

UiO • Department of Mathematics University of Oslo

Lecture I

Modelling the forward price dynamics in energy markets

Fred Espen Benth

January 25-27, 2016

Overview

In collaboration with Paul Krühner (Vienna)

- 1 Power markets: an brief introduction
- 2 Hilbert-valued Lévy processes by subordination
- 3 Examples
- 4 Some final notes on *H*-valued Lévy processes

Overview

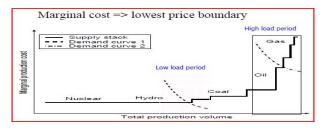
- 1 Power markets: an brief introduction
- 2 Hilbert-valued Lévy processes by subordination
- 3 Examples
- 4 Some final notes on *H*-valued Lévy processes

- Typically, power markets organize trade in
 - Hourly spot electricity, next-day physical delivery
 - Forward and futures contracts on spot
 - European options on forwards
- Examples: EEX, NordPool, APX, ICE...

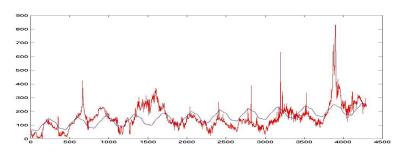
Fred Espen Benth Lecture I January 25–27, 2016 3 / 41

The spot market

- An hourly market with physical delivery of electricity
- Participants hand in bids the day ahead
 - Volume and price bids for each of the 24 hours next day
 - Maximum amount of bids within technical volume and price limits
- The exchange creates demand and production curves for each hour of the next day



- The spot price is the equilibrium
 - Price for delivery of electricity at a specific hour next day
 - The *daily* spot price is the average of the 24 hourly prices
- Reference price for the forward market
- Historical spot price at NordPool from the beginning in 1992 (NOK/MWh)

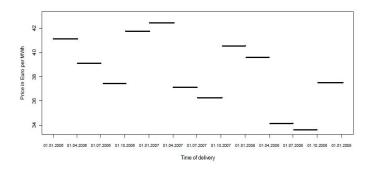


Fred Espen Benth Lecture I January 25–27, 2016 5 / 41

The forward and futures market

- Contracts with "delivery" of electricity over a period
 - Financially settled: The money-equivalent of receiving electricity is paid to the buyer
 - The reference is the hourly spot price in the delivery period
- Delivery periods: next day, week, month, quarter, year
- Overlapping delivery periods (!)
- Base and peak load contracts
- European call and put options on these forwards

- The forward curve at NordPool, 1 January, 2006 (base load quarterly contracts)
- Constructed from observed prices of various delivery length

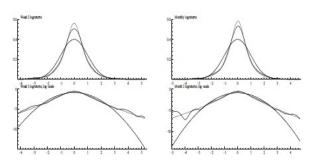


The option market

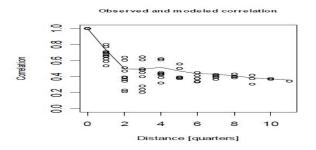
- European call and put options on electricity forwards
 - Quarterly and yearly delivery periods
- OTC market for electricity derivatives huge
 - Average-type (Asian) options, swing options, quanto options, spread options

Some brief empirical insight

- Probability density of returns is non-Gaussian
- Example: weekly and monthly contracts (Frestad 2008)
 - Fitted normal and NIG
 - "True" and logarithmic frequency axis
 - NIG=normal inverse Gaussian distribution

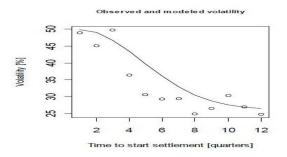


- Correlation structure of quarterly contracts at NordPool (Andersen et al (2010))
 - Correlation as a function of distance *between* start-of-delivery



- High degree of "idiosyncratic" risk
 - Quarterly contracts: 6 noise sources explain 96%, 7 explain 98%

- Observed Samuelson effect on (log-)returns
 - Volatility of forwards decrease with time to maturity
- Plot of Nordpool quarterly contracts, empirical volatility



Forward prices as an HJMM-dynamics

- These lectures: focus on the forward dynamics
- HJMM forward price f(t,x), $t \ge x \ge 0$,

$$df(t,x) = \partial_x f(t,x) + b(t) dt + dM(t,x) \qquad f(0,x) = f_0(x)$$

- $t \mapsto M(t)$ square-integrable martingale with values in a separable Hilbert space H
- Drift process $t \mapsto b(t)$
 - Equal to zero in risk-neutral setting
- lacksquare H space of real-valued "smooth" functions on \mathbb{R}_+
 - E.g., some Sobolev-type space (Filipovic space)

■ "Standard model" (fixed income, energy, commodities):

$$dM(t) = \sigma(t) dB(t)$$

- $B \mathbb{R}^d$ -valued Brownian motion, σ "nice" operator-valued process from \mathbb{R}^d to H
- Our aims:
 - M = L, Hilbert-valued Lévy process (this lecture)
 - 2 Analyse the HJMM dynamics (Lectures II & III)
 - Introduce a stochastic volatility process σ and let B be Wiener process in H (Lecture IV)
 - 4 Ambit fields and Volterra process in Hilbert space (Lecture V)

Overview

1 Power markets: an brief introduction

- 2 Hilbert-valued Lévy processes by subordination
- 3 Examples
- 4 Some final notes on *H*-valued Lévy processes

Aim

- Define a random field L(t, x), $t, x \ge 0$, such that
- 1 $t \mapsto L(t, x)$ Lévy process
- $z \mapsto L(t, x)$ random field with dependency (correlation) structure
- Typically, would like $L(\cdot, x)$ to be NIG Lévy process
- Method: subordinating Hilbert-valued Brownian motions

Hilbert-valued Lévy process

- First, some preparations....:
- Given (Ω, \mathcal{F}, P) a probability space
- Let H be a separable Hilbert space
 - \blacksquare $\langle \cdot, \cdot \rangle$ inner product and $|\cdot|$ norm
 - $\{e_n\}_{n\in\mathbb{N}}$ orthonormal basis (ONB)
- A measurable map $X : \Omega \to H$ is called an H-valued random variable
 - The law of X is $P(X \in E)$, $E \in \mathcal{B}(H)$
- If |X| is P-integrable, define $\mathbb{E}[X] \in H$ as the Bochner integral

$$\langle \mathbb{E}[X], f \rangle = \langle \int_{\Omega} X(\omega) \, dP(\omega), f \rangle = \mathbb{E}[\langle X, f \rangle]$$

- U(t), $t \ge 0$ is called a H-valued Lévy process if:
- **■** $U(t) \in H$ with U(0) = 0,
- Independent increments,
- 3 Law of U(t) U(s) depends on t s only, where $t \ge s$,
- 4 *U* is stochastically continuous
- Choose version of U with cadlag paths

■ Lévy-Kintchine triplet (b, Q, v) of U:

$$\varphi(x) := \log \mathbb{E}[\exp(i\langle x, U(1)\rangle)]$$

$$\varphi(x) = i\langle b, x \rangle - \frac{1}{2}\langle Qx, x \rangle + \int_{H \setminus \{0\}} e^{i\langle x, z \rangle} - 1 - i 1_{|z| < 1}\langle x, z \rangle \nu(dz)$$

■ $b \in H$, the *drift* of U, ν is the Lévy measure, i.e. measure on $H \setminus \{0\}$

$$\int_{H\setminus\{0\}} \min(1,|z|^2) \nu(dz) < \infty$$

Q is a non-negative definite trace class operator on H

$$\operatorname{Tr}(Q) := \sum_{n=1}^{\infty} \langle Qe_n, e_n \rangle < \infty$$

- $t \mapsto \langle U(t), f \rangle$ is an \mathbb{R} -valued Lévy process with cadlag paths
- lacksquare Characteristic function $\varphi_f(heta) := \varphi(heta f)$

$$\varphi_f(\theta) = i\theta \langle b, f \rangle - \frac{1}{2}\theta^2 \langle Qf, f \rangle + \int_{H \setminus \{0\}} e^{i\theta \langle f, z \rangle} - 1 - i\theta \mathbf{1}_{|z| < 1} \langle f, z \rangle \nu(dz)$$

■ Lévy measure of $\langle U(t), f \rangle$ is image of ν under projection

$$g\mapsto \langle f,g\rangle$$

19 / 41

H-valued Wiener process

- A mean-zero H-valued Lévy process W with continuous paths is called a Wiener process
- *W* has Lévy-Kintchine triplet (0, *Q*, 0), *Q* called the covariance operator
- $t \mapsto \langle W(t), f \rangle$ is an \mathbb{R} -valued Wiener process for every $f \in H$

$$\mathbb{E}[\langle W(t), f \rangle \langle W(s), g \rangle] = \min(s, t) \langle Qf, g \rangle$$

■ $\langle W(t), f \rangle$ is a mean-zero Gaussian random variable on \mathbb{R} with variance $t \langle Qf, f \rangle = t |Q^{1/2}f|^2$.

Covariance operator of U

- U(t) is said to be square integrable if |U(t)| is square integrable, which is equivalent to $\int_{H\setminus\{0\}}|z|^2\nu(dz)<\infty$
- \blacksquare The covariance operator of a square integrable U is defined as

$$\langle \mathsf{Cov}(U)f, g \rangle = \mathbb{E}[\langle U(1) - \mathbb{E}[U(1)], f \rangle \langle U(1) - \mathbb{E}[U(1)], g \rangle]$$

It holds

$$Cov(U) = Q + \int_{H\setminus\{0\}} (z \otimes z) \, nu(dz), (z \otimes z)(f) = \langle z, f \rangle z$$

Subordinator

- Let Θ be an \mathbb{R} -valued Lévy process with increasing paths
- Lévy-Kintchine triplet (a, 0, F), $a \ge 0$ and F Lévy measure concentrated on \mathbb{R}_+

$$\psi(x) := \log \mathbb{E}[\exp(\mathrm{i} x \Theta(1))] = \mathrm{i} a x + \int_0^\infty (\mathrm{e}^{\mathrm{i} x z} - 1) \, F(dz) \, , \, x \in \mathbb{R}$$

- lacksquare Paths of Θ is cadlag, bounded variation and supported on \mathbb{R}_+
- Assume Θ independent of U

Proposition

 $L(t) := U(\Theta(t))$ is an H-valued Lévy process, where the characteristic functional is $\log \mathbb{E}[\exp(i\langle x, L(1)\rangle)] = \psi(\varphi(x))$

Proof.

Independence of Θ and U and independent increments,

$$\mathbb{E}[\exp(\mathbf{i}\langle\sum_{k}(U(\Theta(t_{k+1})-U(\Theta(t_{k}))),x_{k}\rangle))]$$

$$=\prod_{k}\mathbb{E}[\exp(i(\Theta(t_{k+1})-\Theta(t_{k}))\varphi(x_{k}))]$$

$$=\prod_{k}\mathbb{E}[\exp((t_{k+1}-t_{k})\psi(\varphi(x_{k})))]$$

23 / 41

Proposition

Characteristic triplet of $L(t) = U(\Theta(t))$ is (β, Γ, μ) , where

$$eta = ab + \int_{\mathbb{R}_+} \mathbb{E}[U(z)1_{|U(z)| < 1}] F(dz)$$
 $\Gamma = aQ$
 $\mu(A) = a\nu(A) + \int_{\mathbb{R}_+} P(U(z) \in A) F(dz)$

where $A \subset H$ Borel.

Proof.

It holds that $|\mathbb{E}[U(z)1_{|U(z)|<1}]| \leq C \min(1,z)$. Direct calculation of $\psi(\varphi(x))$ shows the result.

Example

- Let U = W, an H-valued Wiener process
- Recall Lévy-Kintchine triplet for W: (b, Q, v) = (0, Q, 0)
- Assume Θ driftless subordinator, (a, 0, F) = (0, 0, F)
- L has triplet $(\beta, 0, \mu)$ with

$$\beta = \int_{\mathbb{R}_+} \mathbb{E}[W(z)1_{|W(z)|<1}] F(dz)$$

$$\mu(A) = \int_{\mathbb{R}_+} P(W(z) \in A) F(dz)$$

■ L is a pure-jump Lévy process

Covariance operator

- Covariance operator of the subordinated Lévy process
- Describes the "spatial covariance"
- Requires square integrability of *L*:
 - *Either U* is mean zero and square integrable, and Θ is integrable,
 - lacktriangleright or U is square integrable and Θ is square integrable
- "If and only if" result

Proposition

Assume U has zero mean and is square integrable. If Θ is integrable, then L has mean zero and is square integrable, with

$$Cov(L) = \mathbb{E}[\Theta(1)]Cov(U)$$

Proof.

Double conditioning implies: zero mean $\mathbb{E}[L(t)] = 0$,

$$\mathbb{E}[|U(\Theta(t))|^2] = \mathbb{E}[\Theta(t)]\mathbb{E}[|U(1)|^2] < \infty$$

$$\langle \mathsf{Cov}(L)f, g \rangle = \mathbb{E}\left[\langle L(\Theta(1)), f \rangle \langle L(\Theta(1)), g \rangle\right]$$

$$= \mathbb{E}[\Theta(1)]\mathbb{E}[\langle U(1), f \rangle \langle U(1), g \rangle]$$

Proposition

Assume U is square integrable. If Θ is square integrable, then L is square integrable and

$$\begin{split} \mathbb{E}[L(1)] &= \mathbb{E}[\Theta(1)]\mathbb{E}[U(1)] \\ \textit{Cov}(L) &= \mathbb{E}[\Theta(1)]\textit{Cov}(U) + \textit{Var}(\Theta(1)) \left\{ \mathbb{E}[U(1)] \otimes \mathbb{E}[U(1)] \right\} \end{split}$$

Proof.

Square integrability: Note that $U(\theta) - \mathbb{E}[U(\theta)]$ is zero mean Lévy process. From Lévy-Kintchine, $\mathbb{E}[U(\theta)] = \theta \mathbb{E}[U(1)]$.

Proof.

...cont'd

Algebra yields,

$$\mathbb{E}[|U(\theta)|^2] = \mathbb{E}[|U(\theta) - \mathbb{E}[U(\theta)]|^2] + |\mathbb{E}[U(\theta)]|^2$$
$$= \theta \mathbb{E}[|U(1) - \mathbb{E}[U(1)]|^2] - \theta^2 |\mathbb{E}[U(1)]|^2$$

Hence, double conditioning

$$\mathbb{E}[|L(1)|^2] = \mathbb{E}[\Theta(1)]\mathbb{E}[|U(1) - E[U(1)]|^2] + \mathbb{E}[\Theta^2(1)]|\mathbb{E}[U(1)]|^2 < \infty$$

Integrability follows, and by double conditioning,

$$\mathbb{E}[L(1)] = \mathbb{E}[\Theta(1)]\mathbb{E}[U(1)]$$

29 / 41

Proof.

...cont'd

Covariance operator:

$$\langle \mathsf{Cov}(L)f, g \rangle = \mathbb{E}[\langle L(1) - \mathbb{E}[L(1)], f \rangle \langle L(1) - \mathbb{E}[L(1), g \rangle]$$

= $\mathbb{E}[\langle L(1), f \rangle \langle L(1), g \rangle] - \langle \mathbb{E}[L(1)], f \rangle \langle \mathbb{E}[L(1)], g \rangle$

First expectation: double conditioning, using (with $m = \mathbb{E}[U(1)]$),

$$\begin{split} \langle \textit{U}(\theta),\textit{f}\rangle\langle \textit{U}(\theta),\textit{g}\rangle &= \langle \textit{U}(\theta)-\textit{m}\theta,\textit{f}\rangle\langle \textit{U}(\theta)-\textit{m}\theta,\textit{g}\rangle \\ &+ \theta\langle \textit{m},\textit{g}\rangle\langle \textit{U}\theta)-\textit{m}\theta,\textit{f}\rangle \\ &+ \theta\langle \textit{m},\textit{f}\rangle\langle \textit{U}(\theta)-\textit{m}\theta,\textit{g}\rangle \\ &+ \theta^2\langle \textit{m},\textit{f}\rangle\langle \textit{m},\textit{g}\rangle \end{split}$$

Result follows

30 / 41

Overview

- 1 Power markets: an brief introduction
- 2 Hilbert-valued Lévy processes by subordination
- 3 Examples
- 4 Some final notes on *H*-valued Lévy processes

The normal inverse Gaussian (NIG) distribution

- Aim: define H-valued NIG Lévy process. First, NIG on ℝ....
- A normal mean-variance mixture model:
 - Let Z be inverse Gaussian distributed

$$f_{\text{IG}}(z) = \frac{\delta}{\sqrt{2\pi}} z^{-3/2} \exp\left(\delta \gamma - \frac{1}{2} \left(\delta^2 z^{-1} + \gamma^2 z\right)\right), z > 0$$

■ Conditional distribution of *X* is normal:

$$X|Z \sim \mathcal{N}(\mu + \beta Z, Z)$$

■ X is NIG with parameters α , β , μ and δ , where

$$\alpha = \sqrt{\gamma^2 + \beta^2}$$

Density function

$$f_{\text{NIG}}(x) = k \exp\left(\beta(x-\mu)\right) \frac{K_1\left(\alpha\sqrt{\delta^2 + (x-\mu)^2}\right)}{\sqrt{\delta^2 + (x-\mu)^2}}$$

- $K_1(x)$ modified Bessel function of the third kind with index one. Normalizing constant k is known
- μ location, β asymmetry, δ scale ("volatility"), α steepness smaller α yields steeper distribution, and thus fatter tails

$$\delta > 0$$
, $0 \le |\beta| < \alpha$

■ Moment generating function (MGF): for $-\alpha - \beta \le \theta \le \alpha - \beta$

$$\textit{M}_{\mathsf{NIG}}(\theta) = \mathsf{exp}\left(heta \mu + \delta \sqrt{lpha^2 - eta^2} - \delta \sqrt{lpha^2 - (eta + heta)^2}
ight)$$

Fred Espen Benth Lecture I January 25–27, 2016 33 / 41

H-valued NIG Lévy process

■ Let Θ be a inverse Gaussian subordinator, having Lévy measure

$$F(dz) = \frac{s}{\sqrt{2\pi z^3}} e^{-c^2 z/2} dz$$
, $z > 0$

- Drift is zero, *s*, *c* positive parameters.
- Define *U* to be a drifted Wiener process,

$$U(t) = bt + W(t)$$

■ b ∈ H and W H-valued Wiener process with covariance operator Q ■ $L(t) = U(\Theta(t))$ has Lévy-Kintchine triplet $(\beta, 0, \mu)$,

$$\beta = \frac{sb}{c} - \int_{|z| > 1} z\mu(dz)$$

$$\mu(A) = \int_0^\infty \Phi_z(A)F(dz), \qquad A \subset H$$

- \blacksquare Φ_z Gaussian measure on H with mean zb and covariance operator zQ
- Characteristic functional of L

$$\psi(\varphi(x)) = s\left(c - \sqrt{c^2 + \langle Qx, x \rangle - 2\mathrm{i}\langle x, b \rangle}\right)$$

Some properties of L

Expectation and covariance operator

$$\mathbb{E}[L(1)] = \frac{s}{c}b$$
, $Cov(L) = \frac{s}{c^3}(b \otimes b) + \frac{s}{c}Q$

- $t \mapsto \langle L(t), f \rangle$ is \mathbb{R} -valued NIG Lévy process
 - Log-MGF (using $x = -i f \theta$ in characteristic functional of L)

$$M_{\mathsf{NIG}}(heta) = s \left(c - \sqrt{c^2 - heta^2 \langle \mathit{Qf}, \mathit{f}
angle} - 2 heta \langle \mathit{f}, \mathit{b}
angle}
ight)$$

or

$$\mu = 0$$
, $\delta = s \langle Qf, f \rangle^{1/2}$, $\beta = \frac{\langle f, b \rangle}{\langle Qf, f \rangle}$, $\alpha^2 = \frac{c^2}{\langle Qf, f \rangle} + \beta^2$

■ Multivariate NIG Lévy process:

$$t \mapsto (\langle L(t), f_1 \rangle, \ldots, \langle L(t), f_n \rangle)$$

■ Log-MGF with $x = (-i)(f_1\theta_1 + \cdots + f_n\theta_n)$

$$M_{\mathsf{NIG}}(heta) = s \left(c - \sqrt{c^2 - heta' \Sigma heta - eta' heta}
ight)$$

with

$$\beta' = (\langle f_1, b \rangle, \dots, \langle f_n, b \rangle) \in \mathbb{R}^n, \quad \Sigma = \{\langle Qf_i, f_j \rangle\}_{i,j=1}^n \in \mathbb{R}^{n \times n}$$

Overview

1 Power markets: an brief introduction

- 2 Hilbert-valued Lévy processes by subordination
- 3 Examples
- 4 Some final notes on *H*-valued Lévy processes

- Suppose *U* is mean zero and square integrable
- Expansion of Lévy process U along basis $\{e_n\}_{n\in\mathbb{N}}$

$$U(t) = \sum_{n=1}^{\infty} \langle U(t), e_n \rangle e_n$$

- $U_n(t) = \langle U(t), e_n \rangle$ \mathbb{R} -valued Lévy process ■ Correlated Lévy processes
- Suppose $\{e_n\}_{n\in\mathbb{N}}$ is such that

$$Cov(U)e_n = \lambda_n e_n \qquad \lambda_n \in \mathbb{R}_+$$

■ $\{U_n(t)\}_{n\in\mathbb{N}}$ uncorrelated Lévy processes (but possibly dependent!)

It holds

$$\lambda_n = \mathbb{E}[U_n^2(1)], \qquad \mathbb{E}[U_n(t)U_m(s)] = \lambda_n \delta_{nm} \min(t, s)$$

- If U = W, H-valued Wiener process, $\{W_n(t)\}_{n \in \mathbb{N}}$ independent \mathbb{R} -valued Wiener processes
- Define $B_n(t) := W_n(t)/\sqrt{\lambda_n}$. Then B_n is standard Brownian motion on \mathbb{R} and

$$W(t) = \sum_{n=1}^{\infty} \sqrt{\lambda_n} B_n(t) e_n$$

References

- Andresen, Koekebakker and Westgaard (2010). Modeling electricity forward prices using the multivariate normal inverse Gaussian distribution. J. Energy Markets 3, 1-23.
- Benth, Kallsen and Meyer-Brandis (2007). A non-Gaussian Ornstein-Uhlenbeck process for electricity spot price modelling and derivatives pricing. Appl. Math. Finance 14, 153-169.
- Benth and Krühner (2015). Subordination of Hilbert space valued Lévy processes. Stochastics, 87, 458–476.
- Benth, Saltyte Benth and Koekebakker (2008). Stochastic Modelling of Electricity and Related Markets, World Scientific
- Bernhardt, Kluppelberg and Meyer-Brandis (2008). Estimating high quantiles for electricity prices by stable linear models. J. Energy Markets 1, 3–19.
- Bjerksund, Rasmussen and Stensland (2000). Valuation and risk management in the Nordic electricity market.
 Preprint, Norwegian School of Economics and Business, Bergen.
- Frestad (2008). Electricity swap price dynamics in the Nordic electricity market, 1997-2005. Energy Economics 30.
- Lucia and Schwartz (2002). Electricity prices and power derivatives: evidence from the Nordic power exchange.
 Rev. Derivatives Research 5. 5-50.

UiO • Department of Mathematics University of Oslo

Lecture I

Modelling the forward price dynamics in energy markets

