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Abstract

We work with a multi-period system where a finite number of agents need to share

multiple monetary risks. We look for the solutions that are both Pareto efficient utility-

wise and financially fair value-wise. A buffer enables the inter-temporal capital transfer.

Expected utility is used to evaluate the utility, and a risk-neutral measure is essential

for determining the risk sharing rules. It can be shown that in the model setting there

always exists a unique risk sharing rule that is both Pareto efficient and financially fair.

An iterative algorithm is introduced to calculate this rule numerically.

Keywords: Inter-temporal risk sharing, Pareto efficiency, financial fairness, contract de-

sign

1 Introduction

This paper explores the inter-temporal risk sharing in a multi-period setting under the concept

of Pareto efficiency and financial fairness (PEFF). Pareto efficiency means that the utility of

nobody can be improved without hurting the utility of some others, while financial fairness

indicates that the market values of the risk positions before and after risk sharing should be

equal. A risk-sharing system with respect to monetary uncertainties – the stochastic returns

from the financial market, for instance – can be viewed as a bargaining system in the form

of a financial contract. On the one hand, Pareto efficiency is fundamental in multilateral

bargaining systems, while on the other hand it is important to achieve financial fairness in

designing financial contracts.

The model is motivated and abstracted from systems that allow for inter-temporal risk

sharing. One example is the collective defined-contribution pension systems which can be

viewed as a multilateral financial contract among both current and future cohorts. The
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possibility of inter-temporal risk sharing w.r.t. investment risk is due to the incompleteness

of the market, i.e. the future generations cannot take positions in the current financial market.

A risk sharing system tries to partly fix this problem by allowing later generations to take risks

before they become participants. Risk sharing shall result in welfare gains to the generations;

meanwhile, the pension contract shall also be fair from a valuation perspective. Another

example is the reinsurance market, in which insurance companies re-allocate the risks by way

of reinsurance contracts among themselves. A multi-period contract is appropriate for dealing

with long-term risks, or simply when companies agree to make multi-period arrangements. A

similar example is the design of structured derivatives, for instance, the practice of tranching.

In these examples, Pareto efficiency is pertinent for designing the optimal allocation of risks,

while financial fairness guarantees that the contract is fairly priced.

The characterization of Pareto efficient solutions in a single-period setting is well studied

in quite a lot of papers, which date back to the 1960s with the focus mainly on the field of

insurance. For instance, Borch [6] gives a characterization of the Pareto efficient solutions

under the situation where expected utility is used to describe the agents’ risk preferences,

and later DuMouchel [10] gives proof to these results. Similar work also includes Raviv [19]

which takes into consideration the existence of market frictions. The fairness criterion is

first considered alongside the Pareto efficiency by, amongst others, Gale [11], Bühlmann and

Jewell [8] and Balasko [2] in different settings. In these literatures, the risk sharing is built

over both a utility basis and a valuation basis.

The risk sharing problem in a multi-period setting is investigated by Barrieu and Scandolo

[4] in a general setting; they talk about risk exchanges between two agents over more than one

period without taking into consideration any fairness conditions. Other work has been mainly

focused on the design of pension systems and the space of intergenerational risk sharing, where

risk redistribution can be organized among both the existing and future cohorts. Pareto-

efficient risk sharing can be achieved by maximizing the aggregate expected utility of all the

generations in the situation where a social planner is present (e.g. Gordon and Varian [13],

Gollier [12], Bovenberg and Mehlkopf [7]) or by looking for an equilibrium (see Ball and

Mankiw [3], Krueger and Kubler [16]). Financial fairness has been considered by Cui et al.

[9]; however, the valuation approach is only used to check afterwards whether the distribution

rule is fair for the participants. Kleinow and Schumacher [15] analyze the pension system

with conditional indexation from the perspective of market value; they investigate whether

the pension contract is financially fair for existing and incoming cohorts as well as the sponsor.

Risk-neutral valuation becomes essential in Bovenberg and Mehlkopf [7] to determine a unique

risk sharing solution by setting the ex-ante market values of the intergenerational transfers

to zero.

This paper explores the Pareto efficient and financially fair risk sharing in a multi-period

environment. Expected utility is adopted to evaluate the welfare, and a risk-neutral measure

works for the valuation purpose. We shall show the existence and uniqueness of the PEFF
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solution, and give a numerical algorithm to find it. This paper can be seen as a direct

generalization of the research by Pazdera et al. [18], which explores the Pareto efficient and

financially fair risk sharing rule in a single-period case. Compared to Barrieu and Scandolo

[4], we restrict ourselves to the case of expected utility as the preference functional, and

risk-neutral valuation is built into the system to determine the uniqueness of the solution.

Different from Bovenberg and Mehlkopf [7], no parameterization on the risk sharing rules

is needed here; the rules are determined totally under the notion of PEFF. Mathematically,

our results resemble the famous consumption-savings model for inter-temporal substitution

to some extent. The inter-temporal balance equation, as we call it, has a close relationship

with the Euler equation in the inter-temporal substitution theory; see Hall [14]. The main

difference is that the model here introduces no subjective discount factor for impatience.

The characterization of Pareto efficiency leads to a weighted optimization problem where the

weights are unknowns to be determined uniquely by the financial fairness constraints, making

use of a risk-neutral measure.

The rest of the paper is structured as follows. The model setting will first be set up and we

will formulate the problem of finding PEFF solutions mathematically. Next we establish the

existence and uniqueness of the solution. Explicit solution exists when we assume exponential

utility functions to all the agents; other than that, there’s no hope for an explicit solution

in general. We then develop an iterative algorithm to numerically find the solution. Some

remarks will conclude the paper in the end.

2 Model Framework

We assume a finite discrete-time system in which a finite number of agents gather to share

their risks. Here the risks refer to the stochastic cash inflows from the agents. As a result

of the risk sharing, the agents expect to receive cash outflows from the system. Each agent

is assumed to get one single cash outflow. The term “cash outflow” is general and can

have various interpretations in different circumstances. For instance, it can refer to the risk

exposure of the insurance company after risk sharing in the case of a reinsurance contract,

or the consumption of the agent in the case of life-cycle modeling. Alongside there is also a

long-lived buffer which makes the inter-temporal money transfer possible.

The system starts at time t0. Assume that altogether there are N cash outflows happening

at time points t1 ≤ t2 ≤ · · · ≤ tN . Cn will stand for the cash outflow paid out from the system

at time tn. Let Fn be the buffer size at time tn. Xn denotes the aggregate risk coming into

the system from the agents from time tn−1 to tn, that is, it is the sum of all the stochastic

cash inflows from the agents from time tn−1 to tn. It can be interpreted as the risk exposure

of the insurance companies in the case of a reinsurance agreement, or the stochastic labor

income in the case of life-cycle modeling. The risk stream X = (X1, · · · , XN ) is defined on a

financial market in which prices are given exogenously. The buffer is invested in a risky asset
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R which produces stochastic per-dollar gross return Rn from time tn−1 to tn. We further

assume that Rn > 0. The Xn’s and Rn’s are random variables defined on a finitely discrete

filtered probability space

(Ω,F ,P,Q,F)

where P and Q are the given objective and risk-neutral measures respectively and F is the

filtration generated by the X’s and R’s:

F = {Fn|n = 1, · · ·N}, Fn = σ{(X1, R1), · · · , (Xn, Rn)}.

There is no need to assume the completeness of the market; any given risk-neutral measure

Q will suffice. The only assumption is that the agents have agreed to adopt some probability

measures P and Q, or the measures are simply specified in a situation where a social planner

is present. Let

En[ · ] = E[ · |Fn].

It is assumed that the processes X and R are not necessarily independent, but the process

{(Xn, Rn)} is sequentially independent, i.e. (Xt, Rt) and (Xs, Rs) are independent for t 6= s.

As we are working on a finite probability space, the sets Xn(Ω) and Rn(Ω) are both finite.

Every pair (Xn, Rn) can then be totally characterized by{(
(Xjn

n , R
jn
n ),P(jn),Q(jn)

) ∣∣∣jn = 1, · · ·mn

}
where (Xjn

n , R
jn
n ) represents all the possible and distinct values of (Xn, Rn) and P(jn),Q(jn)

are the corresponding P- and Q-probabilities. Here P(·) and Q(·) stand for the probabilities

of any given cases of interest. A technical requirement is that for any n = 1, · · · , N

Q(Xn = maxXn, Rn = maxRn) > 0 (2.1)

which means that Xn and Rn can attain their maximum under Q simultaneously.

Write Jn = j1j2 · · · jn as the trajectory
(

(Xj1
1 , R

j1
1 ), · · · , (Xjn

n , R
jn
n )
)

. Let Jn be the set of

all the possible trajectories of (X,R) up to time tn. Jnjn+1 will denote any trajectory whose

up-to-time-tn part is Jn. In such a situation we write jn+1 ∈ J n+1
n where J n+1

n denotes the

set of all the possible cases of (Xn+1, Rn+1).

The risk-neutral measure Q is used to price the risks X as well as the investment returns

R. In this generic setting, write

xn := EQXn, 1 + rn := EQRn, n = 1, · · · , N.

The xn’s are the market prices of the risks X and the rn’s are the risk-free returns implied

by the pricing measure Q. Please note that now and later we consider no discounting for the

market values, i.e. prices are stated in terms of a numéraire.

The agents expect to receive stochastic cash outflows Cn after risk sharing, which are

the decision variables. The utilities of the agents depend solely on the cash outflows they
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receive. As we have assumed, at each time point t1, · · · , tN there can be only one cash flow

paid out. In case there will be more than one cash flow paid out at the same time, say at

time tn−1 = tn for some n, we let Xn ≡ 0 and Rn ≡ 1, i.e. there will be no risks coming in

and the buffer will not evolve. Furthermore we assume that Rn > 0 for all n as the R’s have

the interpretation as the gross return of the asset R.

Utility function un(·) will be used to evaluate cash flow Cn which is defined on x ∈
(bn,+∞). bn can either be finite (e.g. shifted power utility) or equal to −∞ (e.g. exponential

utility). These utility functions are stereotype utility functions defined as follows:

1. it is continuous and differentiable;

2. it is strictly concave;

3. the marginal utility satisfies the Inada conditions

lim
x↓bn

u′n(x) = +∞, lim
x→∞

u′n(x) = 0.

For any agent, define In = (u′n)−1, which is the inverse function of the marginal utility

function. Since u′n satisfies the Inada conditions, we know that In is a strictly decreasing

function mapping (0,+∞) into (bn,+∞) and is a bijection.

The budget constraints of the system are then rather straightforward: at each time point,

the invested capital will be distributed between the buffer and the current cash flow, i.e.

Fn + Cn = Xn + Fn−1Rn n = 1, · · · , N. (2.2)

It is assumed without loss of generality that

F0 = 0

and the buffer can be both positive and negative. Note that the budget constraint is

C1 + F1 = X1 + F0R1 := X̃1,

which suggests that the situation when F0 is nonzero or even a random variable can always

be dealt with by regarding X1 + F0R1 as a new random variable X̃1. Hence, the variable R1

doesn’t really play a role, and we will ignore it from now.

For the end-phase buffer we may have the following two cases:

• Closed end-buffer (CEB) case: FN will be a constant. Without loss of generality we

assume

FN = 0.

When FN is supposed to be a nonzero constant, we can then redefine a new random

variable X̃N such that

CN = (XN − FN ) + FN−1RN := X̃N + FN−1RN .
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• Open end-buffer (OEB) case: FN will be a decision variable just as the C’s. This

means that the buffer provider will also participate in the risk sharing. In this case, a

stereotype utility function up will be employed to evaluate the utility of FN .

It can be argued as follows that any OEB case can always be converted into a CEB case.

For any OEB case (C1, · · · , CN , FN ) with utility functions (u1, · · · , uN , up), we add in a new

time point tN+1 := tN with XN+1 := 0 and RN+1 := 1. Then the OEB setting is thus

formulated into a CEB one with an extra cash outflow CN+1 with utility up

CN+1 = XN+1 + FNRN+1 = FN .

On the other hand, any CEB setting can be turned into an OEB setting in the sense of Pareto

efficiency as we shall see later. In this paper we will proceed mainly with the OEB setting.

The utility of the final buffer FN will be evaluated according to the utility function up defined

on (bp,+∞).

We will try to determine the C’s and the F ’s. For any n = 1, · · · , N , both Fn and Cn are

by nature Fn-measurable random variables. We then have the following important definition.

Definition 2.1 A vector of random variables (C1, C2, · · ·CN , FN ) is called a risk-sharing

rule if it satisfies

• the measurability condition: Cn ∈ Fn for n = 1, · · · , N and FN ∈ FN ,

• the budget constraints (2.2), and

• the domain requirements of the utility functions, i.e. Cn > bn for all n and FN > bp

along any trajectory.

One last thing to mention is that the budget constraints (2.2) will imply a single global

budget constraint by eliminating the F ’s:

N−1∑
n=1

[
Cn

(
N∏

i=n+1

Ri

)]
+ CN + FN =

N−1∑
n=1

[
Xn

(
N∏

i=n+1

Ri

)]
+XN . (2.3)

This will imply that in order to make the problem well-posed, one needs to have that, for

any realizations of X and R

N−1∑
n=1

[
bn

(
N∏

i=n+1

Ri

)]
+ bN + bp <

N−1∑
n=1

[
Xn

(
N∏

i=n+1

Ri

)]
+XN .

Otherwise there will be no possible risk sharing rules as the domain requirements of the utility

functions can never be satisfied.

Example 2.2 (The autarky.) A trivial solution to the risk sharing problem is the autarky

where there is no risk-sharing effect: all agents will be on their own and the buffer will be

left unused.
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Example 2.3 (Possible variations of the model.) The budget constraint (2.2) shows that

the model is very general and can handle different risk sharing systems. Examples are

• if we let

t1 = t2 = · · · = tN

X2 = · · · = XN ≡ 0

R2 = · · · = RN ≡ 1

then the system degenerates to a single-period problem as in Pazdera et al. [18] and

the budget constraint becomes

N∑
n=1

Cn + FN = X1

where X1 represents the aggregate risk to be shared.

• If we only let

X2 = · · · = XN ≡ 0

then this represents a decumulation system where the only cash inflow X1 will be

distributed into several cash outflows in the future.

• A defined-contribution pension fund in the form of a successive generations model can

be modeled by modifying the budget constraint

Fn + Cn = (Yn−1 + Fn−1)Rn n = 1, · · · , N,

where the Y ’s are the contributions paid into the system by the beginning of each

period, the C’s are the benefits paid out from the system by the end of each period and

the R’s now represent the fixed asset mix where the fund would invest its capital.

• The life-cycle modeling is when we let the timeline {tn} be equispaced in a CEB setting

and let a representative agent own all the cash flows. The X’s stand for the stochastic

income and the C’s are the consumptions. The buffer F now is interpreted as the

savings account.

3 Pareto Efficiency in the Multi-Period Setting

This section deals with the concept of Pareto efficiency in this multi-period setting, which is

the first step to look for a PEFF risk sharing rule. We shall characterize parametrically all

the PE solutions among which we look for the one that is also financially fair in the following

sections.

It may be convenient to introduce first some notations. Let RN+1
+ be the nonnegative cone

in RN+1: {θ ∈ RN+1|θi ≥ 0}, and define RN+1
++ := {θ ∈ RN+1|θi > 0} as the strictly positive
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cone. For simplicity we write X := (X1, · · · , XN ) and R := (R2, · · · , RN ) which are functions

from Ω to the discrete sets X(Ω) ⊂ RN and R(Ω) ⊂ RN−1
++ . Write ρ := (C1, C2, · · ·CN ,

FN ) : X(Ω)×R(Ω) 7→ RN+1 as the generic notation for a risk-sharing rule and the set of all

the possible ρ’s is denoted as RS. We will be particularly interested in the subset P ⊂ RS
which is the set of all Pareto-efficient risk sharing rules. First we need the following definition.

Definition 3.1 (Multi-period Pareto efficiency.) A risk-sharing rule (C1, C2, · · ·CN , FN ) is

called Pareto efficient, or Pareto optimal, if there does not exist another risk-sharing rule

(C̃1, C̃2, · · · C̃N , F̃N ) such that(
EPu1(C̃1), · · · ,EPuN (C̃N ),EPup(F̃N )

)
	
(
EPu1(C1), · · · ,EPuN (CN ),EPup(FN )

)
.

We then have the following important theorem in this discrete probability space, which

can be seen as a generalization of the Borch-type characterization of the Pareto efficiency:

every Pareto-efficient risk-sharing rule can be totally characterized by optimizing a weighted

time-additive aggregate utility.

Theorem 3.2 (Characterization of Pareto efficiency.) For a risk-sharing rule (C1, C2, · · · ,
CN , FN ), the following statements are equivalent.

1. The risk-sharing rule is Pareto efficient.

2. The risk-sharing rule maximizes

EP
[
N∑
n=1

θnun(Cn) + θpup(FN )

]
(3.1)

for some positive constants θ = (θ1, · · · , θN , θp).

3. The risk-sharing rule will satisfy the following which are hereafter called the inter-

temporal balance equations (IBEs) for some positive constants θ = (θ1, · · · , θN , θp):

θnu
′
n(Cn) = θn+1EPn

[
u′n+1(Cn+1)Rn+1

]
∀n = 1, · · ·N − 1,

θNu
′
N (CN ) = θpu

′
p(FN ).

Proof See appendix. �

Remark 3.3 (Link to Borch [6].) Consider tn = tn+1 for some n. Then the model assumes

that Xn+1 ≡ 0 and Rn+1 ≡ 1. Thus Fn = Fn+1 and the IBE becomes

θnu
′
n(Cn) = θn+1EPn

[
u′n+1(Cn+1)Rn+1

]
= θn+1u

′
n+1(Cn+1).

This means that in a single period setting, the IBEs will coincide with the characterization

of PE risk sharing rules by Borch [6].
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Remark 3.4 (Comparison to the Euler equation.) The IBEs look very similar to the famous

Euler equation derived amongst others by Hall [14] for solving the consumption-savings model.

In fact, the model setting in this paper can be definitely interpreted as a life-cycle model.

If the cash outflows will be received at different stages/periods of an individual and we set

Rn = 1 + r and un = u for all n, then the model setting is also similar to Hall’s: every period

there is a stochastic earning and a consumption, which correspond to the incoming “risks”

and the “cash outflows” in this setting.

The optimization targets are different regarding weighing inter-temporally the utilities:

Hall assumed a single rate of subjective time preference δ while the IBEs are parameterized

by weight vector θ.

Formula-wise, Hall gave

Enu′(Cn+1) =

(
1 + δ

1 + r

)
u′(Cn),

while the IBE gives

Enu′(Cn+1) =

(
θn
θn+1

1 + r

)
u′(Cn).

It is obvious that Hall adopts a specific set of weights in the scope of Theorem 3.2. As we

shall see later, the weights θ can be seen as unknowns within the framework here and will be

determined endogenously by the financial fairness constraint.

The theorem shows that it is equivalent to solve the optimization problem (3.1) subject to

the budget constraints when one wants to find the corresponding PE risk sharing rule given

any θ ∈ RN+1
++ . We can then construct a mapping to compute the PE solution given any

θ ∈ RN+1
++ , which we will call Φ : RN+1

++ → P. This can be done by solving the corresponding

parameterized optimization problem of time-additive utility functions:

max
C1,··· ,CN

EP
[
N∑
n=1

θnun(Cn) + θpup(FN )

]
s.t. Fn + Cn = Xn + Fn−1Rn n = 1, · · · , N,

F0 = 0.

This optimization problem can be solved by dynamic programming. Add in a new time point

tN+1 = tN , and

XN+1 ≡ 0, RN+1 ≡ 1.

Define

An := Xn + Fn−1Rn n = 1, · · · , N + 1,

which has the interpretation as the total available asset at time tn to be divided into the

current cash flow and the buffer for later use. Note that by definition AN+1 = FN . The
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A’s are the state variables, the C’s are the decision variables and the X’s and R’s are the

risks. Then we shall have the optimization problem formulated as, in line with the routine

by Bertsekas [5]

max
C1,··· ,CN

EP
[
N∑
n=1

θnun(Cn) + θpup(AN+1)

]
s.t. An+1 = Xn+1 + (An − Cn)Rn+1, n = 1, · · · , N,

A1 = X1.

Proposition 1.3.1 in [5] tells that in order to solve the problem one needs to define the

value functions (indirect utility): first for the last period

VN+1(AN+1) = θpup(AN+1),

and then define backwards, for n = 1, · · · , N

Vn(An) = max
Cn

EPn [θnun(Cn) + Vn+1(Xn+1 + (An − Cn)Rn+1)] . (3.2)

The final result is presented below. This mapping Φ gives an explicit expression of the risk

sharing rule ρ as a function of the weights θ, which makes it possible to express the financial

fairness condition in terms of the weights later in the paper.

Theorem 3.5 (The construction of Φ.) For any given θ = (θ1, · · · , θN , θp) ∈ RN+1
++ , the

corresponding PE solution is given by

An = Xn + Fn−1Rn n = 1, · · · , N, (3.3)

Cn = In

(
gn(An)

θn

)
n = 1, · · · , N, (3.4)

Fn = Hn

(
gn(An)

θn+1

)
n = 1, · · · , N − 1, (3.5)

FN = Ip

(
gN (AN )

θp

)
, (3.6)

where the functions are defined recursively by

GN (x) := IN

(
x

θN

)
+ Ip

(
x

θp

)
,

gN (x) := G−1
N (x),
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and for n = 1, · · · , N − 1

hn(x) = EPn
[

1

θn+1
gn+1(Xn+1 + xRn+1)Rn+1

]
(3.7)

= EP
[

1

θn+1
gn+1(Xn+1 + xRn+1)Rn+1

]
, (3.8)

Hn = h−1
n ,

Gn(x) := In

(
x

θn

)
+Hn

(
x

θn+1

)
,

gn(x) := G−1
n .

The mapping (3.3) - (3.6) will be denoted as Φ : RN+1
++ → P.

Proof See appendix. Please note that from expression (3.7) to (3.8) we utilized the assump-

tion that the processes X and R are sequentially independent. �

The functions above have the following interpretation. While u′n is the marginal utility

function of the cash outflow Cn, the function hn is the implied marginal utility of the buffer

Fn and gn the implied marginal utility of the total available asset An. The capital-letter

functions I,H,G are the corresponding inverse functions. The following relationship will

always hold:

gn(An) = θnu
′
n(Cn) = θn+1hn(Fn), n = 1, · · · , N − 1,

gN (AN ) = θNu
′
N (CN ) = θpu

′
p(FN ).

The function g’s are also the derivatives of the value functions. The proof in the appendix

shows that for any n
dVn
dAn

(An) = gn(An).

Write

Ln := gn(An),

which is interpreted as the weighted marginal utility of the cash outflows. Furthermore, the

IBE will be translated into

Ln = EPn[Ln+1Rn+1].

The idea of dynamic programming tells that in each period, the system has to ponder

how to distribute the risks between the current cash outflow and all the future cash outflows:

for any n < N , it compares the marginal utilities of paying out the money now (i.e. Cn) or

saving it for the future (i.e. Fn):

θnu
′
n(Cn) v.s. θn+1hn(Fn).

The hn function is calculated by “summarizing” the expectations over the future. This

property allows us to convert an n-period problem into an induced (n − 1)-period one, by
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regarding the time tn−1 as the new end of the system and Fn−1 as the new final buffer with

utility hn−1.

This perspective is essential for the proofs later. As a first application, it can help us link

the settings of CEB and OEB to each other. First, as we have discussed, any OEB problem

can be converted into a CEB problem by regarding FN as an extra cash outflow CN+1 at

tN+1 = tN . The following result shows that in the sense of Pareto efficiency, the OEB and

CEB are equivalent, thus we can work with the two environments interchangeably.

Proposition 3.6 (Equivalence between CEB and OEB problems.) The CEB and the OEB

are equivalent in the sense that they can always be converted into the form of the other which

can produce the identical PE risk sharing rule.

Proof We only need to consider the direction from CEB to OEB. Given a CEB case with PE

risk sharing rule (C1, · · · , CN ), utility functions (u1, · · · , uN ) and weights (θ1, · · · , θN ), we can

create a corresponding OEB problem that replicates the original setting for n = 1, · · · , N −1

and truncate the system at time tN−1 by defining

h(x) := EPN−1

[
u′N (XN + xRN )RN

]
as the marginal utility function for the new end buffer FN−1 together with weight θN . Then

according to the IBE for the CEB problem we have

θN−1u
′
N−1(CN−1) = θNEPN−1

[
u′N (CN )RN

]
= θNEPN−1

[
u′N (XN + FN−1RN )RN

]
= θNh(FN−1)

which matches the final-period IBE in Theorem 3.2. Thus according to the theorem the two

settings should produce the same PE risk sharing rules. The only thing left is to verify that

the function h(x) defined in this way is indeed a (stereotype) marginal utility function; this

has been done in the proof of Theorem 3.5. �

There is one degree of freedom extra in determining θ, as for any c ∈ R++, θ and c · θ will

produce essentially the same optimization target. But if we choose a way of normalizing the

θ’s, e.g. restrict the θ’s to the open unit simplex in RN+1
++ , then we will have the following

theorem which tells that every PE risk-sharing rule ρ ∈ P can be uniquely characterized by

the weights θ, and the function Φ is a meaningful bijection between all the PE risk sharing

rules ρ’s and the weights θ’s.

Theorem 3.7 Φ is a one-to-one mapping between the set of all the Pareto efficient risk

sharing rules P and the open unit simplex in RN+1
++ , i.e. the set U := {c ∈ RN+1

++ |c1 +

· · · cN+1 = 1}.

Proof This can be seen as a corollary of Theorem 3.2. We discuss the two directions.
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1. U → P: the mapping Φ maps any θ ∈ RN+1
++ into P. This mapping is not injective.

Consider some θ and θ′ s.t. Φ(θ) = Φ(θ′). Then we show that there will exist some

c ∈ R++ s.t. θ = cθ′ thus Φ is injective if restricted on U .

By the IBEs we know that

θn
θn+1

=
Enu′n+1(Cn+1)Rn+1

u′n(Cn)
∀n = 1, · · ·N − 1

and
θN
θp

=
u′p(FN )

u′N (CN )
.

This indicates
θn
θn+1

=
θ′n
θ′n+1

∀n = 1, · · ·N − 1

and
θN
θp

=
θ′N
θ′p

We then have

θ =
θ1

θ′1
θ′.

Φ will be an injective mapping if restricted on U .

2. P → U : Theorem 3.2 tells that for any element ρ ∈ P, there exists some θ ∈ RN+1
++ s.t.

Φ(θ) = ρ.

We conclude from the above discussion that Φ is both injective and surjective. It must be

bijective. �

We conclude this section by some useful properties of the PE risk sharing system. First,

we give the following result which seems quite intuitive: every agent will be better off when

the realization of the risks is (strictly) better. We call this the monotonicity property of the

system w.r.t. the risks.

Lemma 3.8 (Monotonicity property of the system w.r.t. the risks.) For any θ ∈ RN+1
++ ,

consider two trajectories J, J∗ ∈ JN s.t. (XJ , RJ) 	 (XJ∗ , RJ
∗
). Then we have ρJ 	 ρJ

∗
.

Proof See appendix. �

The following result illustrates the impact of the weight θ on the cash flows: if some

weight increases while the others stay the same, then along any trajectory, the corresponding

cash flow will increase while the other cash flows will decrease.

Lemma 3.9 (Monotonicity property of the system w.r.t. the weights.) Consider two weights

θ = (θ1, · · · , θN , θp), θ′ = (θ′1, · · · , θ′N , θ′p) ∈ R
N+1
++ s.t. there exists some n = 1, · · · , N, p that

θn > θ′n, θi = θ′i ∀i 6= n.

13



Then we have that for any trajectory J ∈ JN , the corresponding PE risk sharing rules satisfy

CJn > C ′Jn , CJi < C ′Ji ∀i 6= n.

Here for convenience we let Cp = FN .

Proof See appendix. �

4 Financial Fairness

As we have discussed, the PE risk sharing rules can be totally characterized by the points on

the open unit simplex in RN+1
++ and thus there will be infinitely many such PE rules. We will

see in the following that the concept of financial fairness will help us narrow down our scope

– finally we will arrive at a unique risk sharing rule that is both PE and FF.

The concept of financial fairness means that when the system starts, for each agent

involved, the market value of the risks he contributes into the system should be equal to that

of the cash outflows he gets after risk sharing. FF will work via the concept of value profile,

which is the vector of the values of cash outflows under the risk-neutral measure Q, that is,

for any ρ = (C1, · · · , CN , FN ) ∈ RS

v = (v1, v2, · · · , vN , vp) := EQρ =
(
EQC1,EQC2, · · · ,EQCN ,EQFN

)
∈ RN+1. (4.1)

As before we consider no discounting and we simply use the Q–expectation as market values.

These market values are totally determined by the market values of the risk positions of each

agent before risk sharing.

The set of all the possible value profiles V can only be a restricted subset of RN+1. First

note it is trivial that

vn > bn ∀n = 1, · · · , N ; vp > bp

according to the domain requirements of the utility functions. Next, according to the global

budget constraint (2.3) we shall have, by taking the expectation under Q to both sides

N−1∑
n=1

[
vn

(
N∏

i=n+1

(1 + ri)

)]
+ vN + vp =

N−1∑
n=1

[
xn

(
N∏

i=n+1

(1 + ri)

)]
+ xN . (4.2)

We can then write

V =
{
v ∈ RN

∣∣∣Eq (4.2) holds; vn > bn ∀ n = 1, · · · , N ; vN+1 > bp

}
(4.3)

as the set of all possible value profiles. Note that V is totally determined by the risks and

the utility functions.
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Remark 4.1 The global budget constraint suggests that for any given value profile vector

v := (v1, · · · , vN , vp), we only have to consider any N coefficients. For instance, if the

following hold

EQCn = vn n = 1, · · · , N

then

EQFN = vp

will automatically be satisfied.

5 Existence and Uniqueness of the PEFF Risk Sharing Rule

The theorems in this section will show that the solution exists and is actually unique if we

combine the Pareto efficiency with financial fairness. We continue to work with the general

situation when there are N cash outflows alongside the buffer, N ≥ 1. For any given value

profile v := (v1, · · · , vN , vp) ∈ V, the corresponding PEFF risk-sharing rule is the solution to

the following equation system:

1. budget constraints (BCs):

Fn + Cn = Xn + Fn−1Rn n = 1, · · · , N ; (5.1)

2. inter-temporal balance equations (IBEs):

θnu
′
n(Cn) = θn+1EPn

[
u′n+1(Cn+1)Rn+1

]
∀n = 1, · · ·N − 1,

θNu
′
N (CN ) = θpu

′
p(FN ); (5.2)

3. financial fairness constraints (FFs):

EQCn = vn ∀n = 1, · · · , N. (5.3)

Please note that the C’s and F ’s are actually functions on a finite discrete domain. Each

of the BC and IBE equations above then actually stands for a family of trajectory-indexed

equations, i.e. the equation holds true for all possible trajectories.

The following theorem is one of the key results of this paper. It tells that for the equation

system above, the solution always exists and is unique, thus it establishes the existence and

uniqueness of the PEFF risk sharing rule.

Theorem 5.1 (The existence and uniqueness of the PEFF risk sharing rule.) For any given

value profile vector v ∈ V, the PEFF risk-sharing rule exists and is unique. The corresponding

θ is unique up to normalization.
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Proof See appendix. �

Theorem 3.2 tells that function sets BC and IBE characterize all the possible PE risk-

sharing rules by way of weights θ ∈ RN+1
++ . The theorem above then shows that the value

profile determines a unique θ.

Recall that in Theorem 3.5 Φ defines a bijective mapping from U to the set of all PE

risk sharing rules P. The mapping Φ then induces a natural mapping Ψ from U to V:

Ψ(θ) = EQΦ(θ). This Ψ links the set of all the possible weights θ and the set of all the

possible value profiles.

Theorem 5.2 Ψ is a one-to-one mapping between the set of all possible value profiles V and

the open unit simplex U in RN+1
++ .

Proof Theorem 5.1 tells that Ψ is surjective: for any given v ∈ V there exists a θ ∈ RN+1
++

s.t. Ψ(θ) = EQΦ(θ) = v.

This Ψ is also injective restricted on the open unit simplex U because of the uniqueness

of θ up to normalization. Suppose there are θ1, θ2 ∈ U such that Ψ(θ1) = Ψ(θ2). Theorem

5.1 indicates that Φ(θ1) = Φ(θ2), as for each value profile, there will exist exactly one PE

risk sharing rule s.t. the FF condition is satisfied. According to Theorem 3.7, it must be that

θ1 = θ2 as they both belong to the open unit simplex U . �

We can then say that the θ uniquely determines the value profile of any PE risk sharing

rule, and also vice versa. Instead of talking about the weights θ we can now talk about the

value profiles which seem more tangible. However, we cannot say more of the mapping Ψ;

the structure of it can be very complicated depending on the utility functions one uses.

6 A General Algorithm For Finding PEFF Solution

Looking for the PEFF risk sharing rule will come down to solving a system of both linear

and non-linear equations. In most cases there’s no hope for explicit solutions; fortunately, we

have a numerical algorithm that helps to find the PEFF solution under all circumstances.

Recall that

Ln = θnu
′
n(Cn) n = 1, · · · , N

are the weighted marginal utilities of the cash outflows as determined by the risk sharing rule

at time tn. According to the IBEs

Ln = EP[Ln+1Rn+1] n = 1, · · · , N − 1,

thus the whole sequence {Ln} is known once LN is known.

In Theorem 3.5 we constructed a mapping Φ : RN+1
++ → P from the sets of functions BC

and IBE. Given the mapping Φ, we can deduce another mapping ϕ1 by

ϕ1(θ) = LN = θNu
′
N (CN ) = θNu

′
N (Φ(N)(θ)),
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where Φ(N)(·) stands for the N -th coordinate of this vector-valued function. ϕ1 maps any

θ ∈ RN+1
++ into some LN . For any LN , another mapping ϕ2 : LN 7→ θ can be constructed

based on the FF constraints: note that according to the mapping Φ we have

Cn = In

(
Ln
θn

)
∀n = 1, · · · , N ;

FN = Ip

(
LN
θp

)
,

and

Ln = En[Ln+1Rn+1].

This allows us to find a θ′ s.t. the FF conditions are satisfied for the given LN :

EQCn = EQIn
(
Ln
θ′n

)
= vn ∀n = 1, · · · , N ; (6.1)

EQFN = EQIp
(
LN
θ′p

)
= vp. (6.2)

The function ϕ2 is well defined since

EQCn = EQIn
(
Ln
θn

)
=
∑
J∈Jn

Q(J)In

(
LJn
θn

)
is a strictly increasing and continuous function in θn with θn ∈ R++. Thus ϕ2(n)(LN ) :=[
EQIn

(
Ln
·
)]−1

(vn) is well defined. This holds for all n = 1, · · · , N and also for FN , thus ϕ2

is well-defined. Please note that one and only one coordinate of the weight vector θ is solved

in every single equation (6.1) and (6.2).

Consider the composition of the two functions ϕ = ϕ2 ◦ ϕ1: it is a mapping from RN+1
++

into itself. Theorem 5.1 tells that there always exists a unique fixed point of this mapping ϕ,

which corresponds to the PEFF risk sharing rule. The next theorem shows that ϕ suggests

an iterative algorithm for finding the PEFF solution.

Theorem 6.1 (Feasibility of an iterative algorithm by ϕ.) For any given starting point

θ ∈ RN+1
++ with any proper normalization, the sequence of iterates {ϕ(n)(θ)|n ∈ N+} will

converge to the fixed point of ϕ.

Proof See Appendix. �

Theorem 6.1 suggests that starting with any given θ, one first finds the corresponding LN

by ϕ1 and then updates the value of θ by ϕ2. It is more convenient, in fact, to use function Φ

instead of ϕ1, i.e. we map θ to ρ directly and in the second step we update the θ accordingly.

In the first step, we need to calculate numerically the functions g’s and h’s backwards in

time, and once all the functions are ready, we then go forwards in time and calculate all the

C’s and F ’s from the starting distribution X1.
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Algorithm 1 (Numerical algorithm for finding the PEFF solution.) The following gives a

description of the numerical algorithm for finding the PEFF solution.

1. Start with some initial θ(0) ∈ RN+1
++ .

2. For any given θ(m) with m ∈ N, calculate backwards in time that

G
(m)
N (x) := IN

(
x

θ
(m)
N

)
+ Ip

(
x

θ
(m)
p

)
,

g
(m)
N (x) :=

(
G

(m)
N

)−1
(x),

and for n = 1, · · · , N − 1

h(m)
n (x) = EP

[
1

θ
(m)
n+1

g
(m)
n+1(Xn+1 + xRn+1)Rn+1

]
,

H(m)
n =

(
h(m)
n

)−1
,

G(m)
n (x) := In

(
x

θ
(m)
n

)
+H(m)

n

(
x

θ
(m)
n+1

)
,

g(m)
n (x) :=

(
G(m)
n

)−1
.

3. Calculate the decision variables forwards in time by

A(m)
n = Xn + F

(m)
n−1Rn n = 1, · · · , N,

C(m)
n = In

(
g

(m)
n (A

(m)
n )

θ
(m)
n

)
n = 1, · · · , N,

F (m)
n = H(m)

n

(
g

(m)
n (A

(m)
n )

θ
(m)
n+1

)
n = 1, · · · , N − 1,

F
(m)
N = Ip

(
g

(m)
N (A

(m)
N )

θ
(m)
p

)
.

4. Update the θ from θ(m) to θ(m+1) by solving that

EQC(m)
n = EQIn

(
g

(m)
n (A

(m)
n )

θ
(m+1)
n

)
= vn n = 1, · · · , N ;

EQF (m)
N = EQIp

(
g

(m)
N (A

(m)
N )

θ
(m+1)
p

)
= vp.

5. Normalize θ(m+1).

6. If, for some pre-specified error tolerance ε∥∥∥θ(m) − θ(m+1)
∥∥∥ < ε
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we conclude that ρ(m) is the PEFF risk sharing rule we are looking for. Otherwise, go

to step 2 with θ(m+1).

Remark 6.2 (Comparison to the algorithm proposed by Pazdera et al. [18].) As has been

mentioned, the framework introduced here can also deal with the single-period situation,

which has been investigated by Pazdera et al. [18]. There is a significant difference between

the two numerical algorithms, though. The algorithm here makes use of the induction tech-

nique that the number of cash outflows is reduced by one recursively, thus in each iteration

the algorithm always calculate the functions backwards and then the distributions of the

decision variables forwards. In contrast, the algorithm in [18] need not use such an induction

technique; functions and decision variables can be calculated simultaneously in each iteration.

The algorithm in [18] offers more efficiency for the single-period problem, while the algorithm

here is more versatile and can deal with multi-period problems.

7 Explicit PEFF Solution: Example

This section discusses a special case when we assume the Rn’s are constants (thus only the

risks X are stochastic) and exponential utility functions (the constant-absolute-risk-aversion

(CARA) utility) are used for all the cash outflows

un(x) = 1− e−αnx, ∀ n = 1, · · · , N,

and also for the buffer provider

up(x) = 1− e−αpx.

Then we will have explicit PEFF solutions: the benefits are actually linear functions of the

risks.

Theorem 7.1 (PEFF solution under CARA utility.) The PEFF solution to an N-period

model with exponential utility functions is of the form

Cn = an [(Xn + Fn−1Rn)− wn] + vn = an(An − wn) + vn,

Fn = An − Cn = (1− an)An − (vn − anwn),

where

wn := EQAn

which can be calculated recursively from the budget constraints and the an’s are defined re-

cursively by

aN =
αp

αp + αN
, (7.1)

an =
an+1αn+1Rn+1

αn + an+1αn+1Rn+1
n = 1, · · · , N − 1. (7.2)
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Proof See appendix. �

Theorem 7.1 shows that under CARA utility, each cash outflow only takes a proportion

an of An − wn which is the excess return from total available asset, thus only takes part of

the risk. The remaining part (1 − an) is shifted into the future. Under the CARA utility

assumption, the risk-sharing rules don’t depend on the distribution of the random variables.

Remark 7.2 Suppose Rn ≡ R = 1 + r for n = 1, · · · , N . Also, let αn ≡ α for n = 1, · · · , N ,

that is, we assume the same risk aversion level for all the agents except the buffer. The

equations (7.2) become

an =
an+1R

1 + an+1R
.

If we let N →∞, then we shall have

an →
R− 1

R
≈ r,

that is, given a sufficiently long horizon, the proportion that each agent takes from the total

excess return is approximately equal to the risk-free rate.

8 Concluding Remarks

In this paper we explored solving a multi-period risk sharing problem under the concept of

Pareto efficiency and financial fairness. The important results are:

1. Theorem 3.2 characterizes the Pareto efficient risk sharing rules: every PE risk sharing

rule can be associated uniquely to an optimization problem with the objective function

being the weighted aggregate expected utility of the cash outflows, which can be further

translated into the inter-temporal balance equations. Theorem 3.5 tells how to compute

the risk sharing rule given the weights.

2. Theorem 5.1 establishes the existence and uniqueness of a PEFF risk sharing rule. Fur-

thermore, Theorem 5.2 tells that the value profile will uniquely determine the weights.

3. Theorem 6.1 guarantees the possibility to find unique the PEFF rule numerically by a

universal algorithm.

We conclude this paper with some comments on further possibilities. First, this paper

assumes that each agent can have only one cash outflow as a way of simplification. As a

result, the optimization target (3.1) is time-additive and the value profile is straightforward

to determine. If we make the generalization that each agent can have multiple cash outflows in

different periods, two issues need to be solved. Utility-wise, one needs to choose a preference

functional for evaluating the welfare; value-wise, the value profile needs to be determined

following extra principles. Some cases are essentially different from the setting in this paper,

and the existence and uniqueness of the PEFF solution may have to be re-established.
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In this paper the financial fairness is defined in an ex ante sense, i.e. the market values of

the cash flows will match the given value profile only at the time when the system starts. The

FF will generally not hold ex interim, as the cash outflows are by nature contingent claims

and their market values will change after the system starts. This is not a problem when,

like in a multi-period reinsurance arrangement, all the agents are already physically present

when the system starts; however, for a CDC pension system which may include already the

unborn cohorts at start, this issue may result in the so-called discontinuity problem: some

future cohort may find themselves in a very disadvantageous position when they have to face

a large deficit in the buffer left by the previous generations because of some preceding bad

financial performance. The later cohort may argue that they didn’t have a say when the

system was initiated, thus they may choose not to step into the system.

Strict ex-interim FF is meaningful, but essentially excludes any possibility of inter-

temporal capital transfer, thus there is no space for intergenerational risk sharing. One

may then adopt some fairness condition that lies between the two extremes as a compromise.

We may also introduce a second-best solution by imposing extra constraints on the size of the

buffer such that the deviation from ex-interim FF still remains acceptable. These possibilities

are beyond the scope of this paper and may be future topics of interest.
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A Proofs for Section 3

For any risk sharing rule ρ = (C1, · · · , CN , FN ) ∈ RS, let

u(ρ) := (u1(C1), · · · , uN (CN ), up(FN ))

and

φ := EPu(ρ) = (EPu1(C1), · · · ,EPuN (CN ),EPup(FN )) ∈ RN+1.

First note that φ is a strictly concave and increasing function of ρ with co-domain RN+1.

The PE optimization target then becomes

EP
[
N∑
n=1

θnun(Cn) + θpup(FN )

]
= 〈θ, φ〉

where θ = (θ1, · · · , θN , θp) ∈ RN+1
++ .

We need the following definitions and results in preparation for the proof of Theorem 3.2.

Lemma A.1 Consider n concave functions {fi|i = 1, · · · , n} from a common domain K

to R ∪ {−∞}. Then F (K) − Rn+ := {x − y|∀x ∈ F (K), y ∈ Rn+} is convex where F :=

(f1, f2, · · · , fn).

Proof cf. the proof of Proposition 2.6 from Aubin [1]. �

We will use a separation theorem in the proof of Theorem 3.2. We then need to introduce

the following definitions. 1

Definition A.2 (Affine sets in Rn.) A subset M ∈ Rn is called an affine set if (1−λ)x+λy ∈
M for any x, y ∈M and λ ∈ R.

Definition A.3 (Affine hull.) The affine hull of any subset M ∈ Rn, which is denoted as

aff (M), is the smallest affine set that contains M .

Definition A.4 (Relative interior and boundary.) The relative interior of a convex set

C ⊂ R, which is denoted as ri(C), is defined as the interior of C when it is regarded as a

subset of aff (C). The relative boundary of C is the difference of the closure of C and the

relative interior of C.

The following lemma is crucial in proving Theorem 3.2.

Lemma A.5 Let C be a convex set. A point x ∈ C is a relative boundary point of C if and

only if there exists a linear function not constant on C s.t. it achieves its maximum over C

at x.

1Interested readers are referred to Rockafeller [20] for more details.
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Proof cf. Corollary 11.6.2 by Rockafellar [20]. �

Proof of Theorem 3.2.

1⇒ 2 : Let ρ = (C1, C2, · · ·CN , FN ) be PE. Then we have that φ(RS)− RN+1
+ is convex

by Lemma A.1. Note that an element ρ∗ is PE if and only if

{φ(ρ∗)} ∩
(
φ(RS)− RN+1

+

)
= {φ(ρ∗)}

and

{φ(ρ∗)} ∩
(
φ(RS)− RN+1

+

)◦
= ∅.

Otherwise, if {φ(ρ∗)} ∈
(
φ(RS)− RN+1

+

)◦
, then there exist ρ′ ∈ RS and c ∈ RN+1

+ with

c 6= 0 s.t. φ(ρ∗) = φ(ρ′) − c, which means ρ′ results in a Pareto improvement. This is in

contradiction with the assumption that ρ∗ is PE.

φ(RS)−RN+1
+ is a full-dimensional set thus its relative interior is the same as its interior.

Write φ∗ = φ(ρ∗). Then φ∗ is a relative boundary point of φ(RS) − RN+1
+ , as it belongs to

φ(RS) − RN+1
+ , thus to its closure, but not its relative interior. According to Lemma A.5,

for this φ∗, there exists a θ∗ 6= 0 s.t.

sup
φ∈φ(RS)−RN+1

+

〈θ∗, φ〉 ≤ 〈θ∗, φ∗〉.

First note that any coordinates of θ∗ cannot be negative as then

sup
φ∈φ(RS)−RN+1

+

〈θ∗, φ〉 = +∞.

No coordinates of θ∗ can be 0. If this would be the case, suppose θ∗1 = 0 while θ∗2 > 0 without

loss of generality. Then any ρ = (C1, C2, · · ·CN , FN ) cannot be optimal since for any small

ε > 0 such that Cj11 − ε > b1 for all j1 ∈ J1, ρε = (C1 − ε, C2 +R2ε, · · ·CN , FN ) will result in

a larger optimization target because u2 is strictly increasing.

2 ⇒ 1 : consider a risk-sharing rule ρ that maximizes 〈θ, φ〉 for some θ ∈ RN+1
+ . If ρ is

not PE, then there exists another ρ̃ s.t. φ̃ 	 φ and hence

〈θ, φ̃〉 > 〈θ, φ〉

which results in a contradiction.

2 ⇔ 3 : as we are working with a finite probability space, we may use the Lagrangian

multiplier method to solve the maximization problem.

For n = 1, · · · , N , reorganize the budget constraint and we have

F Jn−1jn
n + CJn−1jn

n −Xjn
n − F

Jn−1

n−1 R
jn
n = 0.

Define

F Jn−1jn
n + CJn−1jn

n −Xjn
n − F

Jn−1

n−1 R
jn
n
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as BCJn−1jn or BCJn .

We then maximize

N∑
n=1

{
θn

∑
Jn∈Jn

P(Jn)un(CJnn ) +
∑
Jn∈Jn

λJnBCJn

}
+ θp

∑
JN∈JN

P(JN )up(F
JN
N )

where the λ’s are the Lagrangian multipliers.

For any n < N , setting the first-order partial derivative w.r.t. CJnn to 0 will help us find

a stationary point of the optimization problem. It gives

P(Jn)θnu
′
n(CJnn ) + λJn = 0 ∀Jn ∈ Jn.

For n+ 1 similarly we have, along the trajectory Jn

P(Jnjn+1)θn+1u
′
n+1(C

Jnjn+1

n+1 ) + λJnjn+1 = 0 ∀jn+1 ∈ J n+1
n .

Now take the partial derivative w.r.t. Fn and set to 0

λJn =
∑

jn+1∈J n+1
n

λJnjn+1R
jn+1

n+1 .

This will lead to

θnu
′
n(CJnn ) = θn

∑
jn+1∈J n+1

n

u′n+1(C
Jnjn+1

n+1 )R
jn+1

n+1

P(Jnjn+1)

P(Jn)
.

By the assumption of sequential independence we have

P(Jnjn+1)

P(Jn)
= P(jn+1).

Then the equation can be further rewritten as

θnu
′
n(Cn) = θn+1EPn

[
u′n+1(Cn+1)Rn+1

]
∀n = 1, · · ·N − 1.

CN and FN are both FN -measurable and we have

θNu
′
N (CJNN ) = θpu

′
p(F

JN
N ) = −λJN

by taking partial derivatives w.r.t. CN and FN and setting them to be 0.

We have arrived at a stationary point thanks to the Lagrangian multiplier method; this

stationary point is the unique global optimum once we note that the optimization target is a

concave function w.r.t. the decision variables and the feasible set is convex. �

Proof of Theorem 3.5. The optimization target 3.1 is a parameterized optimization

problem of time-additive utility functions:

max
C1,··· ,CN

EP
[
N∑
n=1

θnun(Cn) + θpup(FN )

]
s.t. Fn + Cn = Xn + Fn−1Rn n = 1, · · · , N,

F0 = 0.
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This optimization problem can be solved by dynamic programming. Add in a new time point

tN+1 = tN , and

XN+1 ≡ 0, RN+1 ≡ 1.

Define

An := Xn + Fn−1Rn n = 1, · · · , N + 1,

which has the interpretation as the total available asset at time tn to be divided into the

current cash flow and the buffer for later use. Note that by definition AN+1 = FN . The

A’s are the state variables, the C’s are the decision variables and the X’s and R’s are the

risks. Then we shall have the optimization problem formulated as, in line with the routine

by Bertsekas [5]

max
C1,··· ,CN

EP
[
N∑
n=1

θnun(Cn) + θpup(AN+1)

]
s.t. An+1 = Xn+1 + (An − Cn)Rn+1, n = 1, · · · , N,

A1 = X1.

Proposition 1.3.1 in [5] tells that in order to solve the problem one needs to define first

VN+1(AN+1) = θpup(AN+1),

and then define backwards, for n = 1, · · · , N

Vn(An) = max
Cn

EPn [θnun(Cn) + Vn+1(Xn+1 + (An − Cn)Rn+1)] . (A.1)

This can be solved by taking the derivative of

EPn [θnun(Cn) + Vn+1(Xn+1 + (An − Cn)Rn+1)] (A.2)

w.r.t. Cn and setting it to 0. We will start from period N and go backwards in time in order

to verify the differentiability of the Vn’s. For period N , note that the target A.2 becomes

θNuN (CN ) + θpup(FN ) = θNuN (CN ) + θpup(AN − CN ).

The conditional expectation vanishes because of the measurability of CN and FN . It is

continuous and differentiable w.r.t. CN . Take the derivative and set it to 0; we get

θNu
′
N (C∗N ) = θpu

′
p(A

∗
N − C∗N ) := L∗N .

Here the star indicates that it is the optimal solution. Next, define

GN (x) := IN

(
x

θN

)
+ Ip

(
x

θp

)
,

gN (x) := G−1
N .
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Both GN and gN are well-defined. GN is the sum of two strictly decreasing bijective functions

thus it is strictly decreasing and bijective from R++ to (max{bN , bp},+∞), and it follows

that gN is also strictly decreasing and bijective from (max{bN , bp},+∞) to R++. The Inada

conditions tell

lim
x→0

GN (x) = +∞, lim
x→+∞

GN (x) = max{bN , bp}

and thus

lim
x→max{bN ,bp}

gN (x) = +∞, lim
x→+∞

gN (x) = 0.

L∗N can then be calculated as

L∗N = gN (A∗N )

and

C∗N = IN

(
L∗N
θN

)
, F ∗N = Ip

(
L∗N
θp

)
.

The value function is

VN (A∗N ) = θNuN (C∗N ) + θpup(A
∗
N − C∗N )

which is a differentiable function w.r.t. AN . The envelope theorem tells that

dVN
dA∗N

= θpu
′
p(A

∗
N − C∗N ) = θpu

′
p(F

∗
N ) = gN (A∗N ).

Going one period backwards, we have the value function

VN−1(AN−1) = max
CN−1

EPN−1 [θN−1uN−1(CN−1) + VN (XN + (AN−1 − CN−1)RN )] .

For the part

EPN−1 [θN−1uN−1(CN−1) + VN (XN + (AN−1 − CN−1)RN )]

differentiation and conditional expectation can be interchanged since we are working on a

finite probability space and we get

θN−1u
′
N−1(CN−1) + EPN−1

[
dVN (AN )

dCN−1

]
= θN−1u

′
N−1(CN−1) + EPN−1

[
dVN (AN )

dAN

dAN
dCN−1

]
= 0,

which leads us to

L∗N−1 = θN−1u
′
N−1(C∗N−1) = EPN−1

[
gN (XN + F ∗N−1RN )RN

]
= EPN−1[L∗NRN ].

We then define

hN−1(x) :=
1

θN
EPN−1 [gN (XN + xRN )RN ] .

Due to the assumption of sequential independence, hN−1(x) can further be written in the

form of an unconditional expectation

hN−1(x) =
1

θN
EP [gN (XN + xRN )RN ]
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since both XN and RN are independent from FN−1. Note that hN−1 is invertible since by

definition it is a weighted sum of strictly decreasing functions; thus hN−1 is also a strictly

decreasing function with domain (dN−1,+∞), where dN−1 is defined as

dN−1 = inf
{
d ∈ R

∣∣∣Xj
N + dRjN ≥ max{bN , bp} ∀j ∈ JNN−1

}
.

Furthermore, hN−1 can be viewed as the marginal utility of a stereotype utility function

since

• it is continuous and strictly decreasing,

• it satisfies

lim
x→dN−1

hN−1(x) = +∞, lim
x→+∞

hN−1(x) = 0.

Write

HN−1 := h−1
N−1.

Then once we combine

C∗N−1 + F ∗N−1 = XN−1 + F ∗N−2RN−1 = A∗N−1

with

L∗N−1 = θN−1u
′
N−1(C∗N−1) = θNhN−1(F ∗N−1)

we have

IN−1

(
L∗N−1

θN−1

)
+HN−1

(
L∗N−1

θN

)
= A∗N−1.

Next, define

GN−1(x) := IN−1

(
x

θN−1

)
+HN−1

(
x

θN

)
,

gN−1(x) := G−1
N−1.

GN−1 and gN−1 are well-defined just as GN and gN . LN−1 can then be calculated as

L∗N−1 = gN−1(A∗N−1)

and

C∗N−1 = IN−1

(
L∗N−1

θN−1

)
, F ∗N−1 = HN−1

(
L∗N−1

θN

)
.

For the value function

VN−1(A∗N−1) =θN−1uN−1(C∗N−1) + EPN−1VN
[
XN + (A∗N−1 − C∗N−1)RN

]
,

it follows that VN−1 is differentiable and one can calculate by the envelope theorem that

dVN−1

dA∗N−1

= EPN−1[V ′N ·RN ] = EPN−1[L∗NRN ] = L∗N−1 = gN−1(A∗N−1).
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Proceeding one period backwards, solving Equation (A.1) gives

θN−2u
′
N−2(CN−2) + EPN−2

[
dVN−1(AN−1)

dCN−2

]
= 0,

and

EPN−2

[
dVN−1(AN−1)

dCN−2

]
= EPN−2

[
dVN−1(AN−1)

dAN−1
· dAN−1

dCN−2

]
= EPN−2 [gN−1(AN−1) · (−RN−1)]

= −EPN−2 [gN−1(XN−1 + FN−2RN−1)RN−1] .

We can then repeat what has been done in period N − 1. This recursive procedure can be

continued backwards in time until we arrive at the first period. That is, we can always define

recursively for n = 1, · · · , N − 2

hn(x) = EPn
[

1

θn+1
gn+1(Xn+1 + xRn+1)Rn+1

]
= EP

[
1

θn+1
gn+1(Xn+1 + xRn+1)Rn+1

]
,

Hn = h−1
n ,

Gn(x) := In

(
x

θn

)
+Hn

(
x

θn+1

)
,

gn(x) := G−1
n ,

and the decision variables are given by

C∗n = In

(
gn(A∗n)

θn

)
, F ∗n = Hn

(
gn(A∗n)

θn+1

)
.

This will be the unique solution of the optimization problem, as the optimization target is

concave w.r.t. the decision variables and the feasible set is convex. �

Proof of Lemma 3.8. By definition the function g’s are all strictly decreasing. We have

Cn = In

(
gn(Xn + Fn−1Rn)

θn

)
∀n = 1, · · · , N,

Fn = Hn

(
gn(Xn + Fn−1Rn)

θn+1

)
∀n = 1, · · · , N − 1,

FN = Ip

(
gN (XN + FN−1RN )

θp

)
,

thus both Cn and Fn are increasing functions of An = Xn + Fn−1Rn.

We only have to consider the case when only one coordinate of (X,R) = (X1, · · · , XN ,

R2, · · · , RN ) increases. First consider two trajectories J, J∗ such that there is a time point

τ = 1, · · · , N s.t. XJ
τ > XJ∗

τ and other random variables from (X,R) are equal. Since

Fn = Hn

(
gn(Xn + Fn−1Rn)

θn+1

)
∀n = 1, · · · , N − 1
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then F J1 = F J
∗

1 , and this will lead to F J2 = F J
∗

2 . Doing this recursively we conclude that

F Jn = F J
∗

n for any n < τ . Then as

XJ
τ + F Jτ−1R

J
τ > XJ∗

τ + F J
∗

τ−1R
J∗
τ

we have

CJτ > CJ
∗

τ , F Jτ > F J
∗

τ ,

and the latter will tell that CJn > CJ
∗

n for all n > τ . Also F JN > F J
∗

N . Then ρJ 	 ρJ
∗
.

The cases when only RJτ > RJ
∗
τ follows analogously. �

It is convenient to have the following definition before we continue to the proof of Lemma

3.9.

Definition A.6 (N -PE Problem.) An N -PE problem refers to the 4-tuple ((X,R), ρ, u′, θ)

and the corresponding equation systems BC (5.1) and IBE (5.2), where (X,R) is a vector of

random variables, ρ a vector of decision variables, u′ an N + 1 tuple of stereotype marginal

utility functions and θ a constant vector, i.e.

(X,R) = (X1, · · · , XN , R2, · · · , RN ) ∈ L2N+1,

ρ = (C1, · · · , CN , FN ) ∈ LN+1,

u′ = (u′1, · · · , u′N , u′p),

θ = (θ1, · · · , θN , θp) ∈ RN+1
++ ,

where L := RΩ is the space of random variables over the underlying probability space.

Proof of Lemma 3.9. The key point of the proof is that otherwise, the IBE and the BC

cannot hold simultaneously.

We use mathematical induction to show this. First consider N = 1. For a 1-PE problem

this is true; we only have two agents including the buffer and there will be only one family

of IBE:

θ1u
′
1(C1) = θpu

′
p(F1),

and the budget constraints are

C1 + F1 = X1.

For any trajectory J ∈ J1, if θ1 increases, then we argue that CJ1 cannot decrease.

Otherwise (i.e. CJ1 decreases), by the budget constaint F J1 will increase, but according to the

IBE it will decrease, which is a contradiction. For the same reason CJ1 cannot stay the same.

Thus CJ1 will increase and F J1 has to decrease. As there is a symmetry between C1 and F1,

we conclude that the argument is true for single-period problems.
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Assume the statement holds true for an N -PE problem, N > 1. Then consider the case

of an (N + 1)-PE problem with the the conventional notations

(X,R) = (X1, · · · , XN+1, R2, · · · , RN+1),

ρ = (C1, · · · , CN+1, FN+1),

u′ = (u′1, · · · , u′N+1, u
′
p),

θ = (θ1, · · · , θN+1, θp).

First consider if some θn increases, n < N+1. Then as we have discussed, this (N+1)-PE

problem can be converted into an induced N -PE problem by truncation at time point tN and

define hN as has been defined in Theorem 3.5, that is, the 4-tuple

(X,R)[N ] = (X1, · · · , XN , R2, · · · , RN ),

ρ[N ] = (C1, · · · , CN , FN ),

u′[N ] = (u′1, · · · , u′N , hN ),

θ[N ] = (θ1, · · · , θN , θN+1).

Consider this N -PE problem. According to the induction assumption, we will have that

for any J ∈ JN+1, CJn will increase if θn increases, while other cash outflows will decrease.

So F JN will decrease and so is AJN+1. Note that by definition the function gN+1 will stay the

same if θn increases. Thus CJN+1 and F JN+1 will both decrease as they are increasing functions

of AJN+1.

Now consider the situation if θN+1 increases. We will show that F
JN+1

N+1 will decrease.

Otherwise (i.e. F
JN+1

N+1 either increases or stays the same), by the final period IBE

θN+1u
′
N+1(C

JN+1

N+1 ) = θpu
′
p(F

JN+1

N+1 ) = L
JN+1

N+1

we have that C
JN+1

N+1 has to increase because of the monotonicity of u′N+1 and u′p. Then by

the budget constraint for that period

C
JN+1

N+1 + F
JN+1

N+1 = X
jN+1

N+1 + F JNN R
jN+1

N+1

F JNN also has to increase. This will lead to the fact that L
JN j

∗
N+1

N+1 will not increase for any

j∗N+1 ∈ J
N+1
N . This is because we have

L
JN jN+1

N+1 = gN+1(X
jN+1

N+1 + F JNN R
jN+1

N+1 )

and

L
JN j

∗
N+1

N+1 = gN+1(X
j∗N+1

N+1 + F JNN R
j∗N+1

N+1 )

which shows that L
JN jN+1

N+1 and L
JN j

∗
N+1

N+1 should have the same monotonicity property w.r.t.

θN+1. The result is that EN (LJNN+1RN+1) will not increase.
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According to the global budget constraint along that trajectory, there has to be at least

one n such that CJnn will decrease. Let the set of such n’s be denoted by T . Consider first

the situation that max{T } = N . Then LJNN = θNu
′
N (CJNN ) will increase. On the other hand,

EN (LJNN+1RN+1) will not increase. We then arrive at a contradiction by noting that by IBE

we should have

LJNN = EN (LJNN+1RN+1).

Then consider more generally that τ = max{T } < N . Then as F JNN will increase and CJNN
will not decrease, by budget constraint we know F

JN−1

N−1 will increase. Repeat this reasoning

until we get that F Jττ will have to increase. Then by analogy as above we will have that

Eτ (LJττ+1Rτ+1) will not increase. However, Lτ = θτu
′
τ (CJττ ) will increase as CJττ decreases.

The IBE will then not hold. We conclude that F
JN+1

N+1 will decrease and L
JN+1

N+1 will increase.

According to

Ln = EP[Ln+1Rn+1]

we know that for any n < N + 1, along the trajectory Jn which is the up-to-time-tn part of

JN+1, LJnn will increase. Then CJnn will decrease since

LJnn = θnu
′
n(CJnn ).

Finally, consider the global budget constraint (2.3) along the trajectory JN+1. It must be

that C
JN+1

N+1 will have to increase since all the other C’s and FN+1 will decrease.

The case when only θp increases follows analogously as there is symmetry between CN+1

and FN+1. This completes the proof. �

B Proofs for Section 5

Please note that some of the proofs in this section make use of the mapping ϕ defined in

Section 6.

Definition B.1 (N -PEFF Problem.) An N -PEFF problem refers to the 4-tuple ((X,R), ρ,

u′, v) and the corresponding equation systems (5.1), (5.2) and (5.3), where (X,R) is a vector

of random variables, ρ a vector of decision variables, u′ an N +1 tuple of stereotype marginal

utility functions and v a value profile vector, i.e.

(X,R) = (X1, · · · , XN , R2, · · · , RN ) ∈ L2N+1,

ρ = (C1, · · · , CN , FN ) ∈ LN+1,

u′ = (u′1, · · · , u′N , u′p),

v = (v1, · · · , vN , vp) ∈ V.

The set V is totally determined by (X,R) and u′ according to Expression (4.3).

32



Definition B.2 (Hilbert metric on Rn++.) The Hilbert metric defines a distance as

d(x, y) = log
maxi{xi/yi}
mini{xi/yi}

for any x, y ∈ Rn++. It is not a real metric as

d(x, y) = 0 ⇔ ∃c ∈ R+ s.t. y = cx.

It will become a true metric if restricted on e.g. the open unit simplex in Rn++.

Lemma B.3 If φ : Rn++ → Rn++ is homogeneous and strongly monotone, then φ is contractive

w.r.t. the Hilbert metric.

Proof See for instance Lemma 4.5 in Pazdera et al [18]. �

Any contractive mapping φ can only have one fixed point. Suppose there are two, namely

x and y with d(x, y) > 0. Then by contractiveness we have

d(x, y) = d(φ(x), φ(y)) < d(x, y)

which is contradictory. Then d(x, y) = 0. Note that the uniqueness is in the sense of Hilbert

metric.

The following lemma is the key part of proving the uniqueness of the PEFF solution.

Lemma B.4 The mapping ϕ1 defined in Section 6 is strictly increasing, i.e. for any trajectory

J ∈ JN , we have that

LJN (θ′) 	 LJN (θ′′) ∀θ′ 	 θ′′.

Proof To show this we only need to show that LJN is strictly increasing w.r.t. any one of

the coordinates of θ. We can utilize Lemma 3.9.

Consider first that only θn increases while the other θ’s stay the same, n = 1, · · · , N .

Then according to Lemma 3.9, F JN will decrease thus

LJN = θpu
′
p(F

J
N )

will increase. The case when only θp increases follows analogously as there is symmetry

between CN and FN . �

Lemma B.5 (The uniqueness of the PEFF rule.) For any given value profile v = (v1, · · · ,
vN , vp) ∈ V, the corresponding PEFF risk-sharing rule will be unique if it exists.

Proof The main point of this proof is to show that ϕ defined in Section 6 is homogeneous and

strictly monotone thus by Lemma B.3 it can only have one fixed point (up to normalization)

if it has.
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The mapping is homogeneous by definition thus we only have to consider monotonicity.

First, according to Lemma B.4 ϕ1 is strictly increasing w.r.t. θ along all possible trajectories.

Then LJn is also increasing since

Ln = EPn[Ln+1Rn+1].

Now consider θ′ 	 θ′′. Then for any J ∈ JN we have that LJN (θ′) > LJN (θ′′). For any

possible n, the n-th coordinate of ϕ2: ϕ2(n)(LN ) =
[
EQIn

(
Ln
·
)]−1

(vn) will lead to that

ϕ2(n)(LN (θ′)) > ϕ2,n(LN (θ′′)). This is because ϕ2 will always require that

EQCn = EQIn
(
Ln
θn

)
=
∑
J∈Jn

Q(J)In

(
LJn
θn

)
= vn.

If LJn increases for all J ∈ Jn, then θn also will increase according to this ϕ2. The result is

that

ϕ(θ′) = ϕ2(LN (θ′)) > ϕ2(LN (θ′′)) = ϕ(θ′′),

i.e. ϕ is strictly increasing w.r.t. θ. �

Proof of Theorem 5.1. The proof uses mathematical induction. Note that we can always

fix θp = 1 as a normalization to the θ’s unless specified otherwise.

For any 1-PEFF problem, there is only one random variable X1 to be shared. One needs

to solve

C1 + F1 = X1,

θ1u
′
1(C1) = θpu

′
p(F1),

EQC1 = v1.

For any given θ1, the equations of BC and IBE will jointly produce a certain risk sharing

rule according to the mapping Φ in Theorem 3.5. However, the third FF equation may not

hold. We need to show that there will exist some θ1 such that the FF equation will hold. We

define

w(θ1) = EQC1 =
∑
J∈J1

Q(J)CJ1 .

It is a continuous function of θ1 which follows as a property of the mapping Φ. Next we will

show that the value of the function w can be both above and below v1, so that there exists

some θ∗1 s.t. w(θ∗1) = v1 since w is continuous. This will be done by taking θ1 to the limits.

First consider lim
θ1→0

w(θ1). Then along any trajectory J ∈ J1 it must be that CJ1 → b1 <

v1. Otherwise, suppose there exists some sequence of θ1, say {θ̂[m]} with θ̂[m] → 0 as m→∞,

such that

lim
m→∞

CJ1 (θ̂[m]) ≥ b1 + ε
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for some trajectory J and some ε ∈ R++. If b1 = −∞ then this is interpreted as bounded

from below. Then according to the IBE

θ1u
′
1(CJ1 ) = θpu

′
p(F

J
1 )

the left hand side will go to 0 as u′1(CJ1 ) will be bounded. As a result, F J1 will have to go to

+∞ which is not possible if we take into consideration the budget constraint. We conclude

that CJ1 → b1 < v1 along all the J ’s if we let θ1 → 0.

Next consider lim
θ1→∞

w(θ1). Now we drop the normalization constraint θp = 1. Taking into

consideration the freedom of choosing a way of normalization, it follows that the following

two statements are equivalent:

• fix θp and let θ1 → +∞;

• fix θ1 and let θp → 0.

Then following the analogy above we have F J1 → bp for all J ∈ J1 as θp → 0. Thus

lim
θ1→∞

EQF1 = bp and according to the budget constraint

lim
θ1→∞

w(θ1) = lim
θ1→∞

EQC1 = v1 + vp − bp.

Then since

vp − bp > 0

must hold, we have

v1 < v1 + vp − bp.

By a simple intermediate value theorem we know that there will exist some θ∗1 s.t. w(θ∗1) = v1.

Then we have found a weight vector θ (i.e. (θ∗1, θp = 1)) that leads to a PEFF solution to

the system. This indicates that the fixed points of the mapping ϕ will exist; the fixed point

must be unique according to Lemma B.5, i.e. the vector θ is unique. The uniqueness is up

to normalization.

Let’s assume that there always exists a unique solution for an N -PEFF problem, N > 1.

Consider an (N + 1)-PEFF problem using our conventional notations

(X,R) = (X1, · · · , XN+1, R2, · · · , RN+1),

ρ = (C1, · · · , CN+1, FN+1),

u′ = (u′1, · · · , u′N+1, u
′
p),

v = (v1, · · · , vN , vN+1, vp)

Consider the corresponding (N + 1)-PE problem with some given weight θ. Use θp = 1 as a

normalization. As we have discussed, the whole system will degrade to an induced N -PEFF
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problem with FN now being the “final” buffer whose risk aversion is characterized by hN

given by Theorem 3.5. That is,

(X,R)[N ] = (X1, · · · , XN , R2, · · · , RN ),

ρ[N ] = (C1, · · · , CN , FN ),

u′[N ] = (u′1, · · · , u′N , hN ),

v[N ] = (v1, · · · , vN ,EQFN )

where EQFN can be calculated according to the global budget constraint of the induced

N -PEFF problem.

For any given θN+1, according to the assumption, the degraded system has a unique PEFF

solution with coefficients (θ1, · · · , θN ). This solution, together with the θN+1 and θp = 1,

satisfies all the equations except the following one2

EQCN+1 =
∑

J∈JN+1

Q(J)CJN+1 = vN+1.

Next we will show that there exists θN+1 such that the equation above will hold. Then by

Theorem B.5 the solution θN+1 will be unique.

Define

w(θN+1) = EQCN+1 =
∑

JN+1∈JN+1

Q(JN+1)C
JN+1

N+1 .

Note that C
JN+1

N+1 is a continuous function of θN+1 for any J which follows from Theorem

3.5 and so is w itself. Next we will show that the value of the function w can be both above

and below vN+1, so that there exists θ∗N+1 s.t. w(θ∗N+1) = vN+1 since w is continuous. This

will be done by taking θN+1 to the limits.

First consider lim
θN+1→0

w(θN+1). We will distinguish between the following two cases.

A. The lower bounds of the utility functions bn are all finite. We will then have

lim
θN+1→0

C
JN+1

N+1 = bN+1 ∀JN+1 ∈ JN+1.

Otherwise, suppose there exists a sequence of θN+1, say {θ̂[m]} with θ̂[m] → 0 as m → ∞,

such that

lim
m→∞

C
JN+1

N+1 (θ̂[m]) ≥ bN+1 + ε

for some trajectory JN+1 and some ε ∈ R++. Then according to the final period IBE

θN+1u
′
N+1(C

JN+1

N+1 ) = θpu
′
p(F

JN+1

N+1 )

the left hand side will go to 0 as u′N+1(C
JN+1

N+1 ) will be bounded. As a result, F
JN+1

N+1 will have

to go to +∞ which is not possible when all the C’s can only be finite.

2The equation EQFN+1 = vp will also not hold. However, as we have discussed, we don’t have to consider

this equation, since it will be automatically satisfied if other FF conditions hold.
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B. Consider when bn = −∞ for some n. T denotes the set of all such n’s. We will show

that still

lim
θN+1→0

C
JN+1

N+1 = bN+1 ∀JN+1 ∈ JN+1.

We then only have to show this for a special J ′ which satisfies that for any n, XJ ′
n =

maxJ∈JN+1
XJ
n and RJ

′
n = maxJ∈JN+1

RJn, i.e. (XJ ′ , RJ
′
) is the attainable “upper bound” of

all trajectories. This is possible because the number of trajectories is finite, the condition 2.1

holds and the risk stream is sequentially independent. Once we show that lim
θN+1→0

CJ
′

N+1 =

bN+1, by Lemma 3.8, the limit of CN+1 of all other trajectories cannot be larger than bN+1,

and also cannot be smaller than bN+1.

Otherwise, suppose there exist a sequence of θN+1, say {θ̂[m]} with θ̂[m] → 0 as m→∞,

and ε > 0, such that

lim
m→∞

CJ
′

N+1(θ̂[m]) ≥ bN+1 + ε.

If bN+1 = −∞ then the equation above is interpreted as that the sequence {CJ ′N+1(θ̂[m])} is

bounded from below.

Then by final period IBE

θN+1u
′
N+1(CJ

′
N+1) = θpu

′
p(F

J ′
N+1)

we have that F J
′

N+1 will have to go to +∞ since u′N+1(CJ
′

N+1) will be bounded. Consider

the global budget constraint: now since CJ
′

N+1 + F J
′

N+1 → +∞, there will exist τ ∈ T s.t.

CJ
′

τ → −∞. By the definition of J ′, we have that CJτ → −∞ for any other possible J ∈ JN+1,

thus the value profile condition for Cτ will not hold. This is a contradiction.

To conclude: we have shown that

lim
θN+1→0

CJN+1 = bN+1 ∀J ∈ JN+1

whatever the value of bN+1 is. Thus

w(θN+1) = EQCN+1 =
∑

J∈JN+1

Q(J)CJN+1 → bN+1.

Next consider lim
θN+1→∞

w(θN+1). Now we drop the normalization constraint θp = 1. Taking

into consideration the freedom of choosing a way of normalization, we can conclude that the

following two statements are equivalent:

• fix θp and let θN+1 → +∞;

• fix θN+1 and let θp → 0.

Then following the analogy we have F JN+1 → bp for all J ∈ JN+1 as θp → 0. Thus

according to the budget constraint for the last period, we conclude that

lim
θN+1→∞

w(θN+1) = lim
θN+1→∞

∑
J∈JN+1

Q(J)CJN+1 = vN+1 + vp − bp.
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Then since

vp − bp > 0

must hold, we have

vN+1 < vN+1 + vp − bp.

By a simple intermediate value theorem we know that there will exist some θ∗N+1 s.t. w(θ∗N+1) =

vN+1. Then we have found a weight vector θ that leads to a PEFF solution to the system.

This indicates that the fixed points of the mapping ϕ will exist; the fixed point must be

unique according to Theorem B.5, i.e. the solution θ is unique. The uniqueness is up to

normalization. This finishes the proof. �

C Proofs for Section 6

Lemma C.1 When (X , d) is a locally compact and connected metric space, and f : X → X is

a contractive mapping with fixed point x∗ ∈ X , then for every x ∈ X the sequence of iterates

{f (n)(x)|n ∈ N+} converges to x∗.

Proof cf. Thm. 1 by Nadler [17]. �

Proof of Theorem 6.1. Lemma B.5 has shown that the mapping ϕ is contractive w.r.t.

the Hilbert metric. The theorem then is a direct result of Lemma C.1. �

D Proofs for Section 7

Proof of Theorem 7.1. The proof of the theorem is actually a process of calculation.

First we need the following preparations. By Theorem 3.5, for any given θ we can define

fn(·) such that

Cn = fn(Xn + Fn−1Rn).

By the IBE for the last period we have

θpu
′
p(XN + FN−1RN − CN ) = θNu

′
N (CN ),

which will translate into

θpαp exp[−αp(XN + FN−1RN − CN )] = θNαN exp[−αNCN ].

Take the logarithm on both sides and after rearranging the items we get

CN =
αp

αp + αN
(XN + FN−1RN ) +

1

αp + αN
ln
θNαN
θpαp

.

Take the Q-expectation and we shall have

EQCN = vN
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which gives us

CN =
αp

αp + αN
[XN + FN−1RN ] + (vN −

αp
αp + αN

wN ),

where

wN := EQAN = EQ(BN + FN ) = vN + vp.

Next we show that for any possible n, fn should be linear. We will show this by first

showing that if fn+1 is linear with positive slope, then so is fn.

By IBE

θnu
′
n(Cn) = θn+1EPn

[
u′n+1(Cn+1)Rn+1

]
we have

θn
Rn+1θn+1

u′n(fn(x)) =
∑

j∈J n+1
n

P(j)u′n+1

[
fn+1(Xj

n+1 + (x− fn(x))Rn+1)
]

where x is the variable standing for the available assets. Assume that fn+1(x) = an+1x+en+1

with an+1 > 0. We have

θn
Rn+1θn+1

exp(−αnfn(x)) =
∑

j∈J n+1
n

P(j) exp
{
−αn+1[an+1(Xj

n+1 + (x− fn(x))Rn+1) + en+1]
}

= exp{−αn+1an+1Rn+1(x− fn)} ·

 ∑
j∈J n+1

n

P(j) exp
[
−αn+1(an+1X

j
n+1 + en+1)

]
Take the logarithm on both sides:

ln

(
θn

Rn+1θn+1

)
− αn · fn = lnκn+1 − αn+1an+1Rn+1(x− fn),

finally

fn(x) =
an+1αn+1Rn+1

αn + an+1αn+1Rn+1
x+

1

αn + an+1αn+1Rn+1
ln

(
θn

Rn+1θn+1

1

κn+1

)
where

κn+1 =
Eu′n+1(fn+1(Xn+1))

αn+1
.

It follows that all fn should be linear with positive slope since fN is. The slope satisfies

an =
an+1αn+1Rn+1

αn + αn+1an+1Rn+1
.

By recursion we know that if we start with aN =
αp

αp+αN
, then all the an’s can be calculated.

Hence

Cn = fn(Xn + Fn−1Rn) = an(Xn + Fn−1Rn) + constant.
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Taking the expectation under Q immediately gives the constant part and finally we have

Cn = an(Xn + Fn−1Rn) + (vn − anwn),

where wn = EQAn can be recursively calculated according to the relationship

An+1 = Xn+1 + (An − Cn)Rn+1.

�
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