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Evidence for stochastic volatility?
UK NBP gas spot prices

Residuals after de-seasonalization and regression
Non-Gaussian density (NIG), squared residuals correlated

BNS SV model calibrates well
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The BNS SV spot model
Spot price of energy S(t) = Λ(t) exp(X (t))

dX (t) = −αX (t) dt + σ(t) dB(t)

B is R-valued Brownian motion, α >0
σ(t) :=

√
Y (t)

dY (t) = −λY (t) dt + dL(t)

L(t) is a Lévy process with increasing paths (subordinator),
λ >0.
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Implied forward dynamics from BNS SV spot model

dF (t ,T )

F (t−,T )
= e−α(T−t)σ(t) dB(t)+

∫ ∞
0

(ez exp(−λ(T−t))−1) Ñ(dz ,dt)

But recall: indications of infinite dimensional noise
Spatial correlation between forwards with different maturities
Quarterly power forwards at NordPool (Andersen et al. (2010))
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GOAL: Define forward price dynamics with stochastic volatility
Risk-neutral HJMM-dynamics for the forward price f (t , x),
t , x ≥ 0,

df (t , x) = ∂x f (t , x) dt + σ(t)dW (t , x)

W Hilbert space valued Brownian motion, σ some "nice"
operator-valued stochastic process

Model should account for
Non-Gaussian spatial noise
Maturity dependent "BNS-type" stochastic volatility
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Definition of stochastic model
A unbounded operator (densely defined) on H, a separable
Hilbert space
A generates a C0-semigroup {S(t)}t≥0

Ornstein-Uhlenbeck dynamics

dX (t) = AX (t) dt + σ(t) dW (t)

W H-valued Wiener process with covariance operator Q
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σ predictable process with values in L(H), the linear operators
on H,

E
[∫ t

0
‖σ(s)Q1/2‖2H ds

]
<∞

H = LHS(H), the space of Hilbert-Schmidt operators on H

Ψ ∈ H ⇔ ‖Ψ‖2H :=
∞∑

n=1

|Ψen|2H <∞

{en}n∈N ONB in H
Our focus: define σ(t) = Y1/2(t), for some Y
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Define H-valued "variance" process Y

dY(t) = CY(t) dt + dL(t)

C ∈ L(H), bounded linear operator on H
Uniformly continuous C0-semigroup

S(t) = exp(tC) , t ≥ 0

t 7→ L(t) H-valued square-integrable Lévy process
Covariance operator QL
Self-adjoint, positive definite trace class operator on H
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Analysis of Y(t)
Unique mild solution

Y(t) = S(t)Y0 +

∫ t

0
S(t − s) dL(s)

Bound on norm of stochastic integral∫ t

0
‖S(s)Q1/2

L ‖
2
LHS(H) ds ≤ Tr(QL)

2‖C‖op
(e2t‖C‖ − 1) <∞
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Y affine process in H: for s ≤ t , T ∈ H

lnE
[
ei〈Y(t),T 〉H | Fs

]
= i〈Y(s), S∗(t−s)T 〉H+

∫ t−s

0
ΨL(S∗(u)T ) du

ΨL characteristic exponent of L
Result follows by:

Independent increment property of L
The Lévy-Kintchine formula for L (given by ΨL)
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Proposition

Suppose that (CT )∗ = CT ∗ for any T ∈ H. If L and Y0 are self-
adjoint, then Y is self-adjoint

Proof.

"Sketch": For any f ,g ∈ H,

(Y(t)f ,g)H =

∫ t

0
(f ,CY∗(s))H ds + (f ,L(t)g)H

Thus,
dY∗(t) = CY∗(t) dt + dL(t)

and Y∗ = Y. �
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Proposition

Suppose that C preserves positive definiteness. If increments of L
and Y0 are positive definite, then Y is positive definite

Proof.

"Sketch": S(t)Y0 positive definite by assumptions on C and Y0. Same
holds for

M∑
m=1

S(t − sm)∆L(sm)

by assumptions on C and L. Result follows from the mild solution of
Y after passing to the limit. �
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A closer look at L
Positive definiteness of the increments of L is equivalent to L
having "non-decreasing" paths:
H-valued Lévy process L has non-decreasing paths if
t 7→ (L(t)f , f )H is non-decreasing for all f ∈ H.

0 ≤ ((L(t)− L(s))f , f )H = (L(t)f , f )H − (L(s)f , f )H

Claim: Lf (t) := (L(t)f , f )H is an R-valued Lévy process with
non-decreasing paths, i.e. a subordinator
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General theory: for any T ∈ H,

t 7→ 〈L(t), T 〉H

is an R-valued Lévy process
Let T = f ⊗ f , f ∈ H: since (f ⊗ f )(g) = (f ,g)H f ,

〈L(t), f ⊗ f 〉H =
∞∑

n=1

(L(t)(f ,en)Hen, f )H = (L(t)f , f )H

Lf (t) is a subordinator when L has "non-decreasing paths".
Recall: the univariate BNS SV model is driven by a subordinator
Lévy process to ensure positive variance

Fred Espen Benth Lecture IV January 25–27, 2016 16 / 37



"Variance" in continuous martingale part in Levy-Kintchine
formula of Lf (t):

〈Q0
L(f ⊗ f ), f ⊗ f 〉H = 0

Q0
L covariance of continuous martingale part of L

f ⊗ f ∈ ker(Q0
L):

0 = 〈Q0
L(f ⊗ f ), f ⊗ f 〉H = ‖(Q0

L)1/2(f ⊗ f )‖2H

⇓

Q0
L(f ⊗ f ) = 0
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All symmetric T ∈ H

T =
∑

k ,l∈N
γklek ⊗ el

By polarization

T =
∑
k∈N

γkkek⊗ek +2
∑

k∈N,l<k

γkl((ek +el)⊗(ek +el)−ek⊗ek−el⊗el)

Hence, symmetric T ∈ ker(Q0
L)

Cannot conclude Q0
L = 0

L may have a continuous martingale part
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Example: compound Poisson process
Suppose {Xi}i∈N iid square-integrable H-valued random
variables

L(t) =

N(t)∑
i=1

Xi

N is an R-valued Poisson process with intensity λ >0
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Lf (t) R-valued compound Poisson process

Lf (t) := 〈L(t), f ⊗ f 〉H =

N(t)∑
i=1

(Xi f , f )H

L self-adjoint and positive definite if and only if Xi are
self-adjoint and positive definite

Latter: (Xi f , f )H is distributed on R+, i.e., Lf has positive jumps
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Let {Zi}i∈N be iid H-valued Gaussian random variables,

Xi := Z⊗2
i

Xi becomes self-adjoint, positive definite,

Lf (t) =

N(t)∑
i=1

(Z⊗2
i f , f )H =

N(t)∑
i=1

(Zi , f )2
H

(Zi , f )H is R-valued centered Gaussian with variance |Q1/2
Z f |2H

Lf (t) has positive jumps being Gamma distributed
Shape parameter 1/2, scale 2|Q1/2

Z f |2H

Fred Espen Benth Lecture IV January 25–27, 2016 21 / 37



Examples of C:
Two specific cases of C: For C ∈ L(H).

C1 : H → H, T 7→ CT C∗

C2 : H → H, T 7→ CT + T C∗

C2 extension of the matrix-operator BNS SV model in
Barndorff-Nielsen and Stelzer (2007)
C1T is self-adjoint positive definite whenever T ∈ H is

...while S2(t)T is self-afdjoint, positive definite
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The BNS SV model
Assume Y satisfies:

1 Y0 is self-adjoint positive definite
2 (CT )∗ = CT ∗

3 CT positive definite whenever T is
4 L has "non-decreasing" paths

Define BNS SV model

σ(t) := Y1/2(t)
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Recall our OU dynamics for X (t)

dX (t) = AX (t) dt + Y1/2(t) dW (t)

Mild solution

X (t) = S(t)X0 +

∫ t

0
S(t − s)Y1/2(s) dW (s)

Well-defined stochastic integrals?

E
[∫ t

0
‖Y1/2(s)Q1/2‖2H ds

]
= E

[∫ t

0
Tr(Q1/2Y(s)Q1/2) ds

]
<∞?
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It holds,

E
[
Tr(Q1/2Y(t)Q1/2)

]
= Tr(Q1/2S(t)Y0Q1/2)

+ Tr
(
Q1/2

∫ t

0
S(s) dsE[L(t)]Q1/2

)
∫ t

0 S(s) ds is the Bochner integral and E[L(t)] operator-valued
expected value
"Proof" goes by playing around with the Levy-Kintchine formula
of L and definition of the trace
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Characteristic function of X
Characteristic function known under a strong commutativity
hypothesis:

Assume there exists self-adjoint positive definite D ∈ L(H);

Y1/2(s)QY1/2(s) = D1/2Y(s)D1/2

Condition holds if Q commutes with Y(s)

Choose D := Q
Strong conditions on Y: Q commutes with L, Y0 and C

Denote cumulant of X (t) by ΨX (t , f ), f ∈ H

E [exp(i(X (t), f )H)] = exp(ΨX (t , f ))
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Proposition

If L is independent of W, then

ΨX (t , f ) = i(X0,S∗(t)f )H

− 1
2
〈Y0,

∫ t

0
S∗(s)((D1/2S∗(t − s)f )⊗ (D1/2S∗(t − s)f )) ds〉H

+

∫ t

0
ΨL

(
−1

2

∫ s

0
S∗(s − u)((D1/2S∗(u)f )⊗ (D1/2S∗(u)f )) du

)
ds

Proof.

Apply conditional Gaussianity of stochastic integral given Y together
with Levy-Kintchine formula of L. Next a Fubini theorem to resolve
integration of Y �
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"Price returns" model
Define "adjusted returns" by

R(t ,∆t) = X (t + ∆t)− S(∆t)X (t)

R(t ,∆t) given Y is a mean-zero H-valued Gaussian random
variable with covariance operator (L independent of W )

QR|Y :=

∫ t+∆t

t
S(t + ∆t − s)Y1/2(s)QY1/2(s)S∗(t + ∆t − s) ds

Adjusted returns conditionally independent, Gaussian
"variance-mixture" model
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Choose H = Hw , the (Filipovic) space of real-valued absolutely
continuous functions on R+

|f |2w = f 2(0) +

∫ ∞
0

w(x)|f ′(x)|2 dx <∞

w increasing function, w(0) = 1,
∫∞

0 w−1(x) dx <∞
Hw separable Hilbert space with δx (f ) = f (x) a continuous
linear functional
Let A = ∂/∂x with C0-semigroup S(t)(g) = g(·+ t)
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Define the forward price at time t and maturity x ≥ 0

f (t , x) := δx (X (t)),

Note
δxS(t)g = g(t + x) = δt+xg

Forward price:

f (t , x) = X0(t + x) + δx

∫ t

0
S(t − s)Y1/2(s) dW (s)
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Stochastic integral has zero mean

lim
x→∞

E[f (t , x)] = lim
x→∞

X0(t + x) = X0(∞)

"Long end" of market is constant. Moreover, f (t , x) "stationary
in mean" as

lim
t→∞

E[f (t , x)] = X0(∞)

Model tends towards a flat (in mean) forward curve
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Result from Lecture II (B. Krühner (2014)):

δx

∫ t

0
S(t − s)Y1/2(s) dW (s) =

∫ t

0
σx (t , s) dBx (s)

Bx univariate Brownian motion, σx stochastic volatility process

σ2
x (t , s) = δx+t−s(Y1/2(s)QY1/2(s))δ∗x+t−s(1)

t 7→ f (t , x) a Brownian-driven Volterra process
Barndorff-Nielsen, B, Veraart (2013). Volterra processes for
energy spot price modelling
Spot price: f (t ,0)
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Note in Hw : δ∗x (1) = hx (·),

hx (y) = 1 +

∫ y∧x

0
w−1(z) dz y ≥ 0

If Y(s) and Q commutes

σ2
x (t , s) = YQ(s)(hx+t−s)(x + t − s) = 〈YQ(s),hx+t−s⊗hx+t−s〉H

Here YQ(t) = Y(t)Q, LQ(t) = L(t)Q H-valued Lévy process

dYQ(t) = CYQ(t) dt + dLQ(t)
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f (t , x) as a random field
Global noise in time and space rather than Bx marginal
Brownian motion?
Using properties of Hw ....

δx

∫ t

0
S(t − s)Y1/2(s) dW (s) =

∫ t

0
(Y1/2(s)hx+t−s)(0) dW (s,0)

+

∫ t

0

∫ ∞
0

w(y)(Y1/2(s)hx+t−s)′(y)W (ds,dy)

W (t ,0) real-valued Brownian motion with variance |Q1/21|2w
Second integral resembles an "Ambit Field"

Barndorff-Nielsen & Co
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