
138 Risk September 2007

CUTTING EDGE. OPTION PRICING

models introduced by Dupire 
(1994) and Derman & Kani 

(1994) are now widely used to price and manage the risks of 
structured products. The dimensionality of risks to be simulta-
neously managed continues to expand with the demand for 
hybrid products and the growth of markets directly trading 
volatility. The formulation and implementation of local volatil-
ity models in these higher-dimensional Markov contexts is now 
becoming an important issue. Of particular interest to the 
financial industry are the accommodation of stochastic volatil-
ity, stochastic interest rates, and the pricing of options on for-
eign stocks, quantos and baskets, in the presence of volatility 
skew. The general recipe for models based on a Brownian filtra-
tion was provided by Gyöngy (1986), who showed how to asso-
ciate with a general Itô process a Markov process with the same 
marginal distributions.

We illustrate the required computations with particular empha-
sis on the presence of stochastic volatility as the additional dimen-
sion. Stochastic volatility in a local volatility context permits the 
exact calibration of vanilla options while at the same time address-
ing the exposure of financial contracts to the rate of mean rever-
sion in volatility and the volatility of volatility. We implement the 
algorithm developed for options on realised variance and options 
on the Vix index.

Gyöngy and the matching of one-dimensional marginals

First, we briefly summarise the important result in Gyöngy 
(1986). Consider a general n dimensional Itô process of the form:

d t t, dt t, dW t

This process gives rise to marginal distributions of the random 
variables (t) for each t. Gyöngy then shows that there is a Markov 
process x(t) with the same marginal distributions. The explicit 
construction is given by:

dx t b t, x t dt t, x t dW t

where:

2 t, x E t, T t, t x

b t, x E t, t x

In the rest of this article, we will repeatedly find this result useful 
in identifying the local volatility function  and the local drift 
function b of the one-dimensional process with the same mar-
ginal distributions as the true high-dimensional dynamics.

The stochastic local volatility model

Here, we consider an extension of the Dupire (1994) local volatil-
ity model that incorporates an independent stochastic component 
to volatility. We develop dynamics under a risk-neutral measure 
where the stock price process (S(t), t  0) has a drift equal to the 
risk-free interest rate r less the dividend yield q and in our case an 
average volatility given by a deterministic function of the stock 
price and calendar time, (S, t). The independent stochastic com-
ponent of volatility is modelled by a stochastic process (Z(t), t  0)
that starts by assumption at Z(0) = 1. Hence the evolution of the 
stock price is given by:

dS r q Sdt S, t Z t SdWS t (1)

where (W
S
(t), t  0) is a standard Brownian motion.

We illustrate using a mean-reverting lognormal model for Z(t),
the stochastic component of volatility. We suppose that:

d ln Z t ln Z dt dWZ t (2)

where  is the rate of mean reversion and  is the volatility of 
volatility. There is a long-term deterministic drift given by ( (t), t

 0). With a view to interpreting 2(S, t) as the average local vari-
ance, we force the unconditional expectation of Z(t)2 to be unity 
by requiring that:

t
2

2
1 e 2 t

The dependence of volatility on the stock price is already 
captured in the leverage function (S, t), so we assume that the 
Brownian motion driving the stochastic component of volatil-
ity W

Z
 is uncorrelated with the Brownian motion driving the 

stock price W
S
. We could extend the model to a non-zero cor-

relation, which ideally we can observe from the market, then 
some of the skew will come from the correlation and some from 
the leverage function (note that if  has no dependence on S,
the model is very Heston-like). Here we will only describe the 
simplest model to implement and calibrate. Other approaches 
at making local volatility stochastic include Derman & Kani 
(1998) and Dupire (2004).

The fact that volatilities are stochastic and capable of rising 
without a movement in spot prices is now widely recognised and 
practical considerations of risk management require an assess-
ment of the magnitude of this exposure for a variety of struc-

Calibrating and pricing with 
embedded local volatility models
Consistently fitting vanilla option surfaces when pricing 

volatility derivatives such as Vix options or interest rate/

equity hybrids is an important issue. Here, Yong Ren,

Dilip Madan and Michael Qian Qian show how this 

can be accomplished, using a stochastic local volatility 

model as the main example. They also give, for the first 

time, quanto corrections in local volatility models
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tured products. This necessitates the introduction of an inde-
pendent stochastic volatility unrelated to the stochasticity 
introduced by leverage functions and permits the assessment of 
exposure to the volatility of volatility that is now independently 
parameterised here by the coefficient . Other stochastic volatil-
ity models based on the Heston model and its generalisations 
also permit such an assessment but do not capture the surface of 
implied volatilities as precisely as a local volatility model. This is 
why there is interest in introducing stochastic volatility into a 
local volatility context.

One-dimensional Markov process for the stock price marginals

From Gyöngy (1986), we see that the one-dimensional Markov 
process with the same marginal distributions as those of our 
model is given by:

dS r q Sdt LV S, t Sd %WS t (3)

where we must have that:

LV
2 K ,T 2 K ,T E Z T

2
S T K

For the one-dimensional Markov process (3), the Dupire (1994) 
and Derman & Kani (1994) relationship holds between call 
option prices of strike K and maturity T, C(K, T), and the one-
dimensional leverage function 

LV
(S, T). In particular, we have:

LV
2 K ,T 2

CT r q CK qC

K 2CKK

Hence, we may now recover our leverage function from option 
prices provided we have synthesised the function (K, T) = 
E[Z(T)2 S(T) = K] by:

2 K ,T LV
2 K ,T

K ,T
(4)

We now address the issue of the simultaneous solution of (K,
T) and 2(K, T) satisfying equation (4). For this, we introduce the 
forward joint transition density p(x, y, T) for the logarithm of the 
stock price X, to reach the level x and the logarithm of the sto-
chastic component of volatility Y = ln(Z) to reach the level y at 
time t, starting from S = S(0) and Z = 1 respectively at time zero. 
This density element satisfies the Kolmogorov forward equation:

p

t x
r q

e2 y 2 ex , t

2
p

2

x2
e2 y 2 ex , t

2
p

y
t y p

2

y2

2

2
p 0

(5)

subject to the boundary condition that at time zero we start at X
= ln(S(0)) and Y = lnZ(0) = 0 with probability one. We then 
recover the function  as:

K ,T
e2 y p eK , y,T dy

0

p eK , y,T dy
0

p je
2 y j / p j

j 1

nY

j 1

nY

(6)

The strategy is to solve the forward equation in the density ele-
ment (5) forward one step at a time, recognising that at the start 
we have (S(0), 0) from the local volatility equation (4) since 

(S(0), 0) = 1. We then use (6) at the next time step to determine 
the function  at this point and that allows us to infer from (4) 
the function (K, T) at this time step. We then proceed in this 
fashion through time to recover simultaneously both the func-
tions (K, T) and 2(K, T). Along the way we have also solved for 
all the density elements p(x, y, t) for all time points t:

K , 0 1, S, 0 S 0 ,0

p x, y, t

S, t

p x, y, 2 t

S, 2 t

p x, y, 3 t

S, 3 t

...

Our particular example uses alternating direction implicit methods 
to solve for the probability element. With pt

ij
 denoting p(x

i
, y

j
, t) for 

points (x
i
, y

j
, t) on the space time grid, and using operator splitting 

with a fully implicit method in both directions, we get:

pij
1/2 t

2 X
r q

e
2Y j 2 eXi 1 , t

2
pi 1, j
1/2

r q
e
2Y j 2 eXi 1 , t

2
pi 1, j
1/2

t

2 X 2
e
2Y j eXi 1 , t pi 1, j

1/2 2e
2Y j

eXi , t pij
1/2 e

2Y j eXi 1 , t pi 1, j
1/2 pij

t t

pij
t t

2 Y
t Yi , j 1 pi , j 1

t t Yi , j 1 pi , j 1
t

2 t

2 Y 2
pi , j 1
t 2 pij

t pi , j 1
t pij

1/2

One first solves for p
ij
1/2 from p

ij
t t using a tridiagonal solver, then 

pt
ij
 can be solved from p

ij
1/2.

The advantage of such an approach is that the probabilities 
solved for in this way are very smooth and stable (just like the 
vanilla option values one calculates by partial differential equa-
tion (PDE) methods). For a similar but less rigorous numerical 
approach in the context of foreign exchange markets and a square-
root volatility process solved on trinomial trees, we refer the 
reader to Jex, Henderson & Wang (1999).

Once (K, T) has been calculated, they can be used in either 
Monte Carlo or PDEs to price securities that are sensitive to sto-
chastic volatility. It is natural to price options on realised variance 
using the Monte Carlo approach where the realised variance can 
be summed up along simulated paths. Because the option on the 
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Vix index is written on the sum of expected future variances, the 
pricing can be easily implemented on the PDE grid. One may 
evaluate the value of the forward Vix level at time t on the grid 
using transition probabilities. This is given by:

Vixt = Et
1

h
Zu
2σ 2 S u( ),u( )du

t

t+h
∫⎡

⎣⎢
⎤
⎦⎥

To do so, we notice that we have already calculated (K, T), and 
Z is simply eY, one of the dimensions of our PDE grid. We start at 
time t + h, and put the value of Z2 2(S, t) on the grid. We then use 
a PDE solver to propagate backwards on a space time grid, a con-
ditional expectation at time t + h to the grid points at time t + h
t. As we propagate backwards on the grid, the value on the grid 

becomes the expected future value of the variance at t + h (care 
must be taken that the value is not automatically discounted). We 
add to this quantity the value of Z2 2(S, t) at the current grid 
point, and propagate this total value back to t + h t, and so 
on. When we reach time t, we have on the grid the value for the 
expected forward variance, E

t
[
t
t+hZ2

u
2(S(u), u)du]. Or expressed 

as a formula, the 30-day expected variance is calculated as:

Var30 t( ) = Et
1

h
Zu
2σ 2 u( )du

t

t+h
∫⎡

⎣⎢
⎤
⎦⎥

= Et
1

30
Zt+ i
2 σ t+ i

2

i=1

30

∑
⎡

⎣
⎢

⎤

⎦
⎥

=
1

30
Et Zt+1

2 σ t+1
2 + Et+1 Zt+ i

2 σ t+ i
2

i=2

30

∑
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

=
1

30
Et Zt+1

2 σ t+1
2 + Et+1 Zt+2

2 σ t+2
2 +L+ Et+29 Zt+30

2 σ t+30
2⎡⎣ ⎤⎦

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

All that remains is to define the payout for a call option on Vix
t

of strike k as (Vix
t

k)+ and propagate with discounting to the 
valuation time. Since we have calibrated our model to all plain 
vanilla options, Vix contracts that can be regarded as the under-
lying for options on the Vix index are priced correctly as well, 
according to the argument in Carr & Madan (1998). Thus our 
model is able to price volatility derivatives such as options on 
the Vix index consistently with vanilla options and volatility 
contracts (variance swaps, Vix futures). This is done in a context 
that incorporates leverage effects on volatility along with inde-
pendent shocks to volatility.

Stochastic local volatility results

We consider a lognormal stochastic volatility with mean reversion 
= 0.5 and a volatility of volatility of  = 0.5. We recognise that cali-
bration of the vanilla option surface alone typically poorly identifies 
the rate of mean reversion and the volatility of volatility in previous 
stochastic volatility models. In our model, the local volatility func-
tion may be used to calibrate the entire surface of implied volatili-
ties, at any choice for the mean-reversion rate and the volatility of 
volatility. However, the mean-reversion rate and the volatility of 
volatility do jointly affect the term structure of volatility options, 
which we discuss at the end of this section. Here, we focus attention 
on the sensitivity of volatility products, such as options on realised 
variance and options on the Vix index, to these parameters.

We take 20 vanilla options at each of 13 maturities from two 
weeks to 10 years, and solve simultaneously for the leverage func-
tion 2(K, T) and:

K ,T E Z T
2
S T K

The vanilla options used are on the S&P 500 index as at October 
3, 2005.

Since the leverage function is just the ratio of the usual local 
volatility function divided by , we present a graph in figure 1 of 
the function  as a function of K at the one-, three-, five- and 10- 
year point. We observe that these expectations are convex in K
near the at-the-money point, where they dip below unity and they 
rise above unity in both tails. Additionally, in figure 2 we present 
the market-implied volatilities and the calibrated implied volatili-
ties from the stochastic local volatility model.

The calibration speed on a present-day Linux box was about 20 
seconds for maturities up to three years. For maturities up to 10 
years, the corresponding speed was 60 seconds.

The use of stochastic local volatility models arises in assessing 
the nature of product exposure to the presence of an independent 
stochastic volatility. The model formulated here introduces two 
additional parameters connected with stochastic volatility – the 
rate of mean reversion in volatility and the volatility of volatility. 
As an example, we present the exposure of at-the-money one-year 
straddles on realised variance to these components of stochastic 
volatility. For the calibration date of December 12, 2006, we 
show the resulting valuations in table A.

We first observe from table A that the stochastic volatility 
model reduces to local volatility at a zero volatility of volatility. 
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We further observe that the at-the-money one-year realised vari-
ance straddle is convex in the volatility of volatility and one may 
therefore be exposed to an undervaluation if in fact the volatility 
of volatility is itself stochastic. With respect to the rate of mean 
reversion, we have concavity and an overvaluation if there is sto-
chasticity in the rate of mean reversion.

In table B, we also present a sample of six-month at-the-money 
straddles on Vix

t
 for a range of  and  values and the calibration 

date of December 12, 2006.
We observe that options on the Vix rise in value with an 

increase in volatility and are convex in the volatility. They fall 
with an increase in the rate of mean reversion and are concave in 
this direction. Stochastic volatility with a zero volatility of volatil-
ity again reduces to the local volatility model.

As we previously noted, as realised variance options are written 
on an average of past squared returns, they are calculated using 
Monte Carlo from the calibrated model. The options on the Vix 
index are based on averages of future squared returns and these 
may be calculated as explained easily by backward propagation 
on the PDE grid.

While we have given here the qualitative effect of our model 
parameters on a selected set of volatility derivatives, we have not 
attempted a thorough study of simultaneously calibrating for the 
examples of the Vix surface and the equity option surface. At this 
stage, we have a fairly advanced equity option model embedded 
into an elementary, almost Black-Scholes-type volatility model. 
We anticipate that the joint calibration of both surfaces will even-
tually involve multi-factor models for the volatility and may go as 
far as incorporating a local volatility-of-volatility surface. We 
leave these matters for future research.

However, it is instructive to observe that in our model, as:

Z T exp
2

2
1 e 2 T e T t dW

0

T

and the realised variance till maturity T is given by:

1

T
Z 2 t 2 S, t dt

0

T

the variance of realised variance quickly decays in the presence of 
a large mean-reversion rate. In such cases, the innovations become 
independent and the variance of the realised variance will be pro-
portional to 1/T as the maturity of the option gets longer. On the 
other hand, for a negligible mean-reversion rate, one is averaging 
sums and this does not diminish as fast. These are simple observa-
tions on the term structure of the variance of realised variance. 
Models with more factors may exhibit richer term dynamics. The 
term structure of the variance of realised variance is embedded in 
the prices of options on realised variance and these may be used 
to calibrate the dynamics of volatility.

Other extensions of local volatility

Apart from stochastic volatility extensions of local volatility mod-
els, there are other extensions well understood in the Black-Mer-
ton-Scholes context of a constant volatility that are somewhat 
more involved when we come to a local volatility formulation. 
These include the pricing of foreign stock options in the domestic 
currency that is inclusive of both the stock and exchange rate risk. 
The pricing of quantos that shaves out the exchange rate risk is 
also well known for constant volatility, and we show here the pre-
cise adjustments needed in the presence of local volatility models 

for both the stock and the exchange rate. Next we consider 
options on baskets and, finally, the case of stochastic interest 
rates. These topics are taken up in separate subsections.

Foreign stock. Consider a two-dimensional Markov process 
for the foreign price of stock and the exchange rate, where both 
models are of the local volatility form:

dS rf q Sdt s S t , t S t dWS t

dX r rf Xdt x X t , t X t dWX t

dWSdWX S t ,X t , t dt

where r
f
 is the foreign interest rate, r is the domestic interest rate 

and q is dividend yield, while 
s
,

x
 are the two local volatility 

functions, and (W
S
(t), W

X
(t), t  0) are standard Brownian motions 

with instantaneous correlation .
Let Y(t) be the domestic price of foreign stock or:

Y t( ) = S t( )X t( )
For the domestic currency of the dollar, this is a dollar-denomi-
nated asset, so it has a risk-neutral evolution on this filtration 
given by the martingale representation theorem, and we may also 
write Y(t) as an Itô process with the representation:

dY r q Ydt SYdWS t XYdWX t

By Gyöngy’s result, there is a one-dimensional Markov process 
with the same one-dimensional marginals and the evolution:

dY r q Ydt Y t , t YdWY t

where:

y
2 y, t E s

2 S, t x
2 X , t

2 S t ,X t , t s S, t x X , t Y t y
(7)

When the volatilities are strike-independent, we recover the well-
known Black-Scholes result. Similar relation also holds for the cross 
exchange rate and the two corresponding currency exchange rates. 
The expression (7) is particularly useful in a joint stock and 
exchange rate local volatility context because it relates the skew of 
the stock price process and the exchange rate process to that of the 

A. Valuations of one-year at-the-money straddles on

realised variance

Local volatility Volatility of volatility

0% 50% 100%

0.5 2.52 2.52 2.99 3.94

1.0 2.52 2.52 3.16 4.30

2.0 2.52 2.52 3.23 4.45

4.0 2.52 2.52 3.13 4.30

B. Valuation of half-year at-the-money straddles on

the Vix

Volatility of volatility

0% 50% 100%

0.5 3.67 4.81 6.70

1.0 3.67 4.58 6.24

2.0 3.67 4.26 5.53

4.0 3.67 3.96 4.71
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foreign stock process. In the absence of such an expression, we are 
left with the need to price a call option on Y(t) and use the Dupire 
equation to infer the required local volatility function. Equation 
(7) provides an alternative way to directly infer the local volatility 
from the terminal joint density, which can be available as copula 
functions or calculated by other means.

Quantoed stock. We now note that the quantity S(t) on which 
we may write quantoed options is given by:

S t( ) = Y t( )
X t( )

We have the risk-neutral law with respect to the dollar numeraire 
of X(t) and Y(t). Specifically, we write:

dY r q Ydt s S t , t YdWS t x X t , t YdWX t

dX r rf Xdt x X t , t X t dWX t

We then write the law for S from an Itô analysis of the ratio as:

dS s S t , t SdWS t

r q r rf s S t , t x X t , t S t ,X t , t dt

Applying Gyöngy, we obtain a one-dimensional Markov process 
with the dynamics:

dS r q r rf s S t , t

E x X t , t S t ,X t , t S t dt

s S t , t SdWS t

(8)

Here, we have an example of how the local volatility in the 
exchange rate transfers into a localised drift in the one-dimen-
sional law for the quantoed stock. Again, we see if 

x
 and  have 

no dependence on X or S, this reverts to the well-known quanto 
adjustment. This result is non-trivial as there is no more direct 
way of calculating the adjustment.

Options on baskets. We now consider the case of a weighted 
basket of stocks S

i
, each of which has a local volatility model. The 

Brownian motions are correlated with instantaneous correlation 
(S

i
, S

j
, t). The stock dynamics are:

dSi r qi Sidt i Si , t SidWi

Now define the basket by the sum with S(t) = 
i
w
i
S
i
(t) and we 

may develop the expression:

dS rS wiqiSi
i

dt wi i Si , t SidWi
i

An application of Gyöngy’s result yields that:

dS r q S, t Sdt S t , t SdW

where:

Kq K , t( ) = E wiqiSi t( ) S t( ) = K
i
∑
⎡

⎣
⎢

⎤

⎦
⎥ (9)

K 2 2 K , t

E
wi
2

i
2 Si , t Si

2 t 2 wiw ji , ji

Si ,S j , t Si t S j t i Si , t j S j , t
S t K

(10)

Again, the expression (10) relates the skews in the individual 
assets to the basket skew. This is an important consideration in 
pricing options on baskets. We also notice that by setting the 
weights to be negative, the result also applies to outperformance or 
Margrabe options. For the implementation of an approximation to 
equation (10), the reader is referred to Avellaneda et al (2002).

The results contained in this section on the pricing of foreign 
stock, quanto and basket options are easily derived under the 
Black-Scholes assumption, but are not so obvious in a local vola-
tility setting. They not only elucidate the role of skew in the 
dynamics, but are also of practical interest. First, approximations 
can be made in these formulas for practical use; second, expecta-
tions in these formulas can be evaluated using either known den-
sities, or by Monte Carlo and PDE methods. Once the drift and 
local volatilities are known, the dimension of the dynamics of the 
asset is effectively reduced to one. While the dimensionality 
reduction is less necessary in the pricing of simple options on 
these assets, it is crucial in more complex structures where, for 
example, PDE methods become impractical with the higher 
dimensionality of the problem. Dimensional reduction will also 
help in many risk management applications where speed is cru-
cial. Not surprisingly, these are the situations where the results 
derived in Black-Scholes settings are often used (and abused).

Stochastic interest rates. Our last example involves a stochas-
tic interest rate economy with local volatility stock dynamics. We 
notice attempts along a similar line have been made by Atlan 
(2006). Our approach follows from the same calibration method 
we used for the stochastic local volatility case:

dS

S
r t q dt S t , t dWS t (11)

Applying Gyöngy directly to equation (11), we observe that the 
Markov dynamics embedded in the marginal stock return distri-
butions are given by:

dS

S
E r t S t S q dt S t , t dWS t

and hence the effects of stochastic interest rates on equity 
options are fully captured on determining the conditional 
expectation of the spot rate given that the stock prices reach the 
level S at time t. For calibration of the local volatility function, 
we analyse the call prices.

In this case, we may write the option prices as:

C K ,T E exp r u du
0

T
S T K

Elementary manipulations show, on applying the Meyer-Tanaka 
formula to the discounted payout and simplifying, that:

2 K ,T

2
CT qC qKCK KE exp r v dv

0

T
r T 1S T K

K 2CKK

We therefore need, in addition to option prices, the price of 
the contract that pays r(T)1

S(T) > K
. Using the T forward meas-

ure, we may write this price as:

w T P 0,T %ET r T 1S T K
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Hence, we need to develop the joint law of r(T), S(T) under the T
forward measure.

By way of an example, we work using a Heath-Jarrow-Morton 
model for the fixed-income dynamics with the pure discount 
bond prices P(t, T) with dynamics given by:

dP t,T( )
P t,T( ) = r t( )dt + σα t,u( )du

t

T

∫( )dWα t( )
α
∑

for a set of correlated Brownian motions with correlations .
We now shift to the forward measure denoted E

~
T
(·), with for-

ward date T where T is the option maturity. The dynamics of the 
stock price under this measure with correlation dW

S
dz  = 

a
 are 

given by:

dS

S
r t q t,u du

t

T
S t , t dt

S t , t dZS

(12)

where Z
S
 is a standard Brownian motion under the forward 

measure.
The dynamics of the spot rate under the T forward measure 

may be calculated to be:

r t f 0, t s, t s,w dw
t

T

0

t

ds s, t dZa s
0

t
(13)

where Z  are the new forward motion Brownian motions.
We may now apply Gyöngy to the joint equations (13) and the 

solution to (12) to construct the two-dimensional Markov proc-
ess in (r(t), S(t)) with the same marginals as these Itô processes:

dr r t,r,S dt r t,r,S dZ

dS S t,r,S dt S t , t dZS

r t
f 0, t

E

t, t t,w dw
t

T

s, t s, t dw ds
0

t

t s, t s,w dw
t

T
ds

0

t

r t r,S t S

r
2 E 2 t, t r t r,S t S
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To calibrate the local volatility in the presence of stochastic 
interest rates, the Heath-Jarrow-Morton interest volatilities 
are first calibrated to interest rate markets. We are then left 
with the stock price and spot rate dimensions with the dynam-
ics of the spot rate fully determined. This is very similar to our 
stochastic local volatility case. We then calculate, using the 
Kolmogorov forward equation, the density distribution (S, r,
t), which is then used in calculating the conditional drift of 
the stock price r(T)1

S(T) > K
 that goes into the local volatility 

calculation. We repeat this procedure going forward in time 
until all values of local volatility (S, T) are known. Then the 
original hybrid model can be implemented using either Monte 
Carlo or a PDE.

Conclusion

We exploit Gyöngy’s (1986) result to represent the marginal laws 
of Itô processes by Markov processes in a local volatility context. 
This representation leads to generalisations of the Dupire (1994) 
and Derman & Kani (1994) equations for determination of local 
volatility or leverage functions jointly with certain conditional 
expectations of the Markov process. These may be solved by PDE 
methods that extract the joint density using a solution of the 
Green’s function.

The method is applied in particular to a stochastic volatility model 
in a local volatility context that permits an exact calibration of 
vanilla options while at the same time addressing questions on con-
tract exposure to the volatility of volatility. Calibration and repric-
ing speeds are observed to be around 20 seconds for maturities 
extending up to three years. For maturities up to 10 years, the speed 
was 60 seconds. These are reasonable speeds, making the method 
both tractable and useful for the investigation of high-dimensional 
extensions to the base local volatility model. We illustrate the 
required calculations for options on realised variance and options on 
the Vix index. We further give the results for pricing options on 
foreign stocks, quantos and baskets in a local volatility setting. 
Finally, we address the problem of calibrating hybrid models with 
stochastic interest rates. 
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