Borrowing Benefit:

ψRBB(t , τF , τ,T ) = D(t , τ)1{τ=τI<T}LGDI(Fτ )+

The two cases of External Funder Benefit (EFB) and Reduced
Borrowing Benefit (RBB) will be discussed shortly also in connection
with interest rates f̃ .

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 133 / 257



Comprehensive valuation equations The recursive non-decomposable nature of adjusted prices

Recursive non-decomposable Nature of Pricing – I

We have now included all the cash flows.

Notice that we are going to add up all cash flows but, as we mentioned
earlier, different parts of this valuation may sit in different part of the
bank and may be exchanged, in particular, between the Treasury and
the Trading Desk.

We now move to discussing the final valuation equation we obtained
more in detail.
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Comprehensive valuation equations The recursive non-decomposable nature of adjusted prices

Recursive non-decomposable Nature of Pricing – II
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Comprehensive valuation equations The recursive non-decomposable nature of adjusted prices

Recursive non-decomposable Nature of Pricing – III

(∗) V̄t = Et
[

Π(t ,T ∧ τ) + γ(t) + 1{τ<T}D(t , τ)θτ + ϕ(t) + ψ(t , τF , τ)
]

Can we interpret:
Et
[

Π(t ,T ∧ τ) + 1{τ<T}D(t , τ)θτ (C, ε)
]

: RiskFree Price + DVA - CVA?
Et [ γ(t ,T ∧ τ) + ϕ(t ,T ∧ τ ; F ,H) ] : Funding adjustment LVA+FVA?

Et [ψ(t , τF , τ,T ) ] : Treasury CVA and DVA

Not really. This is not a decomposition. It is an equation. In fact since

V̄t = Ft + Ht + Ct (re–hypo)

we see that the ϕ present value term depends on future
Ft = V̄t − Ht + Ct and generally the closeouts θ ψ, via ε,F and C,
depend on future V̄ too. All terms feed each other and there is no neat
separation of risks. Recursive pricing: Nonlinear PDE’s / BSDEs for V̄
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Comprehensive valuation equations The recursive non-decomposable nature of adjusted prices

Recursive non-decomposable Nature of Pricing – IV

(∗) V̄t = Et
[

Π(t ,T ∧ τ) + γ(t) + 1{τ<T}D(t , τ)θτ + ϕ(t) + ψ(t , τF , τ)
]

”FinalPrice = RiskFreePrice (+ DVA?) - CVA + FVA” not possible.

See Pallavicini Perini B. (2011, 2012) for V̄ equations and algorithms.

Each term inside the expectation on the right hand side depends on
future V̄ and hence on all risks at the same time.

If we remove asymmetry of borrowing and lending rates, assuming
f + = f−, c+ = c−,h+ = h− and adopt a risk free closeout at default,
replacing V̄τ with V 0

τ , then the problem becomes linear again and the
split works.
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Comprehensive valuation equations The recursive non-decomposable nature of adjusted prices

Recursive non-decomposable Nature of Pricing – V

We’ll discuss “linearization” and the related NONLINEARITY
VALUATION ADJUSTMENT in a minute.

We can obtain a more specific valuation equation (equivalent to a PDE
or BSDE) by further steps:

1 Write the equation for V̄tj starting from V̄tj+1 , backwards.
2 Take the continuous time limit, where funding happens

instantaneously and collateral is posted continuosly (still gap risk,
unless you assume NPV to be left continuous)

3 credit risk: work under default-free filtration Ft and assume basic
cash flows are Ft adapted.

4 Assume conditional independence of defaults: spreads λ’s may be
correlated, but jump to defaults ξ’s will be independent.
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Comprehensive valuation equations The recursive non-decomposable nature of adjusted prices

Immersion hypothesis and conditional independence
of defaults I

Recall that we are assuming

Gt = Ft ∨ σ({τi ≤ u},u ≤ t)

with i indexing all the default times in the system. Working under
F-immersion usually means that the risks in the basic cash flows Π are
assumed not to be credit sensitive but to depend only on the filtration
F of pre-default or default-free market information, eg default free
interest rate swaps portfolio.
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Comprehensive valuation equations External Funder Benefit policy

Credit in funding rates f̃ : external funder benefit

We now discuss the funding cost-benefit rates f̃ in the funding cash
flows ϕ.

These rates play a fundamental role also with respect to double
counting and need to be defined very carefully.

We will give two possible definitions, leading to two different set of
valuation equations and to two different sets of rules to avoid double
counting.

The two cases were briefly intrduced earlier with the term ψ (treasury
DVAF − CVAF term) and we expand the discussion now.

External Funder Benefit (EFB)
Reduced Borrower Benefit (RBB)
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Comprehensive valuation equations External Funder Benefit policy

Credit in funding rates f̃ : External Funder Benefit
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Comprehensive valuation equations External Funder Benefit policy

Credit in funding rates f̃ : External Funder Benefit

We now investigate whether the rates f̃ should include credit effects.

When we borrow or lend X from/to a funder F to maintain the funding
strategy, we will need to pay/receive interest on the amount
borrowed/lent to the funder (the treasury will be in-between us and the
external funder).

If we borrow X in t and pay back in t + dt with interest f + we write

1{τ>t}X [1− D(t , t + dt)ef +dt (1{τI>t+dt} + RECI1{τI∈dt})]

Present valuing this conditional on Gt and τ > t leads to

≈ X [1− e−(rt +λI(t)−f +) dt − RECIλI(t)dt ] = X (rt + λI(t)LGDI − f +)dt = 0

This means that for the loan to be valued at par we need to assume

f + = rt + λI(t)LGDI + `+ =: rt + sI(t) + `+

where we added a funding liquidity basis `+ (see CDS-Bond basis).
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Comprehensive valuation equations External Funder Benefit policy

Credit in funding rates f̃ : External Funder Benefit

If we lend X in t and receive it back in t + dt from a funder F , we see
similarly that the interest to be paid is coming from setting to zero the
total loan value inclusive of credit risk:

1{τ>t}X [−1 + D(t , t + dt)ef−dt (1{τF>t+dt} + RECF 1{τF∈dt})]

and amounts to
−(rt + λF (t)LGDF − f−)dt = 0

This means that the total interest f− that we should receive is

f− = rt + λF (t)LGDF + `−(t) =: rt + sF (t) + `−(t)

where we added a funding liquidity basis `−. Summing up, with credit
included we have

f−(t) = rt + λF (t)LGDF + `−(t), f+(t) = rt + λI(t)LGDI + `+(t).

Without credit effects in the treasury borrowing/lending, we’d have

f−(t) = rt + `+(t), f+(t) = rt + `+ (t).
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Comprehensive valuation equations External Funder Benefit policy

Credit in funding rates f̃ : External Funder Benefit

We now discuss briefly how the rates f + and f− control the funding
costs transfer between treasury and trading desks.

The treasury when borrowing and lending externally to service the
desk faces credit costs-benefits, the DVAF − CVAF terms in ψ.

The treasury, when borrowing, marks a cost with the initial DVAF , that
measures the credit cost of the external loan with the funder. This cost
will be charged to the trading desk via the rate f +. In fact both
quantities are indexed to sI , the spread of the bank.

The treasury, when lending, marks a benefit with the initial CVAF , that
measures the increased remuneration of the loan due to the funder
credit risk. This benefit is passed to the trading desk with the rate f−.

We will see how this ”passing” can be made precise in a minute with
calculations, and how we can avoid double counting.

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 144 / 257



Comprehensive valuation equations External Funder Benefit policy

Credit in funding rates f̃ : EFB vs Reduced Borrowing

We call the above setting for f− the External Funder Benefit (EFB).

There is an alternative approach.

If the trading desk is always considered as net borrowing (other
trades), by ”lending” X to treasury it is reducing the net borrowing.

Say desk has borrowed total outstanding L from treasury. Treasury is
borrowing L externally at cost (sI + `)L that passes to desk.

Now desk lends X back to treasury with new trade (X < L). Net
borrowing lowers to L− X , & desk pays now interest (sI + `)(L− X )

The benefit in this case is the reduction in cost, namely

(sI + `)L− (sI + `)(L− X ) = (sI + `)X

as opposed to the direct benefit of lending X externally for sF X . We
call this setting the Reduced Borrowing Benefit (RBB).
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Comprehensive valuation equations Reduced Borrowing Benefit policy

Credit in funding rates f̃ : reduced borrowing benefit
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Comprehensive valuation equations Reduced Borrowing Benefit policy

Credit in funding rates f̃ : reduced borrowing benefit

At the same time, recall our earlier discussion on the CVAF and DVAF
measured by treasury. If we adopt RBB, there will be no CVAF , as
discussed earlier, and ψ = ψRBB.

Indeed, as the Treasury is considering the desk lending as simply
reducing the borrowing to the external funder, it has no right to charge
the upfront CVAF to the external borrower and then give this back to
the desk, since it is not treating the amount (−F )+ as if actually
lending to the external funder.
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Comprehensive valuation equations Reduced Borrowing Benefit policy

Credit in funding rates f̃ : reduced borrowing benefit

To fix ideas, suppose the desk is borrowing overall 100 million USD for
all its trades, and that the specific netting set we are considering now
has a negative cash component F = 10 Million on the replica. We can
lend this amount F to the treasury.

Previously, we assumed that the treasury would lend this to an
external funder and get a interest compensation of f− = r + sF + `−,
that would then be passed to the trading desk.

However, in reality, the trading desk simply reduces its borrowing from
100 to 100− 10 = 90 millions. The benefit then is that it will no longer
pay interest sI + `+ on 10 of the 100 millions. Hence the benefit in the
rate f− is indexed at sI rather than sF .

Still, the treasury, due to funding policies, may maintain a basis `−
different from `+

f− = r + sF + `− → f− = r + sI + `−
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Comprehensive valuation equations Reduced Borrowing Benefit policy

`? CDS-Bond Basis as funding liquidity component

We now discuss one possible component for the liquidity bases `.

Consider a reference credit entity where we have both Bonds issued
by that entity and CDS traded on the default of that entity.

We can strip default intensities both from bonds (Z-spread) λb(t) and
CDS (fair spread) λc(t). Why can the two λ’s be different?

Funded vs Unfunded instruments
When I buy the bond I am using cash to pay its price at time 0. The
bond is a funded instrument. I need to find/mobilize the cash.
When I sell protection via a CDS it costs me zero to enter the CDS at
fair premium at time zero.

Hence, all things being equal, due to the need of putting liquidity on the
table, I will require a further premium (liquidity premium) ` from the
Bond, compared to the CDS.
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Comprehensive valuation equations Reduced Borrowing Benefit policy

`? CDS-Bond Basis as funding liquidity component

Bonds λb or CDS λc?
It follows that we should use the bond-implied default intensities λ
rather than the CDS implied ones when computing funding costs.

However, CDS are more standardized and can be more liquid too, so
that it is easier and often more reliable to deduce λ’s from CDS and
then correct them a posteriori for a CDS-Bond Basis that can be
proxied from other names as well.

The CDS-bond basis is considered to be an indicator of funding
liquidity

`(t) = λc(t)− λb(t).

Given the liquidity premium in bonds, one would expect the basis to be
negative in general. However, the situation is more complicated.
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Comprehensive valuation equations Reduced Borrowing Benefit policy

`? CDS-Bond Basis as funding liquidity component

`(t) = λc(t)− λb(t).

The basis has been both “+” and “−” through history. Traders may set
up basis trades if convinced arbitrage opportunities are showing up.

Bond funding cost: ` ↓
CDS counterparty risk: ` ↓
Shorting credit: Easier buying CDS protection than shorting
bonds. CDS more attractive and default leg more expensive ` ↑.
CDS protect from more general defaults than bonds and have
cheapest do deliver advantages when buying protection, as one
delivers a less valuable bond in exchange for face value: ` ↑.
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Comprehensive valuation equations Funding inclusive valuation equations

Funding incusive valuation equations I

With the above steps, we obtain (here πt dt = Π(t , t + dt))

V̄t =

∫ T

t
E{D(t ,u; r + λ)[πu + (ru − c̃u)Cu + λuθu + EQFund1

+(ru−f̃u)(Fu+Hu)+(h̃u−ru)Hu+λI
uLGDI(Fu)+−λF

u LGDF (−Fu)+]|Ft}du

Set Z u = λI
uLGDI(Fu)+ − λF

u LGDF (−Fu)+, the Treasury DVA-CVA
term, and subtract ε = V̄ , assuming replacement closeout, from θ,
so as to isolate the Trading CVA and DVA terms. Use V=F+H+C

V̄t =

∫ T

t
E{D(t ,u; r +λ)[πu+λu(θu−V̄u)+(f̃u−c̃u)Cu+ EQFund2

+(ru − f̃u + λu)V̄u + (h̃u − ru)Hu + Zu]|Ft}du
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Comprehensive valuation equations Funding inclusive valuation equations

Funding incusive valuation equations II

Use Feynman Kac: we know that

V̄t = Et

[∫ T

t
D(t ,u;µ)[αu + βuV̄u]du

]
= Et

[∫ T

t
D(t ,u;µ− β)αudu

]

Then from EQFund2 we have, absorbing λV in the discount:

V̄t =

∫ T

t
E{D(t ,u; r)[πu +λu(θu− V̄u) + (f̃u− c̃u)Cu + EQFund3

+(ru − f̃u)V̄u + (h̃u − ru)Hu + Zu]|Ft}du
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Comprehensive valuation equations Funding inclusive valuation equations

Funding incusive valuation equations III

or alternatively, absorbing the whole (r − f + λ)V

V̄t =

∫ T

t
E{D(t ,u; f̃ )[πu +λu(θu − V̄u) + (f̃u − c̃u)Cu + EQFund4

+(h̃u − ru)Hu + Zu]|Ft}du

Assuming H = 0 (rolled par swaps or, better, perfectly
collateralized hedge with collateral incuded)

V̄t =

∫ T

t
E{D(t ,u; f̃ )[πu+λu(θu−V̄u)+(f̃u−c̃u)Cu+Zu]|Ft}du EQFund4’
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Comprehensive valuation equations Funding inclusive valuation equations

Funding incusive valuation equations IV

If H 6= 0, assume now generalized delta hedging (in vector sense)

Hu = Su
∂V̄ (u,S)

∂S

and use Feynam Kac again:

V̄t = Er
∫ T

t
D(t ,u;µ)[αu + m(u,Su)

∂V̄
∂S

]du = Er+m
t

[∫ T

t
D(t ,u;µ)αudu

]

where in general Em is a probability measure where S grows at
rate m, ie with drift mS.
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Comprehensive valuation equations Funding inclusive valuation equations

Funding incusive valuation equations V
EqFund4 with delta hedging becomes ((h − r)H = (h − r)∂SV̄ )

V̄t =

∫ T

t
Eh{D(t ,u; f̃ )[πu+λu(θu−V̄u)+(f̃u−c̃u)Cu+Zu]|Ft}du EQFund5

This last equation depends only on market rates. There is no
theoretical risk free rate or risk neutral measure in this Eq.
Invariance Theorem: The pricing equation is invariant wrt the
specification of the short rate rt .
Recall: h are repo/stock lending rates for underlying risky assets,
(θu − V̄u) are trading CVA and DVA after collateralization
(f̃u − c̃u)Cu is the cost of funding collateral with the treasury
Zu is the treasury CVAF and DVAF on the funding process
NO Explicit funding term for the replica as this has been
absorbed in the discount curve and in the collateral cost
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Comprehensive valuation equations Funding inclusive valuation equations

Funding incusive valuation equations VI

The last equation can be written as a semi-linear PDE or a BSDE
As we explained, Eh is the expected value under a probability
measure where the underlying assets evolve with a drift rate
(return) of h̃. Remember that h̃ depends on H, and hence on V .
Therefore the PRICING MEASURE DEPENDS ON THE FUTURE
VALUES OF THE VERY PRICE V WE ARE COMPUTING.
NONLINEAR EXPECTATION. THE PRICING MEASURE
BECOMES DEAL DEPENDENT.
Under the assumption H = 0 (H perfectly collateralized with
re-hypothecation) we can avoid the last Feynman Kac step and
the deal dependent measure: we still price under rt (≈ OIS) but
the terms in EQFund4’ bear the same description as EQFund5 we
just commented.
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Comprehensive valuation equations Funding inclusive valuation equations

Funding incusive valuation equations VII

Notice that in EQFund5 or the simpler EQFund4’ we DISCOUNT
AT FUNDING directly. Some industry parties use this version and
a funding discount curve.
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Comprehensive valuation equations Funding inclusive valuation equations

Funding incusive valuation equations VIII

Let’s take a step back. Write EqFund1-2 more in detail.

V̄t =

∫ T

t
E{D(t ,u; r + λ)[πu + λuθu + (ru − c̃u)Cu + EQFund1’

+(ru − f̃u)(V̄u − Cu) + (h̃u − ru)Hu + Zu]|Ft}du

We can see easily that∫ T

t
E{D(t ,u; r + λ)[πu + λuV̄u]}du = V 0

t

and, given θu = εu − 1{u=τC<τI}ΠCVAcoll(u) + 1{u=τI<τC}ΠDVAcoll(u),
under replacement closeout (ε = V̄ ), rehypotecation and under F it is
tempting to write EQFund1’ as
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Comprehensive valuation equations Funding inclusive valuation equations

Funding incusive valuation equations IX
V̄ = RiskFreePrice - CVA + DVA + LVA + FVA -CVAF + DVAF

RiskFreePrice = V 0
t , LVA =

∫ T

t
E
{

D(t ,u; r + λ)(ru − c̃u)Cu|Ft

}
du

−CVA =

∫ T

t
E
{

D(t ,u; r + λ)
[
− LGDCλC(u)(V̄u − Cu−)+

]
|Ft

}
du

DVA =

∫ T

t
E
{

D(t ,u; r + λ)
[
LGDIλI(u)(−(V̄u − Cu−))+

]
|Ft

}
du

FVA = −
∫ T

t
E
{

D(t ,u; r + λ)

[
(f̃u − ru)(V̄u − Cu)− (h̃u − ru)Hu

]
|Ft

}
du

−CVAF =

∫ T

t
E
{

D(t ,u; r + λ)

[
LGDFλF (u)(−(V̄u − Cu − Hu))+

]
|Ft

}
du

DVAF =

∫ T

t
E
{

D(t ,u; r + λ)

[
LGDIλI(u)(V̄u − Cu − Hu)+

]
|Ft

}
du
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Comprehensive valuation equations Funding inclusive valuation equations

Funding incusive valuation equations X
If we insist in applying these equations, rather than the r -independent
EQFund5, then we need to find a proxy for r . This can be taken as the
overnight rate (OIS discounting).

Further, if we assume that Hu is zero as it is perfectly collateralized
and includes its collateral, then

FVA = −
∫ T

t
E
{

D(t ,u; r + λ)

[
(f̃u − ru)(V̄u − Cu)

]
|Ft

}
du

Notice that when we are borrowing cash F = V − C, since usually
f > r , FVA is negative and is a cost. Also LVA can be negative.
Occasionally LVA and FVA are added together in a sort of total
FVAtot = LVA + FVA.

FVAtot =

∫ T

t
E
{

D(t ,u; r + λ)

[
− (f̃u − ru)V̄u + (f̃u − c̃u)Cu

]
|Ft

}
du
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Comprehensive valuation equations Funding inclusive valuation equations

Funding incusive valuation equations XI

Define FVA = −FCA + FBA where −FCA will be a Cost, and hence
negative, while FBA will be a Benefit, hence positive.

FCA =

∫ T

t
E
{

D(t ,u; r + λ)

[
(f +

u − ru)(V̄u − Cu)+

]
|Ft

}
du

FBA =

∫ T

t
E
{

D(t ,u; r + λ)

[
(f−u − ru)(−(V̄u − Cu))+

]
|Ft

}
du

Notice the structural analogies with the expressions for CVA and DVA
respectively.

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 162 / 257



Comprehensive valuation equations Funding inclusive valuation equations

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 163 / 257



Comprehensive valuation equations Funding inclusive valuation equations

Funding incusive valuation equations: EFB vs RBB

To further specify the equations we need to distinguish the
assumptions on external lending by the treasury, and we will deal now
separately with the two cases:

External Funder Benefit (EFB)
Reduced Borrower Benefit (RBB)
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Funding incusive valuation equations: EFB case

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 165 / 257



Comprehensive valuation equations Funding and Credit VA’s in case of EFB policy

Funding incusive valuation equations: EFB case

Assume that we use the EFB funding rates f̃ inclusive of credit risk as
we have seen before, so that (set sI,C,F = λI,C,F LGDI,C,F ) where
f + − r = sI + `+, f− − r = sF + `−

−FCA = −
∫ T

t
E
{

D(t ,u; r + λ)

[
(sI + `+)(V̄u − Cu)+

]
|Ft

}
du

FBA =

∫ T

t
E
{

D(t ,u; r + λ)

[
(sF + `−)(−(V̄u − Cu))+

]
|Ft

}
du

We see −FCA =: −DVAF − FCA`, FBA =: CVAF + FBA`
where FCA` is the part in `+, and FBA` is the part in `−.
The presence of Credit Spreads in f̃ leads to components in FBA
and FCA that offset the Treasury DVAF and CVAF .
Summing up:
V = V0 − CVA + LVA + DVA− FCA + FBA + DVAF − CVAF where
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Comprehensive valuation equations V 0, CVA, DVA, LVA, FCA, FBA, CVAF , DVAF

V0 =

∫ T

t
E
{

D(t ,u; r)πu|Ft

}
du, LVA =

∫ T

t
E
{

D(t ,u; r+λ)(ru−c̃u)Cu|Ft

}
du

−FCA(= −DVAF−FCA`) = −
∫ T

t
E
{

D(t ,u; r+λ)(sI(u)+`+(t))(V̄u−Cu)+

]
|Ft

}
du

FBA(= CVAF +FBA`) =

∫ T

t
E
{

D(t ,u; r +λ)

[
(sF +`−)(−(V̄u−Cu))+

]
|Ft

}
du

−CVA =

∫ T

t
E
{

D(t ,u; r + λ)
[
− sC(V̄u − Cu−)+

]
|Ft

}
du

DVA =

∫ T

t
E
{

D(t ,u; r + λ)
[
sI(−(V̄u − Cu−))+

]
|Ft

}
du

DVAF =

∫ T

t
E
{

D(t ,u; r + λ)sI(u)(V̄u − Cu)+

]
|Ft

}
du

−CVAF = −
∫ T

t
E
{

D(t ,u; r + λ)

[
sF (−(V̄u − Cu))+

]
|Ft

}
du

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 167 / 257



Comprehensive valuation equations Double counting in the EFB case

Double Counting: EFB Case

Summing up: V = V0(risk free)+

−CVA + DVA︸ ︷︷ ︸
Trading CVA DVA

Coll cost & benefit︷ ︸︸ ︷
+LVA −FCA + FBA︸ ︷︷ ︸

Replica funding cost & benefit

+

Funding CVA DVA︷ ︸︸ ︷
DVAF − CVAF

Remember also what we just found for FCA and FBA:

V = V0 − CVA + DVA + LVA −FCA︸ ︷︷ ︸
−DVAF−FCA`

+ FBA︸︷︷︸
CVAF +FBA`

+DVAF − CVAF

The blue and red terms are passed by the treasury to the desk so the
total net value for the whole bank cancels
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Total value to bank: EFB Case
Keeping the full formula without simplifying

V = V0 − CVA + DVA + LVA −FCA︸ ︷︷ ︸
−DVAF−FCA`

+ FBA︸︷︷︸
CVAF +FBA`

+DVAF − CVAF

If bases ` = 0 then Funding costs are offset by the treasury CVAF
and DVAF and ”there are no funding costs” overall.
However, for the trading desk (TDesk) there is still a cost
FCA = DVAF + FCA` to be paid to Treasury. This happens via the
FVA desk if that exists, or via the CVA desk otherwise.
TDesk also sees a benefit FBA = CVAF + FBA` received from
treasury via the FVA desk if existing, or CVA desk otherwise.
Treasury pays DVAF at time 0 to Funder, charging that as a cost
FCA to Tdesk, and receives CVAF at time 0 from funder, and
passes that to the TDesk as benefit. All this via FVA desk if
existing, if not CVA desk
CVA desk still deals with trading CVA and DVA
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Double Counting: EFB Case
Priority to credit adjustments wrt funding ones

V = V0 − CVA + DVA + LVA −FCA︸ ︷︷ ︸
���−DVAF−FCA`

+ FBA︸︷︷︸
���CVAF +FBA`

+���DVAF −����CVAF

V = V0 − CVA + DVA + LVA− FCA` + FBA`

Keep CVA & DVA unchanged (CVA DESK) and reduce FCA and FBA
to the basis terms (FVA Desk if ∃, else CVA Desk).

If bases ` = 0 then all funding terms vanish (”FVA=0”).
If ` 6= 0 for TDesk there is still cost FCA` to be paid to Treasury via
FVADesk if ∃, else CVA Desk.
TDesk also receives benefit FBA` from Treasury (via FVADesk if ∃
else CVADesk)
CVA Desk still manages trading CVA and DVA
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Double Counting: EFB Case

Priority to funding adjustments over credit ones
V = V0 + LVA −FCA︸ ︷︷ ︸

−DVAF−FCA`

+ FBA︸︷︷︸
CVAF +FBA`

− CVAtot︸ ︷︷ ︸
CVA−DVAF

+ DVAtot︸ ︷︷ ︸
DVA−CVAF

Here we keep FCA and FBA unchanged and reduce CVA and DVA by
the treasury DVAF and CVAF terms to avoid double counting.

TDesk faces a cost FCA = DVAF + FCA` to be paid to Treasury.
This happens via the FVA desk if ∃, or via CVADesk otherwise.
TDesk also sees a benefit FBA = CVAF + FBA` received from
treasury via the FVA desk if ∃, or CVADesk otherwise.
CVA Desk takes charge of both trading and funding CVA and DVA,
registering on positive exposures a CVA reduced by DVAF , and on
negative exposures a DVA reduced by CVAF
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Double Counting: EFB Case I

V = V0 − CVA + DVA + LVA −FCA︸ ︷︷ ︸
−DVAF−FCA`

+ FBA︸︷︷︸
CVAF +FBA`

+DVAF − CVAF

If one fails to offset correctly double contributions (reds and blues) one
is double-counting.

Double counting 1: failing to reduce funding adjustments

OK : V = V0 − CVA + DVA− FCA` + FBA`

NO : V = V0 − CVA + DVA− FCA + FBA

The ”NO” equation has excess CVAF and DVAF in the funding terms
since these are not offset any longer by the CVAF and DVAF terms we
removed (for example kept in treasury).
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Double Counting: EFB Case II

V = V0 − CVA + DVA + LVA −FCA︸ ︷︷ ︸
−DVAF−FCA`

+ FBA︸︷︷︸
CVAF +FBA`

+DVAF − CVAF

Double counting 2: not reducing credit adjustments
If one does not offset credit adjustments:

OK : V = V0 + LVA− FCA + FBA− (CVA− DVAF ) + (DVA− CVAF )

NO : V = V0 + LVA− FCA + FBA− CVA + DVA

The ”NO” equations neglect the reduction in CVA and DVA due to the
funding credit risk and thus forget to offset the corresponding terms in
FCA and FBA
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Funding incusive valuation equations: RBB case
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Funding incusive valuation equations: RBB case

We are now going to specialize the funding equations

FCA =

∫ T

t
E
{

D(t ,u; r + λ)

[
(f +

u − ru)(V̄u − Cu)+

]
|Ft

}
du

FBA =

∫ T

t
E
{

D(t ,u; r + λ)

[
(f−u − ru)(−(V̄u − Cu))+

]
|Ft

}
du

to the RBB case where

f + − r = sI + `+, f− − r = sI + `−.

We also take ψ = ψRBB (no CVAF part).
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Funding incusive valuation equations: RBB case

The FCA term remains as in the EFB case.

However, notice what happens to FBA now, in the RBB case.

FBA =

∫ T

t
E
{

D(t ,u; r+λ)

[
(sI+`

−)(−(V̄u−Cu))+

]
|Ft

}
du = DVA+FBA`

We have that FBA includes a copy of the trading DVA
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Comprehensive valuation equations V 0, CVA, DVA, LVA, FCA, FBA=DVA, DVAF

V0 =

∫ T

t
E
{

D(t ,u; r)πu|Ft

}
du, LVA =

∫ T

t
E
{

D(t ,u; r+λ)(ru−c̃u)Cu|Ft

}
du

−FCA(= −DVAF−FCA`) = −
∫ T

t
E
{

D(t ,u; r+λ)(sI(u)+`+(t))(V̄u−Cu)+

]
|Ft

}
du

FBA(= DVA + FBA`) =

∫ T

t
E
{

D(t ,u; r + λ)

[
(sI + `−)(−(V̄u − Cu))+

]
|Ft

}
du

−CVA =

∫ T

t
E
{

D(t ,u; r + λ)
[
− sC(V̄u − Cu−)+

]
|Ft

}
du

DVA =

∫ T

t
E
{

D(t ,u; r + λ)
[
sI(−(V̄u − Cu−))+

]
|Ft

}
du

DVAF =

∫ T

t
E
{

D(t ,u; r + λ)sI(u)(V̄u − Cu)+

]
|Ft

}
du

−CVAF = 0; One of the two DVA must go.
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Funding incusive valuation equations: RBB case I

V = V0 − CVA + DVA + LVA −FCA︸ ︷︷ ︸
−DVAF−FCA`

+ FBA︸︷︷︸
DVA+FBA`

+DVAF

Now we no longer have exact offsetting terms. The DVA inside FBA
will not be offset by a CVAF . The problem is that the formula contains
two identical DVA’s.

Compare with the EFB case:

V = V0 − CVA + DVA + LVA −FCA︸ ︷︷ ︸
−DVAF−FCA`

+ FBA︸︷︷︸
CVAF +FBA`

+DVAF − CVAF

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 179 / 257



Comprehensive valuation equations Double counting in the RBB policy case

Funding incusive valuation equations: RBB case II

When we did the analysis to compute the funding rate f− in a mini-loan
in t , t + dt we used our own sI = λILGDI as a gain spread, based on the
“reduced borrowing” argument.

But receiving back interest sI as a benefit of reduced borrowing means
we are in fact computing a rolling-DVA for F as [t , t + dt) spans the
whole trading interval. Since F = V − C, we are basically computing
again the trading DVA by means of the funding rate f−.

We are thus counting our own default risk twice on the same exposure
scenario (−(V − C))+. This is why, save for the basis term `−, we
should take one of the two DVA’s out to avoid double counting.
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Funding incusive valuation equations: RBB case III

We thus have two possible choices:

1: Privilege Credit Adjustments over Funding ones

V = V0 − CVA + DVA + LVA −FCA︸ ︷︷ ︸
−DVAF−FCA`

+ FBA︸︷︷︸
��DVA+FBA`

+DVAF

Treasury is charged initially DVAF , and charges this back to TDesk as
part of FCA via FVADesk if ∃, else CVADesk.
For the reduced borrowing TDesk sees a benefit FBA`, obtained from
treasury via FVADesk as a payment reduction, and TDesk is still
charged DVA at time 0 and receives CVA at time 0 from counterparty
via CVADesk. Overall (notice that if ` = 0 there’s no funding
adjustment)

V = V0 − CVA + DVA + LVA− FCA` + FBA`.
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Funding incusive valuation equations: RBB case IV

2: Privilege Funding adjustments over the Credit ones

V = V0 − CVA +���DVA + LVA −FCA︸ ︷︷ ︸
−DVAF−FCA`

+ FBA︸︷︷︸
DVA+FBA`

+DVAF

resulting in

V = V0 − CVA + LVA− FCA` + FBA︸︷︷︸
DVA+FBA`

Now DVA is managed by the FVA Desk. Notice that if liquidity basis
` = 0 then V = V0 − CVA + LVA + FBA︸︷︷︸

DVA

and the only funding term is

the benefit term given by trading DVA
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Advanced Modeling Problems

We have seen above a decomposition in several terms:

Additive Valuation Adjustments contributing to total V̄

V 0, CVA, DVA, LVA, FCA, FBA, CVAF , DVAF

However, as pointed out earlier, with asymmetric borrowing and
lending rates and with replacement closeout at default, all terms
depend on the value V̄ itself and hence contain all risks.

This implies nonlinearity of the valuation process.

It also implies the different adjustments do not really separate risks.

We illustrate nonlinear valuation in a simple case in the benchmark
Black Scholes model
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Funding Costs: Advanced modeling issues Nonlinear effects: PDEs and BSDEs

Nonlinear valuation: Black Scholes I
Go back to the r -indepdendent formula EQFund5.

V̄t =

∫ T

t
Eh{D(t ,u; f̃ )[πu+λu(θu−V̄u)+(f̃u−c̃u)Cu+Zu]|Ft}du EQFund5

Write this last eq as a BSDEs by completing the martingale term.
Add and subtract

∫ t
0 , then notice that one term becomes

∫ T
0 and

its Et is a martingale Mt . Use the martingale representation
theorem (see B. and Pallavicini [35], JFE 1, pp 1-60 for details).

dV̄t − [f̃t V̄t + (f̃t − c̃t )Ct +πt +λt (θ(Ct , V̄t )− V̄t )− (r − h̃)Ht + Zt ]dt = dMt ,

V̄t = Ht + Ft + Ct , εt = V̄t (replacement closeout), V̄T = 0.

Recall that f̃ depends on V̄ nonlinearly, and so does c̃ on C and h̃
on H. M is a martingale under the pre-default filtration.
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Nonlinear valuation: Black Scholes II

Assume a Markovian vector of underlying assets S (pre- credit
and funding) with diffusive generator Lr ,σ under Q. Let this be
associated with brownian W under Q.

dS = rSdt + σ(t ,S)SdWt , Lr ,σu(t ,S) = rS∂Su +
1
2
σ(t ,S)2S2∂2

Su

Use Ito’s formula on V̄ (t ,S) and match dt (and dW ) terms from
BSDE: obtain PDE (& explicit representation for BSDE term
ZdW ). Details are given in the Pallavicini Perini and B. (2011,
2012) reports.
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Nonlinear valuation: Black Scholes III

This leads to the following PDE with terminal condition V̄T = 0.

(∂t−f̃t−λt +Lr ,σ)V̄t +(f̃t−c̃t )Ct +πt +λtθ(Ct , V̄t )−(r−h̃)Ht +Zt = 0 [NPDE1]

V̄t = Ht + Ft + Ct , εt = V̄t (replacement closeout)

Alternatively, the funding/credit risk free price can be used for closeout
(risk free closeout), simplifying calculations.
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Funding Costs: Advanced modeling issues Nonlinear effects: PDEs and BSDEs

Nonlinear valuation: Black Scholes IV

The above PDE can be simplified further by assuming Delta Hedging:

Ht = St
∂V̄t

∂S
(delta hedging), leading to

(∂t− f̃t−λt +Lh̃,σ)V̄t +(f̃t−c̃t )Ct +πt +λtθ(Ct , V̄t )+Zt (Ft ) = 0, [NPDE2]

This PDE is NON-LINEAR not only because of θ, but also because f̃
depends on F , and h̃ on H, and hence both on V̄ itself.

IMPORTANT: Again invariance theorem.
PDE DOES NOT DEPEND ON r .
This is good, since r is a theoretical rate that does not correspond to
any market observable.

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 187 / 257



Funding Costs: Advanced modeling issues Nonlinear effects: PDEs and BSDEs

Nonlinear valuation: Black Scholes V

We now try to bring this PDE closer to the classical Black Scholes
PDE. Assume collateral is a variable fraction αt > 0 of mark to market,
with αt being Ft adapted, typically non-negative and smaller than one.
Recall that we assume

f̃t = f+1F≥0+f−1F≤0, c̃t = c+1V̄t≥0+c−1V̄t≤0, f+,− and c+,− constants.

We further assume h̃ = f̃ . One obtains

∂tV−(f+−sI)(V−St∂SVt−αV )++(f−−sF )(−V +St∂SVt +αV )+−λtV +

+
1
2
σ2S2∂2

SV − c+αt (Vt )
+ + c−αt (−Vt )

+ + πt + λtθt (Vt ) = 0

NONLINEAR PDE (SEMILINEAR).
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Funding Costs: Advanced modeling issues Nonlinear effects: PDEs and BSDEs

Nonlinear valuation: Black Scholes VI

∂tV−(f+−sI)(V−St∂SVt−αV )++(f−−sF )(−V +St∂SVt +αV )+−λtV +

+
1
2
σ2S2∂2

SV − c+αt (Vt )
+ + c−αt (−Vt )

+ + πt + λtθt (Vt ) = 0

λ is the first to default intensity, π is the ongoing dividend cash flow
process of the payout, θ are the complex optional contractual cash
flows at default including CVA and DVA payouts after collateral. c+ and
c− are the borrowing and lending rates for collateral, sI,F = λI,F LGDI,F ,
spread of investment bank & funder from Z (treasury CVA and DVA).

We can use Lipschitz coefficients results to investigate ∃! of viscosity
solutions. Classical soultions may also be found but require much
stronger assumptions and regularizations.

None of this is much applicable in practical situations.
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Funding Costs: Advanced modeling issues Black Scholes benchmark case

The Black Scholes Benchmark Case I

∂tV−(f+−sI)(V−St∂SVt−αV )++(f−−sF )(−V +St∂SVt +αV )+−λtV +

+
1
2
σ2S2∂2

SV − c+αt (Vt )
+ + c−αt (−Vt )

+ + πt + λtθt (Vt ) = 0

Notice that
if f+ = f− = r (symmetric risk free borrowing and lending),
α = 0 (no collateral),
λ = 0 (no credit risk),

then we get back the Black Scholes LINEAR (parabolic) PDE.

∂tV + rSt∂SVt +
1
2
σ2S2∂2

SV − rV + π = 0.
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In Theory: Nonlinearities due to funding I

So what is the THEORY telling us?
We know that NONLINEAR PDEs cannot be solved as Feynman Kac
expectations.

Backward Stochastic Differential Equations (BSDEs)
For NPDEs, the correct translation in stochastic terms are BSDEs. The
equations have a recursive nature and simulation is quite complicated.
Or we keep the PDE.
BSDEs due to asymmetric rates had been briefly introduced in El
Karoui, Peng and Quenez (1997). We added credit gap risk &
collateral processes, adding more nonlinearity into the picture.
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In Theory: Nonlinearities due to funding II

Aggregation–dependent and asymmetric valuation
Worse, the valuation of a portfolio is aggregation dependent and is
different for the two parties in a deal. In the classical pricing theory a la
Black Scholes, if we have 2 or more derivatives in a portfolio we can
price each separately and then add up. Not so with funding and
replacement closeout at default. Moreover, without funding the price to
one entity is minus the price to the other one. This is no longer true.

Aggregation levels decided a priori and somewhat arbitrarily.
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In Theory: Nonlinearities due to funding III

Consistent global modeling across asset classes and risks

Once the level of aggregation is set, the funding valuation problem is
non–separable. An holistic approach is needed and consistent
modeling across trading desks and asset classes is needed. Internal
competition in banks does not favour this.

Furthermore, the classical transaction-independent arbitrage free price
is lost, now the price depends on the specific entities trading the
product and on their policies (λ, f , `). Recall Eh and PDE coefficients
depending on V̄ nonlinearly.
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In Theory: Nonlinearities due to funding IV

The end of Platonic pricing?
There is no Platonic measure Q in the sky to price all derivatives with
an expectation where all assets have the risk free return r .
Now the pricing measure is product dependent, and every trade will
have a specific measure. This is an implication of the PDE
non-linearity.

When basic financial sense leads to complex mathematics
Notice that, in theory, adherence to real banking policies does not
make the problem ”boring, purely accounting–like and trivial”. Rather,
valuation becomes aggregation dependent and holistic. We need
BSDEs rather than expected values, or nonlinear PDEs rather than
linear ones.
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In Theory: Nonlinearities due to funding V

This would open many problems of operational efficiency and
efficiency of implementation.

However, in practice things are implemented quite differently, as we’ll
see in a minute...

Before looking at that, now that we have seen how to compute funding
costs, a fundamental question.
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Price of Value?

Why should the client pay for our funding policy choices?

Again recall entity specific (λ, f , `), Eh and PDE coefficients depending
on V̄ .

Each entity computes a different funding adjusted price for the same
product

and “prices” change with aggregation.

The funding adjusted ”price” is not a price in the conventional sense.
We may use it for cost/profitability analysis or to pay our treasury, but
can we charge it to a client?

Can the client charge us too as she has funding costs?

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation 14-th Winter School MF 196 / 257



Funding Costs: Advanced modeling issues Funding costs, aggregation and nonlinearities

Price of Value?

Accessibility of valuation parameters
How can the client check our price is fair if she has no access to our
funding policy (less transparent than credit standing) and vice versa?

It is more a ”value” than a ”price”.

Provocative question. Why do not we charge an Electricity Bill
Valuation Adjustment (EBVA)?
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Should funding costs be zero?

In a number of papers, Hull and White argued that there should be no
funding costs.

They invoked the Modigliani Miller theorem. A folk version of the
theorem is this:

“If market price processes follow random walks, and there are no
taxes,
bankruptcy costs,
agency costs,
asymmetric information

and if the market is efficient then the value of a firm does not depend
on how the firm is financed.
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Should funding costs be zero?

However the above assumptions do not hold in practice.

The very presence of liquidity bases ` violates the assumptions.

However we saw in the above calculations that if ` = 0 then there are
indeed no funding costs. For example, in the EFB framework

V = V0 − CVA + DVA + LVA −FCA︸ ︷︷ ︸
−DVAF−FCA`

+ FBA︸︷︷︸
CVAF +FBA`

+DVAF − CVAF

we see that if ` = 0 and c̃ = r we end up with

V = V0 − CVA + DVA

and there are no funding costs indeed.
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Should funding costs be zero?

So it is a matter of qualifying the assumptions in the Modigliani Miller
theorem.

Market imperfections such as the bases `, among others, may make
the theorem not valid and hence funding costs become relevant.

We now go back to the implications of nonlinearities of aggregation
dependent values and nonlinear valuation. We analyzed the
theoretical implications. But are banks taking those into account?
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Nonlinearities in theory. What about practice?

... in practical implementation, in many cases one forces symmetries
and linearization so as to go back to a linear setting and have either
funding included as simple discounting or a linear pricing problem.
This is not accurate in general but allows the quick calculation of a
funding valuation adjustment (FVA).

In our earlier formulas for the Reduced Borrowing Benefit (RBB) case:
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V0 =

∫ T

t
E
{

D(t ,u; r)πu|Ft

}
du, LVA =

∫ T

t
E
{

D(t ,u; r+λ)(ru−c̃u)Cu|Ft

}
du

−FCA(= −DVAF−FCA`) = −
∫ T

t
E
{

D(t ,u; r+λ)(sI(u)+`+(t))(V̄u−Cu)+

]
|Ft

}
du

FBA(= DVA + FBA`) =

∫ T

t
E
{

D(t ,u; r + λ)

[
(sI + `−)(−(V̄u − Cu))+

]
|Ft

}
du

−CVA =

∫ T

t
E
{

D(t ,u; r + λ)
[
− sC(V̄u − Cu−)+

]
|Ft

}
du

DVA =

∫ T

t
E
{

D(t ,u; r + λ)
[
sI(−(V̄u − Cu−))+

]
|Ft

}
du

DVAF =

∫ T

t
E
{

D(t ,u; r + λ)sI(u)(V̄u − Cu)+

]
|Ft

}
du

−CVAF = 0; One of the two DVA must go.
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In Theory: Nonlinearities due to funding

Here if we assume `+ ≈ `−, and closeout term is the risk free price
V 0(τ) rather than the replacement value V̄ (τ), then the problem
becomes linear and is much more manageable. In practice everyone
assumes this and applies a posteriori corrections if needed.

NVA
In the recent paper http://ssrn.com/abstract=2430696 we
introduce a Nonlinearity Valuation Adjustment (NVA), which analyzes
the double counting involved in forcing linearization. Our numerical
examples for simple call options show that NVA can easily reach 2 or
3% of the deal value even in relatively standard settings.

Equity call option (long or short), r = 0.01, σ = 0.25, S0 = 100,
K = 80, T = 3y , V0 = 28.9 (no credit risk or funding/collateral costs).
Precise credit curves are given in the paper. No ψ (value for Desk)

NVA = V̄0(nonlinear)− V̄0(linearized)
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NVA

Table: NVA with default risk and collateralization

Default risk, lowa Default risk, highb

Funding Rates bps Long Short Long Short

f + f− f̂
300 100 200 -3.27 (11.9%) -3.60 (10.5%) -3.16 (11.4%) -3.50 (10.1%)
100 300 200 3.63 (10.6%) 3.25 (11.8%) 3.52 (10.2%) 3.13 (11.3%)

The percentage of the total call price corresponding to NVA is reported in parentheses.
a Based on the joint default distribution Dlow with low dependence.
b Based on the joint default distribution Dhigh with high dependence.
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NVA

Table: NVA with default risk, collateralization and rehypothecation

Default risk, lowa Default risk, highb

Funding Rates bps Long Short Long Short

f + f− f̂
300 100 200 -4.02 (14.7%) -4.45 (12.4%) -3.91 (14.0%) -4.35 (12.0%)
100 300 200 4.50 (12.5%) 4.03 (14.7%) 4.40 (12.2%) 3.92 (14.0%)

The percentage of the total call price corresponding to NVA is reported in parentheses.
a Based on the joint default distribution Dlow with low dependence.
b Based on the joint default distribution Dhigh with high dependence.
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NVA for long call as a function of f + − f−, with f− = 1%, f + increasing over
1% and f̂ increasing accordingly. NVA expressed as an additive price
component on a notional of 100, risk free option price 29. Risk free closeout.
For example, f +−f− = 25bps results in NVA=-0.5 circa, 50 bps⇒ NVA = -1
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NVA for long call as a function of f + − f−, with f− = 1%, f + increasing over
1% and f̂ increasing accordingly. NVA expressed as a percentage (in bps) of
the linearized f̂ price. For example, f + − f− = 25bps results in NVA=-100bps
= -1% circa, replacement closeout relevant (red/blue) for large f + − f−
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Hints at Multiple Interest Rate curves

Multiple Interest Rate Curves

Derive interest rate dynamics consistently with credit, collateral and
funding costs as per the above master valuation equations.

We use our maket based (no rt ) master equation to price OIS &
find OIS equilibrium rates. Collateral fees will be relevant here,
driving forward OIS rates.
Use master equation to price also one period swaps based on
LIBOR market rates. LIBORs are market given and not modeled
from first principles from bonds etc. Forward LIBOR rates
obtained by zeroing one period swap and driven both from
primitive market LIBOR rates and by collateral fees.
We’ll model OIS rates and forward LIBOR/SWAP jointly, using a
mixed HJM/LMM setup
In the paper we look at non-perfectly collateralized deals too,
where we need to model treasury funding rates.
See http://ssrn.com/abstract=2244580
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CCPs: Initial margins, clearing members defaults, delays...

Pricing under Initial Margins: SCSA and CCPs I

CCPs: Default of Clearing Members, Delays, Initial Margins...

Our general theory can be adapted to price under Initial Margins, both
under CCPs and SCSA.

The type of equations is slightly different but quantitative problems are
quite similar.

See B. and Pallavicini (2014) for details. See also
“Brigo, D. and A. Pallavicini (2014). Nonlinear consistent valuation of
CCP cleared or CSA bilateral trades with initial margins under credit,
funding and wrong-way risks. Journal of Financial Engineering 1 (1),
1-60.” Here we give a summary.
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Pricing under Initial Margins: SCSA and CCPs II
So far all the accounts that need funding have been included within the
funding netting set defining Ft .

If additional accounts needed, for example segregated initial margins,
as with CCP or SCSA, their funding costs must be added.

Initial margins kept into a segregated account, one posted by the
investor (N I

t ≤ 0) and one by the counterparty (NC
t ≥ 0):

ϕ(t ,u) :=

∫ u

t
dv (rv − fv )Fv D(t , v)−

∫ u

t
dv (fv − hv )Hv D(t , v) (1)

+

∫ u

t
dv(f NC

v − rv )NC
v +

∫ u

t
dv(f N I

v − rv )N I
v ,

with f NC

t & f N I

t assigned by the Treasury to the initial margin accounts.
f N 6= f as initial margins not in funding netting set of the derivative.
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Pricing under Initial Margins: SCSA and CCPs III

. . .+

∫ u

t
dv(f NC

v − rv )NC
v +

∫ u

t
dv(f N I

v − rv )N I
v

Assume for example f > r . The party that is posting the initial margin
has a penalty given by the cost of funding this extra collateral, while
the party which is receiving it reports a funding benefit, but only if the
contractual rules allow to invest the collatera in low-risk activity,
otherwise f = r and there are no price adjustments.

We can describe the default procedure with initial margins and delay
by assuming that at 1st default τ the surviving party enters a deal with
a cash flow ϑ, at maturity τ + δ (DELAY!).

δ 5d (CCP) or 10d (SCSA).
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Pricing under Initial Margins: SCSA and CCPs IV

For a CCP cleared contract priced by the clearing member we have
N I
τ− = 0, whatever the default time, since the clearing member does

not post the initial margin.

We assume that each margining account accrues continuously at
collateral rate ct .
We may further

include funding default cloeseout and also
define the Initial Margin as a percentile of the mark to market at
time τ + δ.

This is done explicitly in the paper.

Now a few numerical examples:
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CCPs: Initial margins, clearing members defaults, delays... Numerical example of CCP costs

Ten-year receiver IRS traded
with a CCP.
Prices are calculated from the
point of view of the CCP client.
Mid-credit-risk for CCP clear-
ing member, high for CCP
client.
Initial margin posted at various
confidence levels q.

Prices in basis points with a notional of one Euro
Black continuous line: price inclusive of residual CVA and DVA after
margining but not funding costs
Dashed black lines represent CVA and the DVA contributions.
Red line is the price inclusive both of credit & funding costs.
Symmetric funding policy. No wrong way correlation overnight/credit.
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CCPs: Initial margins, clearing members defaults, delays... Numerical example of CCP vs SCSA costs

CCP Pricing: Tables (see paper for WWR etc)

Table: Prices of a ten-year receiver IRS traded with a CCP (or bilaterally) with
a mid-risk parameter set for the clearing member (investor) and a high-risk
parameter set for the client (counterparty) for initial margin posted at various
confidence levels q. Prices are calculated from the point of view of the client
(counterparty). Symmetric funding policy. WWR correlation ρ̄ is zero. Prices
in basis points with a notional of one Euro.

Receiver, CCP, β− = β+ = 1 Receiver, Bilateral, β− = β+ = 1
q CVA DVA MVA FVA CVA DVA MVA FVA

50.0 -0.126 3.080 0.000 -0.1574 -2.1317 4.3477 0.0000 -0.0842
68.0 -0.066 1.605 -2.933 0.1251 -1.1176 2.2613 -4.1389 0.2491
90.0 -0.015 0.357 -8.037 0.5492 -0.2578 0.4997 -11.3410 0.7924
95.0 -0.007 0.154 -10.316 0.7205 -0.1149 0.2151 -14.5561 1.0250
99.0 -0.001 0.025 -14.590 1.0290 -0.0204 0.0346 -20.5869 1.4544
99.5 -0.001 0.013 -16.154 1.1402 -0.0107 0.0176 -22.7947 1.6107
99.7 -0.000 0.008 -17.233 1.2165 -0.0070 0.0114 -24.3164 1.7184
99.9 -0.000 0.004 -19.381 1.3684 -0.0035 0.0056 -27.3469 1.9326
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XVA Desk?

We now move to a general discussion on the CVA/FVA (XVA?) desk
and of its role in the bank.
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CVA and FVA Desks: Best Practice

FVA Desk or CVA Desk, or both? XVA Desk?

First recall the role of the CVA Desk.

How do banks price and trade/hedge CVA?

The idea is to move Counterparty Risk management away from classic
asset classes trading desks by creating a specific counterparty risk
trading desk, or ”CVA desk”.

Under simplifying assumptions, this would allow ”classical” traders to
work in a counterparty risk-free world in the same way as before the
counterparty risk crisis exploded.
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CVA Desks and ”Best practices”

What lead to CVA desks?
Roughly, CVA followed this historical path:

Up to 1999/2000 no CVA. Banks manage counterparty risk
through rough and static credit limits, based on exposure
measurements (related to Credit VaR: Credit Metrics 1997).
2000-2007 CVA was introduced to assess the cost of counterparty
credit risk. However, it would be charged upfront and would be
managed mostly statically, with an insurance based approach.
2007 on, banks increasingly manage CVA dynamically. Banks
become interested in CVA monitoring, in daily and even intraday
CVA calculations, in real time CVA calculations and in more
accurate CVA sensitivities, hedging and management.
CVA explodes after 7[8] financials defaults occur in one month of
2008 (Fannie Mae, Freddie Mac, Washington Mutual, Lehman,
[Merrill] and three Icelandic banks).

This contributed to the creation of CVA desks
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CVA Desks and ”Best practices”

CVA desk location in a bank
Trading floor: PROS works with other trading desk, direct use of
hedge trades (especially CDS).
CONS: competition and political problems.
Treasury: PROS since it involves credit policy, collateral, good for
coordination with funding. DVA as funding benefit.
CONS: interface w/ other desks needs to be managed carefully.
Often CVA desk does systemically important operations for the
bank. Should it be part of RISK / CRO? See how Goldman CVA
desk may have saved the firm in the AIG case.a Nonprofit desk,
runs a service.
Considerable operational implications too for the bank functioning.
COO?

a
“How Goldman’s Counterparty Valuation Adjustment (CVA) Desk Saved The Firm From An AIG Blow Up”

http://www.zerohedge.com/, accessed on Dec 1, 2014
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CVA Desks and ”Best practices”

CVA desk and Classical Trading desks

The CVA desk charges classical trading desks a CVA fee in order to
protect their trading activities from counterparty risk through hedging.
This may happen also with collateral/CSA in place (Gap Risk, WWR,
etc). The cost of implementing this hedge is the CVA fee the CVA desk
charges to the classical trading desk. Often the hedge is performed via
CDS trading.
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CVA Desks and ”Best practices”

CVA desk in the trasury department
Charging a fee is not easy and can make a lot of P&L sensitive traders
nervous. That is one reason why some banks set the CVA desk in the
treasury for example. Being outside the trading floor can avoid some
”political” issues on P&L charges among traders.
—
Furthermore, given that the treasury often controls collateral flows and
funding policies, this would allow to coordinate CVA and FVA
calculations and charges after collateral.
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CVA Desks and ”Best practices”

How the CVA desk helps other trading desks

The CVA deska would free the classical traders from the need to:
develop advanced credit models to be coupled with classical asset
classes models (FX, equity, rates, commodities...);
know the whole netting sets trading portfolios; traders would have
to worry only about their specific deals and asset classes, as the
CVA desk takes care of ”options on whole portfolios” embedded in
counterparty risk pricing and hedging;
Hedge counterparty credit risk, which is very complicated.

aSee for example ”CVA Desk in the Bank Implementation”, Global Market
Solutions white paper
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CVA Desks and ”Best practices”

The CVA desk task looks quite difficult
The CVA desk has little/no control on inflowing trades, and has to:

quote quickly to classical trading desks a ”incremental CVA” for
specific deals, mostly for pre-deal analysis with the client;
For every classical trade that is done, the CVA desk needs to
integrate the position into the existing netting sets and in the
global CVA analysis in real time;
related to pre-deal analysis, after the trade execution CVA desk
needs to allocate CVA results for each trade (”marginal CVA”)
Manage the global CVA, and this is the core task: Hedge
counterparty credit and classical risks, including credit-classical
correlations (WWR), and check with the risk management
department the repercussions on capital requirements.
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CVA Desks and ”Best practices”

CVA Desks effectiveness if often questioned
Of course the idea of being able to relegate all CVA(/DVA/FVA) issues
to a single specialized trading desk is a little delusional.

WWR makes isolating CVA from other activities quite difficult.
In particular WWR means that the idea of hedging CVA and the
pure classical risks separately is not effective.
CVA calculations may depend on the collateral policy, which does
not depend on the CVA desk or even on the trading floor.
We have seen FVA and CVA interact

In any case a CVA desk can have different levels of sophistication and
effectiveness.
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CVA Desks and ”Best practices”

Classical traders opinions
Clearly, being P&L sensitive, the CVA desk role is rather delicate.
There are mixed feelings.

Because CVA is hard to hedge (especially the jump to default risk
and WWR), occasionally classical traders feel that the CVA desk
does not really hedge their counterparty risk effectively and
question the validity of the CVA fees they pay to the CVA desk.
Other traders are more optimistic and feel protected by the
admittedly approximate hedges implemented by the CVA desk.
There is also a psychological component of relief in delegating
management of counterparty risk elsewhere.
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Including FVA. XVA Desks?

As we have seen funding costs are now an important component of
the valuation process, and FVA is calculated for the bank deals.

This may be charged internally to classical trading desks, who pay the
FVA desk for the funding costs, and in turn charge the cost to clients
externally.

XVA Desk
Both CVA and FVA reference collateral importantly, so they should be
managed together, especially given analogies in these quantities,
given DVA as funding benefit and given that one would like to avoid
double counting.

Ideally, the XVA desk should immunize classical trading desk from
credit risk and funding costs, using mirror trades that isolate those risks
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CVA and FVA Desks: Best Practice

XVA Desks?

XVA Desk and Mirror Trades

Isolating Credit Risk and Funding Costs away from traditional trading
desks is made difficult by wrong way risk, where dependence makes
all risks connected. One can manage this by assigning risk reserves to
deal with wrong way risk losses.

One more difficulty is the little transparency on the bases `. They
depend on CDS-Bond basis & the bank funding policy: maturity
transformation, netting of funding sets, fund transfer pricing policy, etc.
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XVA Desks?

Cross Gammas
In this sense quantities that are helpful are cross gammas: sensitivities
of computed values to joint shocks in credit and underlying risk factor,
and possibly sensitivity to bases ` and underlying risk factors.

As own credit risk and the bases ` are difficult to hedge, a reserve is
set in place for these risks.
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CVA and FVA Desks: Best Practice

Charging FVA to clients?

Charging FVA to Clients
From what we understand, most of the banks we cited earlier charge
FVA to clients. The classical trading desk pays the funding costs to the
FVA desk but then charges the FVA to the client. However, this is
controversial. The client often has no transparency on our funding
policy. Why should be pay for our choices? And what if the client
decides to charge us her funding costs? Can this be done bilaterally
given the lack of transparency?

We also debated the price vs value aspect of FVA earlier.

Possible objections to FVA charge are due to the Modigliani Miller
theorem. We addressed these earlier via market imperfections and
bases `. Banks are now satisfied with charging clients with FVA. Hence
a bank that does not do that risks to be inconsistent with the market.
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FVA Desks?

FVA separate desk?
Some tier-2 banks are considering creating a FVA desk apart from the
CVA Desk. However this is not a popular option with tier-1 banks and
most banks are trying to incorporate the FVA function in the already
existing CVA desk, that becomes a XVA desk. This is what may be
happening with all the banks we mentioned earlier.

The reason is that the split between credit and fuding is not as clearcut
as one may think. See our derivation of
CVA, DVA, LVA, FCA, FBA, CVAF , DVAF
and of all ways to recombine them.

All quantities are driven by sI , sC and `+, `−.

Recall also that in the full theory FVA and CVA are not really separable.
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CVA and FVA Desks: Best Practice

Thank you for your attention!

Questions?
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