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Representing energy forwards in Hilbert
space

So far dealt with forward contracts delivering at a fixed time
Forward price t 7→ f (t , x), x time to delivery

Energy markets: forwards deliver over a period
Power, gas, temperature
Delivery of gas and power over an agreed period, a month say
Measurement of temperature index over an agreed period (CDD,
HDD, CAT)

Interpreted t 7→ f (t) as Hilbert-valued stochastic process
Question: can energy forward prices be viewed as
Hilbert-valued stochastic processes?

...or rather HOW?
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Power forwards/futures: delivery over period [T1,T2]

Assume constant risk-free interest rate r >0
Forward-style: settlement at T2

F(t ,T1,T2) =
1

T2 − T1

∫ T2

T1

F (t ,T ) dT , t ≤ T1

Futures-style: balancing (margin) account during settlement

F(t ,T1,T2) =

∫ T2

T1

e−rT∫ T2
T1

e−rs ds
F (t ,T ) dT , t ≤ T1

NordPool: both forward- and futures-style contracts traded
Forwards when long delivery period, futures when short
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Temperature futures on CDD, HDD and CAT indices

F(t ,T1,T2) =

∫ T2

T1

F (t ,T ) dT , t ≤ T1

CAT=cumulative average temperature
Daily average: average of minimum and maximum

CDD=cooling degree day

CDD(t) = max(T (t)− 18◦,0)

HDD=heating degree day
HDD "call option" on temperature with strike 18◦

CDD "put option"
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General expression for energy forward/futures prices

F ω̃(t ,T1,T2) =

∫ T2

T1

ω̃(T ,T1,T2)F (t ,T ) dT , t ≤ T1

T 7→ ω̃(T ,T1,T2) weight function

ω̃(T ,T1,T2) = 1 ,CAT, CCC, HDD, gas

ω̃(T ,T1,T2) =
1

T2 − T1
,power forward

ω̃(T ,T1,T2) =
e−rT∫ T2

T1
e−rs ds

,power futures
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Let ` = T2 − T1: length of delivery, and x = T1 − t ≥ 0, time to
start of delivery
With f (t , y) := F (t , t + y), y ≥ 0

Fω` (t , x) := F ω̃(t , t + x , t + x + `) =

∫ x+`

x
ω`(t , x , y)f (t , y) dy

Weight function

ω`(t , x , y) = ω̃`(t + y , t + x , t + x + `)

Example: power futures

ω`(t , x , y) =
1

1− e−r` e−r(y−x)
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Suppose ω`(x , y) := ω`(y − x), and assume z 7→ ω`(z) is
positive, bounded and measurable.
Musiela representation of energy forward

Fω` (t , x) =

∫ x+`

x
ω`(y − x)f (t , y) dy

Fω` representable as a linear operator on Hw , which is want we
analyse next:
Simple integration-by-parts

Fω` (t , x) =W`(`)f (t , x) +

∫ ∞
0

qω` (x , y)∂y f (t , y) dy

Fred Espen Benth Lecture III January 25–27, 2016 8 / 31



Define

W`(u) =

∫ u

0
ω`(v) dv ,u ≥ 0

qω` (x , y) = (W`(`)−W`(y − x)) 1[0,`](y − x)

Consider the integral operator Iω`

Iω` (g) =

∫ ∞
0

qω` (·, y)g′(y) dy
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Proposition

Iω` is a bounded linear operator on Hw

Proof.

• Iω` well-defined on Hw : By Cauchy-Schwartz,

|
∫ ∞

0
qω` (x , y)g′(y) dy |2 ≤

∫ ∞
0

w−1(y)(qω` (x , y))2 dy
∫ ∞

0
w(y)(g′(y))2 dy

First term finite sinceω` is bounded. Second term finite since g ∈ Hw .

• Iω` ∈ Hw for g ∈ Hw : Let ξ(x) := Iω` (g)(x),

ξ(x) =

∫ x+`

x
(W`(`)−W`(y − x))g′(y) dy

�
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Proof.

Proof cont’d....
Direct calculation shows that ξ has weak derivative

ξ′(x) =

∫ x+`

x
ω`(y − x)g′(y) dy −W`(`)g′(x)

By boundedness of ω`, it follows from Cauchy-Schwartz,

|Iω` (g)|w ≤ C|g|w <∞

for some constant C >0. �
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Wrapping up: energy forwards
Given a model for t 7→ f (t) ∈ Hw :

Fixed-delivery forward price curve
Recall models in Lecture II

Realize dynamics for energy forwards in Hw

Fω` (t) =W`(`)f (t) + Iω` (f (t))

More compact notation

Fω` (t) = Dω` (f (t)) , Dω` =W`(`)Id + Iω` ∈ L(Hw )
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Analysis of options on energy forwards
European options on energy forwards:

Energy forward price t 7→ F ω̃(t ,T1,T2), t ≤ T1
Exercise time 0 <τ ≤ T1
Payoff at exercise: p : R→ R measurable function of at most
linear growth

p(F ω̃(τ,T1,T2))

Recall representation of F ω̃(t ,T1,T2), in compact form

F ω̃(t ,T1,T2) := FωT2−T1
(t ,T1 − t)

where, for f (t) ∈ Hw ,

Fω` (t) = Dω` (f (t))

Fred Espen Benth Lecture III January 25–27, 2016 14 / 31



Lemma

Define Pω` : R+ × Hw → R as

Pω` (x ,g) = p ◦ δx ◦ Dω` (g)

Then
sup
x≥0
|Pω` (x ,g)| ≤ c(1 + |g|w )

for a constant c >0 Moreover,

p(F ω̃(τ,T1,T2)) = PωT2−T1
(T1 − τ, f (τ))

Note: Pω` (x , ·) is a nonlinear functional on Hw .
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Proof.

By linear growth of p:

|Pω` (x ,g)| ≤ c(1 + |Dω` (g)(x)|)

Recall from Lecture II, proof of Hw being Banach algebra, the sup
norm is bounded by Hw -norm. Since Dω` ∈ L(Hw ), the result follows.

�

Fred Espen Benth Lecture III January 25–27, 2016 16 / 31



Assume E[|f (t)|w ] <∞ for all t ≥ 0
Arbitrage-free option price dynamics for t ≤ τ

V (t) = e−r(τ−t)E[p(F ω̃(τ,T1,T2)) | Ft ]

= e−r(τ−t)E[PωT2−T1
(T1 − τ, f (τ)) | Ft ]

The linear growth of the payoff p ensures that V is finite
Assume Markovian HJMM dynamics with Lipschitz parameters

df (t) = ∂x f (t) dt +ψ(t , f (t−)) dL(t)

Recall Lecture II for all assumptions...!
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Mild solution for t ≤ s

f (s) = S(s − t)f (t) +

∫ s

t
S(s − u)ψ(u, f (u−)) dL(u)

Option price V (t) := V (t , f (t)), with

V (t ,g) = e−r(τ−t)E[PωT2−T1
(T1 − τ, f (τ)) | f (t) = g]
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Stability of option prices wrt current
forward curve
Proposition

Suppose that the payoff function p is Lipschitz continuous. Then, for
any g, g̃ ∈ Hw ,

sup
0≤t≤τ

|V (t ,g)− V (t , g̃)| ≤ C|g − g̃|w

for a positive constant C depending on τ.

Option price is not sensitive to small errors in the current
forward curve
Note: we have only discrete forward price observations
available, and must construct/recover the curve from these
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Proof.

By Lipschitz continuity of p and linearity of δx ,Dω` ,

|Pω` (x ,g)− Pω` (x , g̃)| ≤ c‖δx‖op|g − g̃|w

From lecture II, ‖δx‖2op = hx (x) ≤ c,

|Pω` (x ,g)− Pω` (x , g̃)| ≤ c|g − g̃|w

for some positive (generic) constant c >0 independent of x . Thus,

|V (t ,g)− V (t , g̃)| ≤ cE[|f t ,g(τ)− f t ,g̃(τ)|w ]

where f t ,g(t) = g. �
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Proof.

On Hw , the operator norm of S(t) is uniformly bounded in t :

|f t ,g(τ)−f t ,g̃(τ)|2w ≤ c|g − g̃|2w

+ 2|
∫ τ

t
S(τ− s)(ψ(s, f t ,g(s−))−ψ(s, f t ,g̃(s−))) dL(s)|2w

Using Itô’s isometry and Lipschitz of ψ

E
[
|
∫ τ

t
S(τ− s)(ψ(s, f t ,g(s−))−ψ(s, f t ,g̃(s−))) dL(s)|2w

]
≤
∫ τ

t
E
[
‖S(τ− s)(ψ(s, f t ,g(s−))−ψ(s, f t ,g̃(s−)))Q1/2‖2LHS(Hw )

]
ds

≤ c
∫ τ

t
E
[
|f t ,g(s)− f t ,g̃(s)|2w

]
ds

�
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Proof.

Hence,

E[|f t ,g(τ)− f t ,g̃(τ)|2w ] ≤ c|g − g̃|2w + c
∫ τ

t
E[|f t ,g(s)− f t ,g̃(s)|2w ] ds

We conclude by Gronwall’s inequality,

E[|f t ,g(τ)− f t ,g̃(τ)|2w ] ≤ cec(τ−t)|g − g̃|2w

�
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Pricing of options in Gaussian case
Focus on simple Gaussian dynamics; L = W

f (τ) = S(τ− t)f (t) +

∫ τ

t
S(τ− s)Ψ(s) dW (s)

Recalling representation analysis in Lecture II

F ω̃(τ,T1,T2) = δT1−tDωT2−T1
f (t)+

∫ τ

t
σT1,T2(s) dB(s) , t ≤ τ ≤ T1

with B being a real-valued Brownian motion and

σ2
T1,T2

(s) = (δT1−sDωT2−T1
Ψ(s)QΨ∗(s)Dω,∗T2−T1

δ∗T1−s)(1)
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Proposition

Suppose Ψ : R+ → L(Hw ) is deterministic. Then

V (t ,g) = e−r(τ−t)E[p(m(g) + ξX )]

where X is a standard normal distributed random variable,

ξ2 :=

∫ τ

t
σ2

T1,T2
(s) ds , m(g) = δT1−tDωT2−T1

(g)

Proof.

Immediate, since Itô integral of the determinstic function σT1,T2(s) is
centered normally distributed. �
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Study of the volatility σT1,T2(s)
From Lecture II:

δ∗T1−s(1) = hT1−s(·) = 1 +

∫ (T1−s)∧·

0
w−1(z) dz

Therefore, for x ≥ 0 and ` = T2 − T1,

δxDω,∗` δ∗T1−s(1) = Dω,∗` (hT1−s)(x) = 〈Dω,∗` (hT1−s),hx〉
= 〈hT1−s,Dω` (hx )〉 = Dω` (hx )(T1 − s)

=W`(`)hT1−s(x) +

∫ x

0
w−1(z)qω` (T1 − s, z) dz
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Hence,

Dω,∗` δ∗T1−s(1) =W`(`)hT1−s(·)+

∫ ·
0

w−1(z)qω` (T1−s, z) dz ∈ Hw

Σ(s) := Ψ(s)QΨ∗(s) ∈ L(Hw ) is the modeller’s choice
Q variance-covariance structure in "spatial" coordinate x
Ψ space-time volatility scaling

Useful characterization: if L ∈ L(Hw ),

δxL∗g = 〈L∗g,hx〉 = 〈g,Lhx〉

= g(0)L(hx )(0) +

∫ ∞
0

(Lhx )′(y)w(y)g′(y) dy

Thus: L∗ is essentially an integral operator on Hw ... and the
same for L = (L∗)∗
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The delta
....or, the sensitivity to the current forward curve
Perturbing the current forward curve in a direction h ∈ Hw .
Gateaux derivative, DhV (t ,g), g current forward curve

DhV (t ,g) :=
d
d�

V (t ,g + �h)|�=0

Proposition

Suppose Ψ : R+ → L(Hw ) is deterministic. For any h ∈ Hw it holds

DhV (t ,g) =
1
ξm(h)E[p(m(g) + ξX )X ]

with m and ξ as defined earlier.
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Proof.

Let φ denote the standard normal density function. Change of vari-
ables, Fubini and chain rule yield,

DhV (t ,g) = Dh

∫
R

p(m(g) + ξx)φ(x) dx

=
1
ξDh

∫
R

p(y)φ((y −m(g))/ξ) dy

=
1
ξ

∫
R

p(y)φ′((y −m(g))/ξ)(−1/ξ)Dhm(g) dy

Dhm(g) =
d
d�

(m(g) + �m(h))|�=0 = m(h)

�
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Extract a smooth curve g from energy forward prices
Functionals of the smooth curve, over discrete delivery periods
No unique way to smoothen the forward curve

Delta provides a sensitivity measure
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At EEX and NordPool: European call and put options on
monthly forward contracts
Payoff of a call: p(x) = max(x − K ,0)

Proposition

The price of a call option with strike K and exercise time τ ≤ T1 is

V (t ,g(t)) = ξφ((m(g(t))− K )/ξ) + (m(g(t))− K )Φ((m(g(t))− K )/ξ)

with Φ being the cumulative normal distribution function. Moreover,

DhV (t ,g(t)) = m(h)Φ((m(g(t))− K )/ξ)

for any h ∈ Hw .
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