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HJMM forward curve dynamics
t 7→ F (t ,T ), t ≤ T forward price

Contract delivering at time T , time of maturity
Delivery of some commodity like power, gas, coffee, soybeans,
gold....
Gas & power: delivery period rather than time....we’ll come back
to that

"Musiela parametrization": x = T − t , time to maturity
Define f (t , x) random field on R+ × R+,

f (t , x) := F (t , t + x)

t 7→ f (t , x) stochastic process with values in a space of
real-valued function on R+
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Stochastic partial differential equation (SPDE) for f :

df (t) = ∂x f (t) dt + β(t) dt + Ψ(t) dL(t) , f (0) = f0 ∈ H

Here, ∂x = ∂/∂x , L is an H-valued Lévy process
H assumed to be a separable Hilbert space of functions on R+

Reason for ∂x -term: time-dependency in second argument of F

Must make sense out of the SPDE:

1 Stochastic integral?
2 Existence and uniqueness of solution?
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Stochastic integration in Hilbert space
Assumption: L is square integrable zero mean Lévy process in
H, with covariance operator Q := Cov(L)

Question: For which Ψ can we define∫ t

0
Ψ(s) dL(s) ?

Simple process Ψ: Let 0 = t0 < t1 < · · · < tm ≤ t , Aj ∈ Ftj and
Ψj ∈ L(H), bounded operators on H

Ψ(s) =
m−1∑
j=0

1Aj (ω)1(tj ,tj+1](s)Ψj
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Stochastic integral of simple process:∫ t

0
Ψ(s) dL(s) =

m−1∑
j=0

1Aj Ψj(L(tj+1)− L(tj)) ∈ H

Isometry:

E[|
∫ t

0
Ψ(s) dL(s)|2] = E[

∫ t

0
‖Ψ(s)Q1/2‖2HS ds] <∞

Hilbert-Schmidt operators T ∈ L(H):

‖T ‖2HS :=
∞∑

n=1

|T en|2 , {en}n∈N ONB in H
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Complete the space of simple integrands under seminorm
given by isometry

Integral becomes a square integrable zero mean martingale
Characterization of the space of integrands, L2

L(H):

Definition

Ψ ∈ L2
L(H) if s 7→ Ψ(s) is a predictable stochastic process with values

in L(H) such that

E[

∫ t

0
‖Ψ(s)Q1/2‖2HS ds] <∞

t 7→ X (t) ∈ H t ≤ T is predictable if it is measurable with
respect to the σ-algebra on [0,T ]× Ω containing all sets
(s, t ]× A, A ∈ Fs
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Going back to the HJMM dynamics

df (t) = ∂x f (t) dt + β(t) dt + Ψ(t) dL(t)

Suppose that t 7→ β(t) is a predictable H-valued process,
integrable with respect to time a.s.

Integral
∫ t

0 β(s) ds ∈ H defined in Bochner sense

Problem: ∂x is typically only densely defined on appropriate
Hilbert spaces, e.g. unbounded operator

We loose smoothness by differentiating
E.g., Cn-functions become Cn−1 after differentiation

Fred Espen Benth Lecture II January 25–27, 2016 8 / 36



C0-semigroups and generators
Definition

We say that {S(t)}t≥0 is a C0-semigroup on H if
1 S(t) ∈ L(H) for every t ≥ 0
2 S(0) = Id
3 S(t)S(s) = S(t + s), t , s ≥ 0
4 limt↓0 S(t)f = f , f ∈ H

A : Dom(A) ⊂ H → H is called the generator of S if

lim
t↓0

t−1(S(t)f − f ) = Af

Fred Espen Benth Lecture II January 25–27, 2016 9 / 36



Filipovic space Hw

Define Hw as the space of real-valued absolutely continuous
functions on R+, with finite norm

|f |2w := f 2(0) +

∫ ∞
0

w(x)(f ′(x))2 dx

f ′ is the weak derivative of f , w an increasing function with
w(0) = 1 and ∫ ∞

0
w−1(x) dx <∞

Typically: w(x) = exp(αx), α >0.
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Theorem

Hw is a separable Hilbert space, where ∂x is densely defined genera-
tor of the C0-semigroup S(t)g = g(·+ t). Moreover, the the semigroup
is quasi-contractive and uniformly bounded

‖S(t)‖op ≤ ekt , ‖S(t)‖op ≤ K

for positive constants k ,K .

Proof.

See Filipovic (2001). �
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Unique solution of the HJMM SPDE
A mild solution f ∈ Hw of the HJMM dynamics

f (t) = S(t)f0 +

∫ t

0
S(t − s)β(s) ds +

∫ t

0
S(t − s)Ψ(s) dL(s)

Integrals are well-defined by bounds on operator norms of S(t)
S(t − s)Ψ(s) ∈ L(Hw ), and

‖S(t − s)Ψ(s)Q1/2‖HS ≤ ‖S(t − s)‖op‖Ψ(s)Q1/2‖HS

If f ∈ Dom(∂x ), then f is strong solution
In general f is only weakly differentiable, and ∂x f ∈ Hw !
Mild solution is unique
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Markovian HJMM-dynamics
Consider

df (t) = ∂x f (t) dt + b(t , f (t−)) dt +ψ(t , f (t−)) dL(t)

with global Lipschitz-continuity

|b(t , f )−b(t ,g)|w ≤ C|f−g|w , ‖ψ(t , f )−ψ(t ,g)‖op ≤ C|f−g|w

Under linear growth of b and ψ (Filipovic et al (2010)): there
exists a unique Hw -valued adapted cadlag mild solution,

f (t) = S(t)f0+

∫ t

0
S(t−s)b(s, f (s)) ds+

∫ t

0
S(t−s)ψ(s, f (s−)) dL(s)
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We are interested in t 7→ F (t ,T ), i.e.,

F (t ,T ) = f (t ,T − t) = δT−t f (t), f (t) ∈ Hw

δx , x ≥ 0 evaluation map on Hw

δx : Hw → R , δx (g) = g(x)

From mild solution:

δT−t

∫ t

0
S(t − s)Ψ(s) dL(s) =???
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Lemma

δx ∈ H∗w , and for any g ∈ Hw , δx (g) = 〈g,hx〉w , where hx ∈ Hw ,

hx (y) = 1 +

∫ x∧y

0
w−1(z) dz

Moreover, the dual δ∗x : R→ Hw , c 7→ chx and ‖δx‖2op = hx (x).

Proof.

〈g,hx〉w = g(0)hx (0) +

∫ ∞
0

w(z)g′(z)h′x (z) dz

= g(0) +

∫ x

0
w(z)g′(z)w−1(z) dz = g(x)

�
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Focus on L = W , H-valued Wiener process

Proposition

Assume L ∈ L(H ,Rn) and Φ ∈ L2
W (H). Then there exists a standard

n-dimensional Brownian motion B such that

L
∫ t

0
Φ(s) dW (s) =

∫ t

0
σ(s) dB(s)

where σ(s) = (LΦ(s)QΦ∗(s)L∗)1/2.
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Proof.

By Peszat and Zabczyk (2007), X (t) := L
∫ t

0 Ψ(s) dW (s) is a continu-
ous Rn-valued process, with operator angle bracket (for X (t)⊗X (t) =
X (t)X (t)′)

〈〈X 〉〉(t) =

∫ t

0
LΨ(s)QΨ∗(s)L∗ ds

On given filtered probability space there exists an n-dimensional stan-
dard Brownian motion, result follows by Jacod (1979). �

Analogous to Lévy’s characterisation of Brownian motion
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Example related to forward price dynamics (with β = 0,n = 1):

F (t ,T ) = δT−t f (t) = δT−tS(t)f0 + δT−t

∫ t

0
S(t − s)Ψ(s) dW (s)

It holds
δT−tS(t − s) = δT−s = δ0S(T − s)

In representation: choose L = δ0 and Φ(s) = S(T − s)Ψ(s)

F (t ,T ) = f0(T ) +

∫ t

0
((Ψ(s)QΨ∗(s)hT−s)(T − s))1/2 dB(s)
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Example of spot price dynamics (for β = 0,n = 1)

S(t) = δ0f (t) = δ0S(t)f0 + δ0

∫ t

0
S(t − s)Ψ(s) dW (s)

Problem: cannot simply take T = t in forward price, as B is
(implicitly) T -dependent.
Use a "trick" of Filipovic et al (2010): There exists an extension
S of S on a Hilbert space Hw such that

1 Hw ⊂ Hw ,
2 S|Hw = S,
3 S is a C0-group

Crucial property: S is quasi-contractive
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For a fixed T >t ,

δ0S(t − s) = δ0S(t − T )S(T − s)

Using representation and properties of S:

S(t) = f0(t) +

∫ t

0
((Ψ(s)QΨ∗(s)ht−s)(t − s))1/2 dB(s) , t ≤ T

Volterra process with volatility modulation
Barndorff-Nielsen et al. (2013): modelling power spot EEX
Time independent Ψ: Lévy semistationary spot dynamics
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Representation and subordinated Wiener
processes

Suppose W is H-Wiener process and Θ an independent
real-valued subordinator with finite moment,

L(t) := W (Θ(t))

L a mean-zero square-integrable Lévy process (Lecture I)
Suppose W Wiener relative to (right-continuous) filtration
{Ft}t≥0

Gt := ∩s>tFΘ(s)

{G}t≥0 time-changed filtration, L Lévy relative to Gt
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Proposition

Let Φ ∈ L2
L(H;G). There exists an isometric embedding

ΓΘ : L2
L(H;G)→ L2

W (H;F)

such that ΓΘ(Φ) ∈ L2
W (H;F) and∫ t

0
Φ(s) dL(s) =

∫ Θ(t)

0
ΓΘ(Φ)(s) dW (s)

RHS is a time-changed dW -integral, dW -integral with respect
to F
Proof goes by density argument, after showing the result on
elementary integrands.......
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Proof.

For Φ elementary, e.g, 0 = s0 < s1 < .., Yj square-integrable Gsj -
measurable, φj ∈ L(H) and Φ =

∑n−1
j=0 Yj1(sj ,sj+1]φj , let

ΓΘ(Φ) =
n−1∑
j=0

Yj1(Θ(sj ),Θ(sj+1)]φj ∈ L2
W (H;F)

By definition∫ t

0
Φ(s) dL(s) =

n−1∑
j=0

Yjφj
(
W (Θ(t) ∧Θ(sj+1))−W (Θ(t) ∧Θ(sj))

)
=

∫ Θ(t)

0
ΓΘ(Φ)(s) dW (s)
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Proposition

Assume L ∈ L(H ,Rn) and Φ ∈ L2
L(H), with L = W (Θ(t)). Then there

exists a n-dimensional mean-zero square integrable Lévy process N
such that

L
∫ t

0
Φ(s) dL(s) =

∫ t

0
σ(s) dN(s)

where σ(s) = (LΦ(s)QΦ∗(s)L∗)1/2.

N being a subordinated n-dimensional Brownian motion

N(t) = B(Θ(t))

L and W have same covariance operator Q (modulo scaling by
the expected value of Θ(1))
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Proof.

Let Φ be elementary, and note

LΓΘ(Φ) =
n−1∑
j=0

Yj1(Θ(sj ),Θ(sj+1)](L ◦ φj) = ΓΘ(LΦ)

Using previous proposition and representation for H-valued Wiener
processes,

L
∫ t

0
Φ(s) dL(s) =

∫ Θ(t)

0
LΓΘ(Φ)(s) dW (s) =

∫ Θ(t)

0
ΓΘσ(s) dB(s)

�
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Proof.

We have

(LΓΘ(Φ(s))QΓΘ(Φ(s))∗L∗)1/2(s) = ΓΘσ(s)

which shows last equality for σ. Again previous proposition∫ Θ(t)

0
ΓΘσ(s) dB(s) =

∫ t

0
σ(s) dN(s)

�

For n = 1, Θ inverse Gaussian subordinator, N is a real-valued
NIG Lévy process (lecture I)
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Exponential models natural in commodity markets
Ensure positivity of prices
Returns (logreturns) conveniently modelled

Power markets may have negative spot prices
Negative forward prices????

Define forward price as

f (t) = exp(g(t)) , t ≥ 0

g solution of HJMM dynamics
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Proposition

Hw is a Banach algebra after an appropriate re-scaling of the | · |w -
norm

Proof.

Let k2 :=
∫∞

0 w−1(x) dx < ∞. First show that |g|∞ ≤ c|g|w , for
|g|∞ = supx≥0 |g(x)|: recall for

hx (y) = 1 +

∫ x∧y

0
w−1(z) dz

we have g(x) = δxg = 〈hx ,g〉w . We find

|g(x)|2 ≤ |hx |2w |g|2w = hx (x)|g|2w ≤ (1 + k2)|g|2w

�
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Proof.

Proof cont’d: Using the product rule for derivatives, Cauchy-Schwartz
and estimate for uniform norm,

|fg|2w ≤ (5 + 4k2)|f |2w |g|2w

Hence, Hw is closed under multiplication. Define the norm ‖f‖w :=√
5 + 4k2|f |w . Then,

‖fg‖w ≤ ‖f‖w‖g‖w
�

exp g ∈ Hw for any g ∈ Hw ,

|exp g|w ≤ C−1 exp(C|g|w ) <∞ ,C =
√

5 + 4k2
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For t 7→ g(t) ∈ Hw , solution of HJMM-dynamics,

F (t ,T ) := δT−t f (t) = δT−t exp(g(t)) = exp(δT−tg(t)) , t ≤ T

Recall HJMM dynamics (mild solution),

g(t) = S(t)g0(t) +

∫ t

0
S(t − s)β(s) ds +

∫ t

0
S(t − s)Ψ(s) dL(s)

Representations above, for L being subordinated Wiener
process

g(t ,T − t) = g0(T ) +

∫ t

0
β(s,T − s) ds

+

∫ t

0
((Ψ(s)QΨ∗(s)hT−s)(T − s))1/2 dN(s)
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β models return/risk premium. If futures price is modelled
under risk neutrality, then

t 7→ F (t ,T ) , t ≤ T martingale

Must impose condition on β:

β(t ,T − t) = −K(σ(t ,T − t)) ,
where,

σ(t ,T − t) = ((Ψ(t)QΨ∗(t)hT−t )(T − t))1/2

and, for `(dz) being the Lévy measure,

K(y) =

∫
R

eyz − 1− yz1|z|<1 `(dz)

Use Itô’s Formula for jump processes
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A kind of example: the Schwartz model
Assume spot price dynamics of a commodity

Seasonal level set to 1 for simplicity
S(t) = exp(X (t)) ,dX (t) = ρ(θ− X (t)) dt + dL(t)

ρ >0 speed of mean reversion, θ log-price level, L real-valued
(driftless) Lévy process

Assume L(1) has finite exponential moment
Denote by φ its log-MGF

t 7→ F (t ,T ) with t ≤ T forward price
...assuming X is modelled directly under the pricing measure
Otherwise, do a measure change (Esscher, say)

F (t ,T ) := E[S(T ) | Ft ]
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Calculating,

F (t ,T ) = exp(e−ρ(T−t)X (t) + Θ(T − t))

where

Θ(x) = θ(1− e−ρx )) +

∫ x

0
φ(e−ρs) ds , x ≥ 0

In Musiela parametrization, x = T − t ,

f (t , x) = exp(e−ρxX (t) + Θ(x))

Lemma

If w(x) exp(−2ρx) ∈ L1(R+,R), then f (t) ∈ Hw
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