

UiO : Department of Mathematics University of Oslo

Lecture IV

Stochastic volatility in energy forward price models

UiO : Department of Mathematics
University of Oslo

Overview

In collaboration with Barbara Rüdiger (Wuppertal) and André Süss (Zürich).

1 Motivation and Background

2 Operator-valued BNS SV model

3 Analysis of the OU model with BNS SV

4 Forward price with SV

Overview

1 Motivation and Background

2 Operator-valued BNS SV model

3 Analysis of the OU model with BNS SV

4 Forward price with SV

UiO : Department of Mathematics
 University of Oslo

Evidence for stochastic volatility?

■ UK NBP gas spot prices
■ Residuals after de-seasonalization and regression
■ Non-Gaussian density (NIG), squared residuals correlated

- BNS SV model calibrates well

UiO : Department of Mathematics
 University of Oslo

The BNS SV spot model

- Spot price of energy $S(t)=\Lambda(t) \exp (X(t))$

$$
d X(t)=-\alpha X(t) d t+\sigma(t) d B(t)
$$

$\square B$ is \mathbb{R}-valued Brownian motion, $\alpha>0$
$\square \sigma(t):=\sqrt{Y(t)}$

$$
d Y(t)=-\lambda Y(t) d t+d L(t)
$$

$\square L(t)$ is a Lévy process with increasing paths (subordinator), $\lambda>0$.

UiO : Department of Mathematics
 University of Oslo

- Implied forward dynamics from BNS SV spot model

$$
\frac{d F(t, T)}{F(t-, T)}=\mathrm{e}^{-\alpha(T-t)} \sigma(t) d B(t)+\int_{0}^{\infty}\left(\mathrm{e}^{z \exp (-\lambda(T-t))}-1\right) \widetilde{N}(d z, d t)
$$

■ But recall: indications of infinite dimensional noise
■ Spatial correlation between forwards with different maturities
■ Quarterly power forwards at NordPool (Andersen et al. (2010))

- GOAL: Define forward price dynamics with stochastic volatility

■ Risk-neutral HJMM-dynamics for the forward price $f(t, x)$, $t, x \geq 0$,

$$
d f(t, x)=\partial_{x} f(t, x) d t+\sigma(t) d W(t, x)
$$

■ W Hilbert space valued Brownian motion, σ some "nice" operator-valued stochastic process

■ Model should account for
■ Non-Gaussian spatial noise
■ Maturity dependent "BNS-type" stochastic volatility

UiO : Department of Mathematics
 University of Oslo

Definition of stochastic model

- \mathcal{A} unbounded operator (densely defined) on H, a separable Hilbert space
$\square \mathcal{A}$ generates a C_{0}-semigroup $\{\mathcal{S}(t)\}_{t \geq 0}$
- Ornstein-Uhlenbeck dynamics

$$
d X(t)=\mathcal{A} X(t) d t+\sigma(t) d W(t)
$$

■ W H-valued Wiener process with covariance operator \mathcal{Q}

UiO : Department of Mathematics
 University of Oslo

$\square \sigma$ predictable process with values in $L(H)$, the linear operators on H,

$$
\mathbb{E}\left[\int_{0}^{t}\left\|\sigma(s) \mathcal{Q}^{1 / 2}\right\|_{\mathcal{H}}^{2} d s\right]<\infty
$$

■ $\mathcal{H}=L_{H S}(H)$, the space of Hilbert-Schmidt operators on H

$$
\Psi \in \mathcal{H} \Leftrightarrow\|\Psi\|_{\mathcal{H}}^{2}:=\sum_{n=1}^{\infty}\left|\Psi e_{n}\right|_{H}^{2}<\infty
$$

- $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ ONB in H
\square Our focus: define $\sigma(t)=\mathcal{Y}^{1 / 2}(t)$, for some \mathcal{Y}

Overview

1 Motivation and Background

2 Operator-valued BNS SV model

3 Analysis of the OU model with BNS SV

4 Forward price with SV

$\mathrm{UiO}:$ Department of Mathematics
 University of Oslo

■ Define \mathcal{H}-valued "variance" process \mathcal{Y}

$$
d \mathcal{Y}(t)=\mathbb{C} \mathcal{Y}(t) d t+d \mathcal{L}(t)
$$

$■ \mathbb{C} \in L(\mathcal{H})$, bounded linear operator on \mathcal{H}

- Uniformly continuous C_{0}-semigroup

$$
\mathbb{S}(t)=\exp (t \mathbb{C}), t \geq 0
$$

$■ t \mapsto \mathcal{L}(t) \mathcal{H}$-valued square-integrable Lévy process

- Covariance operator $\mathbb{Q}_{\mathcal{L}}$

■ Self-adjoint, positive definite trace class operator on \mathcal{H}

UiO : Department of Mathematics
 University of Oslo

Analysis of $\mathcal{Y}(t)$

- Unique mild solution

$$
\mathcal{Y}(t)=\mathbb{S}(t) \mathcal{Y}_{0}+\int_{0}^{t} \mathbb{S}(t-s) d \mathcal{L}(s)
$$

- Bound on norm of stochastic integral

$$
\int_{0}^{t}\left\|\mathbb{S}(s) \mathbb{Q}_{\mathcal{L}}^{1 / 2}\right\|_{\mathcal{L}_{H S}(\mathcal{H})}^{2} d s \leq \frac{\operatorname{Tr}\left(\mathbb{Q}_{\mathcal{L}}\right)}{2\|\mathbb{C}\|_{o p}}\left(\mathrm{e}^{2 t\|\mathbb{C}\|}-1\right)<\infty
$$

UiO : Department of Mathematics
 University of Oslo

$■ \mathcal{Y}$ affine process in $\mathcal{H}:$ for $s \leq t, \mathcal{T} \in \mathcal{H}$

$$
\ln \mathbb{E}\left[e^{\mathrm{i}\langle\mathcal{Y}(t), \mathcal{T}\rangle_{\mathcal{H}}} \mid \mathcal{F}_{s}\right]=\mathrm{i}\left\langle\mathcal{Y}(s), \mathbb{S}^{*}(t-s) \mathcal{T}\right\rangle_{\mathcal{H}}+\int_{0}^{t-s} \Psi_{\mathcal{L}}\left(\mathbb{S}^{*}(u) \mathcal{T}\right) d u
$$

- $\Psi_{\mathcal{L}}$ characteristic exponent of \mathcal{L}
- Result follows by:
- Independent increment property of \mathcal{L}
- The Lévy-Kintchine formula for \mathcal{L} (given by $\Psi_{\mathcal{L}}$)

UiO : Department of Mathematics
 University of Oslo

Proposition

Suppose that $(\mathbb{C} \mathcal{T})^{*}=\mathbb{C} \mathcal{T}^{*}$ for any $\mathcal{T} \in \mathcal{H}$. If \mathcal{L} and \mathcal{Y}_{0} are selfadjoint, then \mathcal{Y} is self-adjoint

Proof.

"Sketch": For any $f, g \in H$,

$$
(\mathcal{Y}(t) f, g)_{H}=\int_{0}^{t}\left(f, \mathbb{C}^{*}(s)\right)_{H} d s+(f, \mathcal{L}(t) g)_{H}
$$

Thus,

$$
d \mathcal{Y}^{*}(t)=\mathbb{C} \mathcal{Y}^{*}(t) d t+d \mathcal{L}(t)
$$

and $\mathcal{Y}^{*}=\mathcal{Y}$.

```
UiO : Department of Mathematics
University of Oslo
```


Proposition

Suppose that \mathbb{C} preserves positive definiteness. If increments of \mathcal{L} and \mathcal{Y}_{0} are positive definite, then \mathcal{Y} is positive definite

Proof.

"Sketch": $\mathbb{S}(t) \mathcal{Y}_{0}$ positive definite by assumptions on \mathbb{C} and \mathcal{Y}_{0}. Same holds for

$$
\sum_{m=1}^{M} \mathbb{S}\left(t-s_{m}\right) \Delta \mathcal{L}\left(s_{m}\right)
$$

by assumptions on \mathbb{C} and \mathcal{L}. Result follows from the mild solution of \mathcal{Y} after passing to the limit.

UiO : Department of Mathematics
 University of Oslo

A closer look at \mathcal{L}

- Positive definiteness of the increments of \mathcal{L} is equivalent to \mathcal{L} having "non-decreasing" paths:
■ \mathcal{H}-valued Lévy process \mathcal{L} has non-decreasing paths if $t \mapsto(\mathcal{L}(t) f, f)_{H}$ is non-decreasing for all $f \in H$.

$$
0 \leq((\mathcal{L}(t)-\mathcal{L}(s)) f, f)_{H}=(\mathcal{L}(t) f, f)_{H}-(\mathcal{L}(s) f, f)_{H}
$$

- Claim: $L_{f}(t):=(\mathcal{L}(t) f, f)_{H}$ is an \mathbb{R}-valued Lévy process with non-decreasing paths, i.e. a subordinator

UiO : Department of Mathematics
 University of Oslo

■ General theory: for any $\mathcal{T} \in \mathcal{H}$,

$$
t \mapsto\langle\mathcal{L}(t), \mathcal{T}\rangle_{\mathcal{H}}
$$

is an \mathbb{R}-valued Lévy process
\square Let $\mathcal{T}=f \otimes f, f \in H$: since $(f \otimes f)(g)=(f, g)_{H} f$,

$$
\langle\mathcal{L}(t), f \otimes f\rangle_{\mathcal{H}}=\sum_{n=1}^{\infty}\left(\mathcal{L}(t)\left(f, e_{n}\right)_{H} e_{n}, f\right)_{H}=(\mathcal{L}(t) f, f)_{H}
$$

- $L_{f}(t)$ is a subordinator when \mathcal{L} has "non-decreasing paths".

■ Recall: the univariate BNS SV model is driven by a subordinator Lévy process to ensure positive variance

UiO : Department of Mathematics
 University of Oslo

- "Variance" in continuous martingale part in Levy-Kintchine formula of $L_{f}(t)$:

$$
\left\langle\mathbb{Q}_{\mathcal{L}}^{0}(f \otimes f), f \otimes f\right\rangle_{\mathcal{H}}=0
$$

$\square \mathbb{Q}_{\mathcal{L}}^{0}$ covariance of continuous martingale part of \mathcal{L}
$\square f \otimes f \in \operatorname{ker}\left(\mathbb{Q}_{\mathcal{L}}^{0}\right)$:

$$
0=\left\langle\mathbb{Q}_{\mathcal{L}}^{0}(f \otimes f), f \otimes f\right\rangle_{\mathcal{H}}=\left\|\left(\mathbb{Q}_{\mathcal{L}}^{0}\right)^{1 / 2}(f \otimes f)\right\|_{\mathcal{H}}^{2}
$$

$$
\mathbb{Q}_{\mathcal{L}}^{0}(f \otimes f)=0
$$

UiO : Department of Mathematics
 University of Oslo

\square All symmetric $\mathcal{T} \in \mathcal{H}$

$$
\mathcal{T}=\sum_{k, l \in \mathbb{N}} \gamma_{k l} e_{k} \otimes e_{l}
$$

■ By polarization

$$
\mathcal{T}=\sum_{k \in \mathbb{N}} \gamma_{k k} e_{k} \otimes e_{k}+2 \sum_{k \in \mathbb{N}, l<k} \gamma_{k l}\left(\left(e_{k}+e_{l}\right) \otimes\left(e_{k}+e_{l}\right)-e_{k} \otimes e_{k}-e_{l} \otimes e_{l}\right)
$$

- Hence, symmetric $\mathcal{T} \in \operatorname{ker}\left(\mathbb{Q}_{\mathcal{L}}^{0}\right)$
- Cannot conclude $\mathbb{Q}_{\mathcal{L}}^{0}=0$
- \mathcal{L} may have a continuous martingale part

UiO : Department of Mathematics
 University of Oslo

Example: compound Poisson process

■ Suppose $\left\{\mathcal{X}_{i}\right\}_{i \in \mathbb{N}}$ iid square-integrable \mathcal{H}-valued random variables

$$
\mathcal{L}(t)=\sum_{i=1}^{N(t)} \mathcal{X}_{i}
$$

$\square N$ is an \mathbb{R}-valued Poisson process with intensity $\lambda>0$

UiO : Department of Mathematics
 University of Oslo

- $L_{f}(t) \mathbb{R}$-valued compound Poisson process

$$
L_{f}(t):=\langle\mathcal{L}(t), f \otimes f\rangle_{\mathcal{H}}=\sum_{i=1}^{N(t)}\left(\mathcal{X}_{i} f, f\right)_{H}
$$

- \mathcal{L} self-adjoint and positive definite if and only if \mathcal{X}_{i} are self-adjoint and positive definite

■ Latter: $\left(\mathcal{X}_{i} f, f\right)_{H}$ is distributed on \mathbb{R}_{+}, i.e., L_{f} has positive jumps

UiO : Department of Mathematics
 University of Oslo

■ Let $\left\{Z_{i}\right\}_{i \in \mathbb{N}}$ be iid H-valued Gaussian random variables,

$$
\mathcal{X}_{i}:=Z_{i}^{\otimes 2}
$$

$\square \mathcal{X}_{i}$ becomes self-adjoint, positive definite,

$$
L_{f}(t)=\sum_{i=1}^{N(t)}\left(Z_{i}^{\otimes 2} f, f\right)_{H}=\sum_{i=1}^{N(t)}\left(Z_{i}, f\right)_{H}^{2}
$$

$\square\left(Z_{i}, f\right)_{H}$ is \mathbb{R}-valued centered Gaussian with variance $\left|\mathcal{Q}_{Z}^{1 / 2} f\right|_{H}^{2}$
$■ L_{f}(t)$ has positive jumps being Gamma distributed
■ Shape parameter $1 / 2$, scale $2\left|\mathcal{Q}_{Z}^{1 / 2} f\right|_{H}^{2}$

UiO : Department of Mathematics
 University of Oslo

Examples of \mathbb{C} :

■ Two specific cases of \mathbb{C} : For $\mathcal{C} \in L(H)$.

$$
\mathbb{C}_{1}: \mathcal{H} \rightarrow \mathcal{H}, \quad \mathcal{T} \mapsto \mathcal{C} \mathcal{T C}^{*}
$$

$$
\mathbb{C}_{2}: \mathcal{H} \rightarrow \mathcal{H}, \quad \mathcal{T} \mapsto \mathcal{C} \mathcal{T}+\mathcal{T C}^{*}
$$

$\square \mathbb{C}_{2}$ extension of the matrix-operator BNS SV model in Barndorff-Nielsen and Stelzer (2007)
$\square \mathbb{C}_{1} \mathcal{T}$ is self-adjoint positive definite whenever $\mathcal{T} \in \mathcal{H}$ is
■ ...while $\mathbb{S}_{2}(t) \mathcal{T}$ is self-afdjoint, positive definite

UiO : Department of Mathematics
 University of Oslo

The BNS SV model

■ Assume \mathcal{Y} satisfies:
$1 \mathcal{Y}_{0}$ is self-adjoint positive definite
$2(\mathbb{C} \mathcal{T})^{*}=\mathbb{C} \mathcal{T}^{*}$
$3 \mathbb{C} \mathcal{T}$ positive definite whenever \mathcal{T} is
$4 \mathcal{L}$ has "non-decreasing" paths
■ Define BNS SV model

$$
\sigma(t):=\mathcal{Y}^{1 / 2}(t)
$$

Overview

1 Motivation and Background

2 Operator-valued BNS SV model

3 Analysis of the OU model with BNS SV

4 Forward price with SV

UiO : Department of Mathematics
 University of Oslo

- Recall our OU dynamics for $X(t)$

$$
d X(t)=\mathcal{A} X(t) d t+\mathcal{Y}^{1 / 2}(t) d W(t)
$$

■ Mild solution

$$
X(t)=\mathcal{S}(t) X_{0}+\int_{0}^{t} \mathcal{S}(t-s) \mathcal{Y}^{1 / 2}(s) d W(s)
$$

■ Well-defined stochastic integrals?

$$
\mathbb{E}\left[\int_{0}^{t}\left\|\mathcal{Y}^{1 / 2}(s) \mathcal{Q}^{1 / 2}\right\|_{\mathcal{H}}^{2} d s\right]=\mathbb{E}\left[\int_{0}^{t} \operatorname{Tr}\left(\mathcal{Q}^{1 / 2} \mathcal{Y}(s) \mathcal{Q}^{1 / 2}\right) d s\right]<\infty ?
$$

UiO : Department of Mathematics
 University of Oslo

■ It holds,

$$
\begin{aligned}
\mathbb{E}[& \left.\operatorname{Tr}\left(\mathcal{Q}^{1 / 2} \mathcal{Y}(t) \mathcal{Q}^{1 / 2}\right)\right]=
\end{aligned} \begin{array}{|l}
\\
\end{array}
$$

$\square \int_{0}^{t} \mathbb{S}(s) d s$ is the Bochner integral and $\mathbb{E}[\mathcal{L}(t)]$ operator-valued expected value
■ "Proof" goes by playing around with the Levy-Kintchine formula of \mathcal{L} and definition of the trace

UiO : Department of Mathematics
 University of Oslo

Characteristic function of X

- Characteristic function known under a strong commutativity hypothesis:

■ Assume there exists self-adjoint positive definite $\mathcal{D} \in L(H)$;

$$
\mathcal{Y}^{1 / 2}(s) \mathcal{Q} \mathcal{Y}^{1 / 2}(s)=\mathcal{D}^{1 / 2} \mathcal{Y}(s) \mathcal{D}^{1 / 2}
$$

■ Condition holds if \mathcal{Q} commutes with $\mathcal{Y}(s)$
■ Choose $\mathcal{D}:=\mathcal{Q}$

- Strong conditions on $\mathcal{Y}: \mathcal{Q}$ commutes with $\mathcal{L}, \mathcal{Y}_{0}$ and \mathbb{C}

■ Denote cumulant of $X(t)$ by $\Psi_{X}(t, f), f \in H$

$$
\mathbb{E}\left[\exp \left(\mathrm{i}(X(t), f)_{H}\right)\right]=\exp \left(\Psi_{X}(t, f)\right)
$$

UiO : Department of Mathematics
 University of Oslo

Proposition

If \mathcal{L} is independent of W, then

$$
\begin{aligned}
& \Psi_{X}(t, f)=\mathrm{i}\left(X_{0}, \mathcal{S}^{*}(t) f\right)_{H} \\
& \quad-\frac{1}{2}\left\langle\mathcal{Y}_{0}, \int_{0}^{t} \mathbb{S}^{*}(s)\left(\left(\mathcal{D}^{1 / 2} \mathcal{S}^{*}(t-s) f\right) \otimes\left(\mathcal{D}^{1 / 2} \mathcal{S}^{*}(t-s) f\right)\right) d s\right\rangle_{\mathcal{H}} \\
& \quad+\int_{0}^{t} \Psi_{\mathcal{L}}\left(-\frac{1}{2} \int_{0}^{s} \mathbb{S}^{*}(s-u)\left(\left(\mathcal{D}^{1 / 2} \mathcal{S}^{*}(u) f\right) \otimes\left(\mathcal{D}^{1 / 2} \mathcal{S}^{*}(u) f\right)\right) d u\right) d s
\end{aligned}
$$

Proof.

Apply conditional Gaussianity of stochastic integral given \mathcal{Y} together with Levy-Kintchine formula of \mathcal{L}. Next a Fubini theorem to resolve integration of \mathcal{Y}

UiO : Department of Mathematics
 University of Oslo

"Price returns" model

■ Define "adjusted returns" by

$$
R(t, \Delta t)=X(t+\Delta t)-\mathcal{S}(\Delta t) X(t)
$$

$\square R(t, \Delta t)$ given \mathcal{Y} is a mean-zero H-valued Gaussian random variable with covariance operator (\mathcal{L} independent of W)

$$
\mathcal{Q}_{R \mid \mathcal{Y}}:=\int_{t}^{t+\Delta t} \mathcal{S}(t+\Delta t-s) \mathcal{Y}^{1 / 2}(s) \mathcal{Q} \mathcal{Y}^{1 / 2}(s) \mathcal{S}^{*}(t+\Delta t-s) d s
$$

■ Adjusted returns conditionally independent, Gaussian "variance-mixture" model

Overview

1 Motivation and Background

2 Operator-valued BNS SV model

3 Analysis of the OU model with BNS SV

4 Forward price with SV

UiO : Department of Mathematics
 University of Oslo

■ Choose $H=H_{w}$, the (Filipovic) space of real-valued absolutely continuous functions on \mathbb{R}_{+}

$$
|f|_{w}^{2}=f^{2}(0)+\int_{0}^{\infty} w(x)\left|f^{\prime}(x)\right|^{2} d x<\infty
$$

\square increasing function, $w(0)=1, \int_{0}^{\infty} w^{-1}(x) d x<\infty$

- H_{w} separable Hilbert space with $\delta_{x}(f)=f(x)$ a continuous linear functional
■ Let $\mathcal{A}=\partial / \partial x$ with C_{0}-semigroup $\mathcal{S}(t)(g)=g(\cdot+t)$

UiO : Department of Mathematics
 University of Oslo

- Define the forward price at time t and maturity $x \geq 0$

$$
f(t, x):=\delta_{x}(X(t))
$$

■ Note

$$
\delta_{x} \mathcal{S}(t) g=g(t+x)=\delta_{t+x} g
$$

■ Forward price:

$$
f(t, x)=X_{0}(t+x)+\delta_{x} \int_{0}^{t} \mathcal{S}(t-s) \mathcal{Y}^{1 / 2}(s) d W(s)
$$

UiO : Department of Mathematics
 University of Oslo

- Stochastic integral has zero mean

$$
\lim _{x \rightarrow \infty} \mathbb{E}[f(t, x)]=\lim _{x \rightarrow \infty} X_{0}(t+x)=X_{0}(\infty)
$$

■ "Long end" of market is constant. Moreover, $f(t, x)$ "stationary in mean" as

$$
\lim _{t \rightarrow \infty} \mathbb{E}[f(t, x)]=X_{0}(\infty)
$$

■ Model tends towards a flat (in mean) forward curve

UiO : Department of Mathematics
 University of Oslo

■ Result from Lecture II (B. Krühner (2014)):

$$
\delta_{x} \int_{0}^{t} \mathcal{S}(t-s) \mathcal{Y}^{1 / 2}(s) d W(s)=\int_{0}^{t} \sigma_{x}(t, s) d B_{x}(s)
$$

■ B_{x} univariate Brownian motion, σ_{x} stochastic volatility process

$$
\sigma_{x}^{2}(t, s)=\delta_{x+t-s}\left(\mathcal{Y}^{1 / 2}(s) \mathcal{Q} \mathcal{Y}^{1 / 2}(s)\right) \delta_{x+t-s}^{*}(1)
$$

■ $t \mapsto f(t, x)$ a Brownian-driven Volterra process

- Barndorff-Nielsen, B, Veraart (2013). Volterra processes for energy spot price modelling
■ Spot price: $f(t, 0)$

UiO : Department of Mathematics
 University of Oslo

\square Note in $H_{w}: \delta_{x}^{*}(1)=h_{x}(\cdot)$,

$$
h_{x}(y)=1+\int_{0}^{y \wedge x} w^{-1}(z) d z \quad y \geq 0
$$

■ If $\mathcal{Y}(s)$ and \mathcal{Q} commutes
$\sigma_{x}^{2}(t, s)=\mathcal{Y}_{\mathcal{Q}}(s)\left(h_{x+t-s}\right)(x+t-s)=\left\langle\mathcal{Y}_{\mathcal{Q}}(s), h_{x+t-s} \otimes h_{x+t-s}\right\rangle_{\mathcal{H}}$

- Here $\mathcal{Y}_{\mathcal{Q}}(t)=\mathcal{Y}(t) \mathcal{Q}, \mathcal{L}_{Q}(t)=\mathcal{L}(t) \mathcal{Q} \mathcal{H}$-valued Lévy process

$$
d \mathcal{Y}_{\mathcal{Q}}(t)=\mathbb{C} \mathcal{Y}_{\mathcal{Q}}(t) d t+d \mathcal{L}_{\mathcal{Q}}(t)
$$

UiO : Department of Mathematics
 University of Oslo

$f(t, x)$ as a random field

\square Global noise in time and space rather than B_{X} marginal Brownian motion?
■ Using properties of $H_{w} \ldots$

$$
\begin{gathered}
\delta_{x} \int_{0}^{t} \mathcal{S}(t-s) \mathcal{Y}^{1 / 2}(s) d W(s)=\int_{0}^{t}\left(\mathcal{Y}^{1 / 2}(s) h_{x+t-s}\right)(0) d W(s, 0) \\
\quad+\int_{0}^{t} \int_{0}^{\infty} w(y)\left(\mathcal{Y}^{1 / 2}(s) h_{x+t-s}\right)^{\prime}(y) W(d s, d y)
\end{gathered}
$$

- $W(t, 0)$ real-valued Brownian motion with variance $\left|\mathcal{Q}^{1 / 2} 1\right|_{W}^{2}$
- Second integral resembles an "Ambit Field"

■ Barndorff-Nielsen \& Co

UiO : Department of Mathematics

University of Oslo

References

- Andresen, Koekebakker and Westgaard (2010). Modeling electricity forward prices using the multivariate normal inverse Gaussian distribution. J. Energy Markets, 3(3), pp. 1-23
- Barndorff-Nielsen and Stelzer (2007). Positive definite matrix processes of finite variation. Probab. Math. Statist., 27, pp. 3-43.
- Barndorff-Nielsen, Benth and Veraart (2013). Modelling energy spot prices by volatility modulated Lévy-driven Volterra processes. Bernoulli, 19(3), pp. 803-845
- Barndorff-Nielsen, Benth and Veraart (2014). Modelling electricity forward markets by ambit fields. Adv. Applied Prob., 46, pp. 719-745.
- Benth (2011). The stochastic volatility model of Barndorff-Nielsen and Shephard in commodity markets. Math. Finance, 21, pp. 595-625.
- Benth and Krühner (2014). Representation of infinite dimensional forward price models in commodity markets. Comm. Math. Stat. 2, pp. 47-106.
- Benth, Rüdiger and Süss (2015). Ornstein-Uhlenbeck processes in Hilbert space with non-Gaussian stochastic volatility. arXiv:1506.07245 [math.PR]
- Benth and Saltyte Benth (2013). Modeling and Pricing in Financial Markets for Weather Derivatives. World Scientific
- Frestad (2008). Common and unique factors influencing daily swap returns in the Nordic electricity market, 1997-2005. Energy Economics, 30, pp. 1081-1097.

UiO 8 Department of Mathematics University of Oslo

Fred Espen Benth

Lecture IV

Stochastic volatility in energy forward price models

