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We present in a Monte Carlo simulation framework a novel approach for the evaluation of hybrid local
volatility (Dupire 1994, Derman and Kani 1998) models. In particular, we consider the stochastic local
volatility model – see e.g. Lipton et al. (2014), Piterbarg (2007), Tataru and Fisher (2010), Lipton (2002)
– and the local volatility model incorporating stochastic interest rates – see e.g. Atlan (2006), Piterbarg
(2006), Deelstra and Rayée (2012), Ren et al. (2007). For both model classes a particular (conditional)
expectation needs to be evaluated, which cannot be extracted from the market and is expensive to
compute. We establish accurate and ‘cheap to evaluate’ approximations for the expectations by means of
the stochastic collocation method (Babuška et al. 2007, Xiu and Hesthaven 2005, Beck et al. 2012, Nobile
et al. 2008, Sankaran and Marsden 2011), which was recently applied in the financial context (Grzelak
et al. 2014, Grzelak and Oosterlee 2017), combined with standard regression techniques. Monte Carlo
pricing experiments confirm that our method is highly accurate and fast.
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1. Introduction

In this article we propose for two types of hybrid local volatility models a novel, highly efficient
Monte Carlo simulation method. We consider stochastic local volatility (SLV) models and the local
volatility model incorporating stochastic interest rates. These hybrid models, by construction, can
be calibrated perfectly to the plain vanilla market, while (partially) inheriting particular desirable
features from their ‘pure’ stochastic volatility counterparts or including stochastic interest rates,
which may yield an enhancement in the pricing of long-dated FX and equity-linked structures.
Although this makes these models attractive to the financial industry, their evaluation is not trivial.
A particular (conditional) expectation needs to be established, which cannot be extracted from the
market quotes. The stochastic collocation method (Babuška et al. 2007, Xiu and Hesthaven 2005,
Beck et al. 2012, Nobile et al. 2008, Sankaran and Marsden 2011), which was recently applied in
the financial context (Grzelak and Oosterlee 2017, Grzelak et al. 2014), allows us to determine for
both types of hybrid local volatility models the expectation in a way that is highly accurate and
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fast.
In a nutshell, the concept of stochastic collocation is to approximate a problem variable of

interest, which is expensive to compute, as a function of a more convenient ‘cheap to compute’
random variable. The function is a polynomial expansion, which is established by determining basis
functions and computing interpolation points, based on the input distribution (corresponding to
the ‘cheap’ variable). An increase in the order of this polynomial yields exponential convergence.

The paper is organized as follows. In the follow-up section we describe the main characteristics
of the traditional local volatility model and the Heston and SABR stochastic volatility models. We
proceed with a brief overview of evaluation approaches for stochastic local volatility models and the
local volatility model incorporating stochastic interest rates in Sections 1.2 and 1.3, respectively.
The basics of stochastic collocation are discussed in Section 1.4. In Section 2 we present and
numerically test the stochastic collocation based approach for the evaluation of stochastic local
volatility models. We subsequently apply this method to the local volatility model enhanced by
stochastic interest rates in Section 3. Section 4 concludes.

1.1. Local volatility & stochastic volatility models

In the financial industry, the local volatility (LV) model introduced by Dupire (Dupire 1994) and
Derman & Kani (Derman and Kani 1998) has widely been employed for managing smile and skew
risk. As it is well-known, by its construction, the LV model can be calibrated perfectly to any set of
arbitrage-free European-type option prices. Although this makes the model practically appealing,
it has certain undesirable features; it e.g. exhibits a flattening of the forward smile, which may
lead to a significant mispricing of forward volatility sensitive contracts like forward-starting and
path-dependent options (Van der Stoep et al. 2014, Rebonato 1999, Clark 2011). Also, it does
not accurately predict the smile movement when the value of the underlying changes, resulting in
possibly unstable hedges (Hagan et al. 2002, Baker et al. 2004, Johnson and Lee 2003). Further,
the model assumes deterministic interest rates, which may imply mispricing of long-term interest
rate sensitive hybrids, like the Power-Reverse Dual-Currency (PRDC) notes in the FX market, see
e.g. Piterbarg (2006), Deelstra and Rayée (2012), Bloch and Nakashima (2008).

Alternative models to overcome these issues are the well-established Heston (Heston 1993) and
SABR (Hagan et al. 2002) models, in which the volatility is assumed to follow a stochastic process.
The Heston model predicts that the forward smile has a shape that is similar to the implied
volatility smile observed today, which is more in line with market observations and yields a more
accurate pricing of forward volatility sensitive products (Baker et al. 2004, Gatheral 2006). Further,
the SABR model is, besides for the availability of a closed-form formula for the implied volatility
(‘Hagan’s formula’), well-known for the prediction that the smile ‘follows’ the underlying. In fact,
one of the main reasons for Hagan et al. (Hagan et al. 2002) to introduce the SABR model is
the typically inaccurate smile movement with respect to the underlying, predicted by the local
volatility model. When considering long-term products like PRDCs, interest rates can no longer
be assumed deterministic – introducing a short-rate process in the model, like Vasicek, Black &
Karasinkski (Black and Karasinski 1991) and Hull & White (Hull and White 1993) may enhance
the pricing results.

In this article we consider the SABR and Heston models, enhanced by a non-parametric local
volatility component, which we refer to as the SABR-Local Volatility1 (SABR-LV) and Heston-
Stochastic Local Volatility (Heston-SLV or H-SLV) models. Also, we study the local volatility
model incorporating stochastic interest rates governed by Hull-White dynamics, the so-called Local
Volatility-Hull White (LV-HW) model. The SABR-LV and Heston-SLV models, compared to the
traditional local volatility model, typically yield a more stable hedging performance and a more

1Note that, in fact, the ‘pure’ SABR model is already a stochastic local volatility model with a parametric local volatility

component.
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accurate pricing of forward volatility sensitive products. Enriching the local volatility model with
(Hull-White) stochastic interest rates enhances the pricing of long-dated FX and equity-linked
structures.

We evaluate the SABR-LV, Heston-SLV and LV-HW models based on a method that combines
stochastic collocation and standard regression techniques. In the follow-up Sections 1.2 and 1.3 an
overview of other approaches for the evaluation of hybrid local volatility models is provided. The
basics of stochastic collocation are discussed in Section 1.4.

1.2. Stochastic local volatility models

The class of stochastic local volatility models was developed by Jex et al. (Jex et al. 1999) and
Lipton (Lipton 2002, Lipton and McGhee 2002)1, amongst others. As e.g. pointed out in Clark
(2011) and Lipton et al. (2014), for the pricing of FX options SLV models are typically used. Also
in the Bloomberg note Tataru and Fisher (2010) stochastic local volatility models are presented in
an FX context.

In an SLV framework a conditional expectation of the form E
[
ψ2(V (t))

∣∣S(t) = K
]

needs to be
established, see e.g. Dupire (1996). The exact form of ψ(·) depends on the choice of stochastic
volatility model, e.g. for the Heston model ψ(x) =

√
x. The conditional expectation cannot be

extracted from the market. A common evaluation approach consists of solving the Kolmogorov
forward equation (Deelstra and Rayée 2012, Ren et al. 2007, Clark 2011) forward one step at
a time, recovering simultaneously the conditional expectation and the complete stochastic local
volatility component. In this iterative procedure the joint density of S(·) and V (·) is solved for
all time-points. PDE-discretization techniques are common practice in the financial industry in
a hybrid local volatility context. As an alternative to the standard ADI methods, Lipton et al.
(Lipton et al. 2014), in a Quadratic Local Stochastic Volatility (QLSV) framework, introduce a
Galerkin-Ritz inspired method for solving a system of PDEs and demonstrate that it is efficient.
Another approach to handle the problem of computational burden is presented in Tian et al. (2015),
who employ GPUs to accelerate the computations.

The Markovian projection technique has also been applied in an SLV context (Henry-Labordère
2009, Piterbarg 2007). Although this method is generally applicable, it involves several conditional
expectations that typically need to be approximated. Moreover, this technique does not preserve
marginal distributions of order higher than one. This may result in a significant mismatch in prices
of contracts depending on stock values at multiple times, such as American and barrier options,
implied by the original and projected models.

Other attempts for solving the SLV model are presented in Tataru and Fisher (2010), where a
Levenberg-Marquardt optimization technique for a non-linear Fokker-Planck equation is applied
and in Deelstra and Rayée (2012), where zero correlation is assumed between the volatility pro-
cess and the underlying asset, yielding an efficient simulation of the extended Schöbel-Zhu model
(Schöbel and Zhu 1999). In a more general framework, based on the theory of generalized Wiener
functionals, see e.g. Watanabe (1987), An and Li (An and Li 2015) provide closed-form expansions
for evaluating a general conditional expectation that involves marginal distributions which are gen-
erated by stochastic differential equations. In Lorig et al. (2015) for a general class of stochastic local
volatility models a family of asymptotic expansions for European-style option prices and implied
volatilities is derived. Further, in Pascucci and Mazzon (2015) the authors derive an asymptotic
expansion for forward-starting options in a multi-factor local-stochastic volatility model, which
results in explicit approximation formulas for the forward implied volatility. In Van der Stoep et al.
(2014) we introduced in a Monte Carlo setting a non-parametric method for the evaluation of the
problematic conditional expectation, which relies on splitting the Monte Carlo realizations in bins.

1In Lipton and McGhee (2002) Lipton and McGhee present a more general form of stochastic local volatility models including

jumps.
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A similar idea was presented in e.g. Guyon and Henry-Labordère (2012), based on kernel estimators
in an interacting particle system. All the above-mentioned numerical techniques are found to be
relatively costly, or limited in applicability.

1.3. Local volatility model with stochastic interest rates

Regarding local volatility in a stochastic interest rates (SIR) framework, the literature is less rich.
In Atlan (2006) Gyöngy’s (Gyöngy 1986) mimicking techniques are used to incorporate stochastic
interest rates in a local volatility framework. More generally, he shows how Gyöngy’s theorem can
be used to relate any continuous stochastic volatility model with stochastic interest rates to local
volatility with deterministic interest rates.

In Piterbarg (2006) Piterbarg states that the slope of the FX volatility is a major factor affecting
the values of PRDC swaps. He therefore comes up with a skew-enabled model, namely the local
volatility model with domestic and foreign interest rates following Hull-White dynamics, which
serves as an extension to the traditional three-factor log-normal model (without skew). For the
stability of the calibration a CEV specification for the local volatility function is chosen. This yields
an essentially instantaneous calibration procedure which is based on a Markovian representation
technique1 of the dynamics of the forward FX rate and skew averaging techniques. The calibration
basically ‘captures’ mainly the slope of the implied volatility.

Further, in Ren et al. (2007) an expression is derived for the local volatility in a stochastic interest
rates framework, consisting of the particular expectation ET

[
r(T )1S(T )>K

]
, which they compute by

iteratively solving the corresponding Kolmogorov forward equation forward in time. Benhamou et
al. (Benhamou et al. 2008) specify the bias between the local volatility with and without stochastic
interest rates. By means of numerical experiments they illustrate the importance of this bias which,
in line with intuition, gets larger for longer maturity. In another paper, based on his work on
perturbation methods for local volatility models, Benhamou (Benhamou et al. 2012) presents and
numerically tests the expansions approximating the prices of European options in a local volatility
model with stochastic interest rates. In numerical experiments, similar as in Piterbarg (2006), a
CEV diffusion for the spot is chosen. In Deelstra and Rayée (2012) the authors present, in an FX
context with stochastic interest rates, four methods to compute the local volatility function for
different strikes and time-points. Although this article provides a clear overview of the ways the
local volatility component can be computed, no concrete calibration or pricing experiments are
included. Last, in Guyon and Henry-Labordère (2012) the authors evaluate the Ho-Lee/Dupire
hybrid model by an approach that is based on McKean’s particle method.

1.4. Stochastic collocation basics

In this section we briefly discuss the basics of the stochastic collocation method. The original idea
of stochastic collocation is to project uncertainty onto a probability space with known properties
and conditions (Babuška et al. 2007, Xiu and Hesthaven 2005). In particular, we approximate a
variable of interest, Y , which is expensive to compute, by a function of a more convenient ‘cheap
to evaluate’ random variable X.

Collocation methods have been studied and employed in various disciplines for uncertainty quan-
tification, see e.g. Xiu and Hesthaven (2005), Ganapathysubramanian and Zabaras (2007), Wit-
teveen and Iaccarino (2012). In collocation methods the target is to satisfy governing differential
equations at a discrete set of points, in the corresponding probability space. Two of the main
approaches of high-order stochastic collocation methods are the Lagrange interpolation approach,
see e.g. Xiu and Hesthaven (2005), and the pseudo-spectral generalized polynomial chaos approach
from e.g. Xiu (2007).

1In Piterbarg (2007) Piterbarg formalizes this procedure as the Markovian projection method.
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We explain the stochastic collocation method in a sampling setting. Suppose we wish to sample
values yn from the distribution of Y . This is typically established by first drawing samples un

from a standard uniform distribution U
d
= U([0, 1]) and subsequently applying the inversions yn =

F−1
Y (un). However, this sampling approach is not preferred in the case that the inversion F−1

Y (·) is
expensive – the sampling is not performed in an efficient way. By the stochastic collocation method
this issue is overcome.

The stochastic collocation technique relies on the fact that FY (Y )
d
= U

d
= FX(X), for an arbitrary

random variable X, with U
d
= U([0, 1]), i.e. the CDFs of Y and X (not Y and X themselves) are

equal in distribution. In a sampling setting, with yn and xn denoting samples from the distributions
of Y and X, respectively, the target is to find a function g(·) such that

FY (g(xn)) = FX(xn), yn = g(xn). (1)

When the function g(·) is determined, sampling from Y can be performed by sampling from X,
without performing the expensive inversion F−1

Y (·), which is needed when sampling in the tra-

ditional way. Trivially, equation (1) implies g(·) = F−1
Y (FX(·)). However, the task is to find a

function which does not require many expensive inversions F−1
Y (·). This can be achieved in a poly-

nomial chaos expansion framework, where a sample yn is approximated in terms of Lagrange basis
polynomials `(·) evaluated at a sample of X, xn, as

yn = g(xn) ≈ gN (xn) :=

N∑
i=1

yi`i(xn), `i(xn) :=

N∏
j=1,j 6=i

xn − xj
xi − xj

,

where xi and xj are so-called collocation points, yi is the exact ‘expensive’ evaluation at the colloca-
tion point xi, i.e. yi = F−1

Y (FX(xi)). Choosing the interpolation polynomial in the Lagrange form
is well-accepted in the field of Uncertainty Quantification (when the stochastic collocation method
is applied), see e.g. Sankaran and Marsden (2011). By a change of basis it can be written in terms
of monomials, gN (xn) = a0 +a1xn+a2x

2
n+ . . .+aN−1x

N−1
n , where the coefficients a0, a1, . . ., aN−1

are obtained by solving a linear system Va = y, with matrix V denoting the Vandermonde matrix
(see e.g. Grzelak et al. (2014) for more details).

Once the function gN (·) is established by N expensive inversions F−1
Y (·), we are able to generate

any number of samples yn without significant additional cost. The collocation points xi can basically
be chosen arbitrarily, however we choose them in an optimal way, i.e. based on the zeros of an
orthogonal polynomial.

In this article we choose X to be standard normally distributed. This implies that the opti-
mal collocation points are the zeros of the Hermite polynomials (abscissas of the Gauss-Hermite
quadrature)(Abramowitz and Stegun 1972, Grzelak et al. 2014). It turns out that choosing X to
be normally distributed works highly satisfactory; the method is accurate and efficient, as the in-
version of a normal distribution is ‘cheap’. We therefore do not consider other distributions for X,
which may yield a method with similar accuracy, but more expensive inversions. What is more,
the Cameron-Martin Theorem (Cameron and Martin 1947) states that polynomial chaos approxi-
mations based on the normal distribution converge to any distribution.

In the following sections we employ the stochastic collocation method for the efficient Monte
Carlo evaluation of stochastic local volatility models and the local volatility model incorporating
stochastic interest rates.

2. Stochastic Local Volatility Models

In this section we discuss stochastic local volatility models. In Jex et al. (1999), Lipton (2002),
Lipton and McGhee (2002), amongst others, the class of stochastic local volatility models was
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introduced, which combine properties of the traditional local volatility model (Dupire 1994, Derman
et al. 1995) and stochastic volatility models, like the SABR model (Hagan et al. 2002) and the
Heston model (Heston 1993). According to Clark (Clark 2011) neither the ‘sticky-delta’ property of
stochastic volatility models nor the ‘sticky-strike’ characteristic corresponding to the local volatility
model is in line with the actual smile behaviour in FX markets; the reality is somewhere between
the two and therefore typically a stochastic local volatility model is used. In line with this, as
pointed out in Lipton et al. (2014), SLV models are de facto standard for pricing FX options.

Assuming constant deterministic interest rate r, no dividends and instantaneous correlation ρs,v,
the general SLV model dynamics under the risk-neutral Q-measure1 read

dS(t)/S(t) = rdt+ σ(t, S(t))ψ(S(t), V (t))dWQ
s (t), S(0) = S0 (2)

dV (t) = av(t, V (t))dt+ bv(t, V (t))dWQ
v (t), V (0) = V0 (3)

with dWQ
s (t)dWQ

v (t) = ρs,vdt and2 σ2(t,K) = σ2
LV(t,K)/EQ

[
ψ2(S(t), V (t))

∣∣S(t) = K
]
, where

σ2
LV(t,K) denotes Dupire’s local volatility component (Dupire 1994):

σ2
LV(t,K) =

∂C(t,K)
∂t + rK ∂C(t,K)

∂K

1
2K

2 ∂
2C(t,K)
∂K2

.

For notation purposes, we suppress the Q-superscript from this point on. By choosing
ψ(S(t), V (t)) =

√
V (t)Sβ−1(t), av(t, V (t)) = γ2V (t) and bv(t, V (t)) = 2γV (t) we obtain the

SABR-LV model3:

dS(t)/S(t) = rdt+ σ(t, S(t))
√
V (t)Sβ−1(t)dWs(t), S(0) = S0 (4)

dV (t) = γ2V (t)dt+ 2γV (t)dWv(t), V (0) = V0 (5)

with dWs(t)dWv(t) = ρs,vdt. In the SABR-LV model the local volatility component is specified by

σ2(t,K) =
σ2

LV(t,K)

K2β−2E [V (t)|S(t) = K]
. (6)

We use a standard Euler discretization scheme to simulate the SABR-LV model.
The choices ψ(S(t), V (t)) =

√
V (t), av(t, V (t)) = κ(V̄ −V (t)) and bv(t, V (t)) = γ

√
V (t) provide

us with the Heston-SLV (H-SLV) model :

dS(t)/S(t) = rdt+ σ(t, S(t))
√
V (t)dWs(t), S(0) = S0 (7)

dV (t) = κ
(
V̄ − V (t)

)
dt+ γ

√
V (t)dWv(t), V (0) = V0 (8)

1Note that the general SLV model as described by equations (2)-(3) is an incomplete market model, which implies that a unique
risk-neutral pricing measure does not exist, see e.g. Fouque et al. (2000).

2A derivation of the local volatility component, consisting of Dupire’s local volatility and a conditional expectation, can be

found in e.g. Gatheral (2006), Van der Stoep et al. (2014).
3To prevent double use of the σ-notation we write the variance dynamics instead of the more common volatility dynamics. The
traditional SABR model dynamics are given by the following two SDEs (Hagan et al. 2002, Rebonato et al. 2011):

dFT (t) = σ(t)(FT (t))βdWT
s (t), dσ(t) = γσ(t)dWT

v (t),

with FT (·) denoting the forward corresponding to expiry T and dWT
s (t)dWT

v (t) = ρs,vdt.

6
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with dWs(t)dWv(t) = ρs,vdt and

σ2(t,K) =
σ2

LV(t,K)

E [V (t)|S(t) = K]
. (9)

Similar dynamics are presented in the paper of Jex et al. (Jex et al. 1999). In order to simulate
the Heston-SLV model, we use an adapted version of the Quadratic Exponential (QE) scheme
introduced in Andersen (2008), which we derive in Van der Stoep et al. (2014). The difference
between the original and the adapted version lies in the fact that only the latter incorporates the
local volatility component. Let i = 0, 1, . . . , N and j = 1, 2, . . . ,M indicate the time-step and
path, respectively. Defining ∆ := T/N as the time-step size, the discretization scheme for V (·) and
X(·) := log(S(·)) reads

vi+1,j ∼ c(∆)χ2(d, λ(ti, vi,j)), v0,j = V0 (10)

xi+1,j = xi,j + r∆− 1

2
σ̂2(ti, xi,j)vi,j∆ +

ρs,v
γ
σ̂(ti, xi,j) (vi+1,j − κv̄∆ + vi,jc1) (11)

+ρ1

√
σ̂2(ti, xi,j)vi,j∆Z, x0,j = log(S0) (12)

with Z
d
= N (0, 1), ρ1 := (1− ρ2

s,v)
1/2, c1 := κ∆− 1 and

c(∆) :=
γ2

4κ
(1− e−κ∆), d :=

4κV̄

γ2
, λ(t, V (t)) :=

4κe−κ∆

γ2(1− e−κ∆)
V (t), (13)

where χ2(d, λ(t, V (t))) represents a noncentral chi-squared distribution with d degrees of freedom
and non-centrality parameter λ(t, V (t)). Further, the local volatility component reads

σ̂2(ti, xi,j)
def
= σ2(ti, e

xi,j ) =
σ2

LV(ti, si,j)

E [V (ti)|S(ti) = si,j ]
. (14)

Numerical comparisons between the Euler and the original QE scheme have been provided in the
literature (Andersen 2008). In Van der Stoep et al. (2014) we numerically demonstrate that the
adapted QE scheme outperforms the standard Euler scheme: it yields a higher accuracy and a
faster convergence to the reference for a decaying time-step size.

Equation (14) makes clear that in a Monte Carlo simulation framework, for both the SABR-LV
model and the Heston-SLV model, we need to evaluate the conditional expectation for each path,
at each time-step. A closed-form representation does not exist, as the joint distribution of S(·) and
V (·) is unknown. We require the evaluation to be efficient and accurate – if it is not, the error
introduced accumulates in the simulation and the results are biased. The principle of stochastic
collocation (Babuška et al. 2007, Xiu and Hesthaven 2005), discussed in Section 1.4, allows for an
evaluation that satisfies both requirements.

2.1. Establishing E [V (t)|S(t) = K]

In this section we evaluate the conditional expectation of interest E [V (t)|S(t) = K], which is
present in both the SABR-LV model (4)-(5) and the Heston-SLV model (7)-(8). Our approach
essentially consists of two projection steps. We first project V (·) and S(·) on standard normal
random variables, where, by means of stochastic collocation, E[V (t)|S(t) = K] is decomposed into
a series of conditional expectations. Secondly, similar as in e.g. Longstaff and Schwartz (2001),
Jain and Oosterlee (2015), each of these conditional expectations, which are expressed in terms of

7
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standard normal random variables, is approximated by a projection on a set of basis functions and
applying standard regression techniques.

We start by projecting S(·) at a given fixed time t, on a standard normal random variable

X
d
= N (0, 1) via the function g(·), defined by

g(·) := F−1
S(t)(FX(·)), (15)

which ensures

S(t)
d
= g(X)

and, moreover, for elements S(t) = s and X = x:

s = g(x). (16)

In a similar way we project V (t) on a standard normal random variable Z
d
= N (0, 1):

V (t)
d
= h(Z), h(·) := F−1

V (t)(FZ(·)), (17)

which also yields for elements V (t) = v and Z = z:

v = h(z). (18)

By the element-wise equalities (16) and (18), the conditional expectation can be written in terms
of X and Z:

E [V (t)|S(t) = K] = E [h(Z)| g(X) = K] . (19)

The joint distribution of X and Z is not analytically known. Although X and Z are both normally
distributed, the joint distribution of X and Z is not bivariate normal1 – only the reverse holds
in general. We therefore cannot evaluate the right-hand side of (19) analytically and we proceed
by determining an approximation for it. This is established by approximating the function h(·) by
a polynomial hNV (·) with degree NV − 1, which is obtained by the stochastic collocation method
with NV collocation points. In particular, given the collocation points zi, that are a priori known2,
we compute the corresponding exact evaluations of V (t):

vi = h(zi) = F−1
V (t) (FZ (zi)) , i = 1, 2, . . . , NV . (20)

Next, we apply Lagrangian3 interpolation through the vi-values. For an arbitrary value V (t) = v,
it holds that

v = hNV (z) + ε1(z) :=

NV∑
i=1

vi`i (z) + ε1(z), `i(z) :=

NV∏
k=1,k 6=i

z − zk
zi − zk

, (21)

1A well-known test for multi-variate normality is Mardia’s, see Mardia (1974), which is based on multivariate extensions of

skewness and kurtosis measures.
2We choose the collocation points in an optimal way, namely as the zeros of the Hermite polynomials (abscissas of the Gauss-
Hermite quadrature) (Abramowitz and Stegun 1972, Grzelak et al. 2014).

3Choosing the interpolation polynomial in the Lagrange form is well-accepted in the field of uncertainty quantification (when

the stochastic collocation method is applied), see e.g. Sankaran and Marsden (2011).
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where ε1(z) denotes the interpolation error corresponding to the particular argument z. By a change
of basis we can write the Lagrange polynomial in terms of monomials:

hNV (z) = a0 + a1z + . . .+ aNV−1z
NV−1, (22)

where the coefficients a0, a1, . . ., aNV−1 are obtained by solving a linear system involving a Van-
dermonde matrix, see Grzelak et al. (2014) for more details. Given (22), we approximate the
conditional expectation on the right-hand side of (19) as follows:

E [h(Z)| g(X) = K]

= E [hNV (Z) + ε1(Z)| g(X) = K]

= E [hNV (Z)| g(X) = K] + E [ε1(Z)| g(X) = K]

= a0 + a1E
[
Z|X = g−1 (K)

]
+ . . .+ aNV−1E

[
ZNV−1

∣∣X = g−1 (K)
]

+ ε1(K), (23)

with ε1(K) := E [ε1(Z)| g(X) = K]. The inversions of functions g(·) and h(·), defined in (15) and
(17), respectively, are cheap, as both merely consist of (1) the inversion of a standard normal
random variable and (2) the evaluation of FS(t)(·) or FV (t)(·). As CDFs are strictly monotonic, the
inversions of g(·) and h(·) provide a bijective mapping between the original probability space and
the new space.

As we mentioned, the joint distribution of X and Z is not analytically known. To approxi-
mate the conditional expectations in (23), we assume that we can approximate the conditional
expectation E [Zp|X = x] in terms of functions of x, the basis functions ψkp(·), k = 1, 2, . . . , n,
p = 1, 2, . . . , NV − 1:

E [Zp|X = x] =

n∑
k=1

bkpψkp (x) + ε2p. (24)

Equation (24) is motivated rigorously by assuming that the conditional expectations in (23) are ele-
ments of the L2-space of square integrable functions. As the L2-space is a Hilbert space, it possesses
a countable orthonormal basis and the conditional expectations (which are deterministic functions)
can be expressed as a linear combination of the elements of this basis. A similar idea is used in
Longstaff and Schwartz (2001) in the context of valuing American options by simulation, where the
value of continuing with the option is expressed as a conditional expectation. We approximate the
conditional expectation in (24) by using the first n orthogonal polynomials1 {1, x, x2, . . . xn−1}
and, similar as in e.g. Longstaff and Schwartz (2001), Jain and Oosterlee (2015), we apply OLS
regression to compute the corresponding coefficients, which yields

E
[
Zp|X = g−1(K)

]
= Ê

[
Zp|X = g−1(K)

]
+ ε̂2p, (25)

with Ê
[
Zp|X = g−1(K)

]
= β̂0p + β̂1pg

−1 (K) + β̂2p

(
g−1 (K)

)2
+ . . .+ β̂n−1,p

(
g−1 (K)

)n−1
. Com-

bining this result with (23) yields

E [V (t)|S(t) = K] = a0 +

NV−1∑
p=1

ap

n−1∑
k=0

β̂kp
(
g−1(K)

)k
+ ε1(K) + ε2, (26)

1Other, more complex types of basis functions we may use are the Laguerre, Hermite, Legendre, Chebyshev, Gegenbauer and
Jacobi polynomials, see e.g. Chapter 22 of Abramowitz and Stegun (1972). In this article we do not consider these basis
functions, as the set of simple polynomials {1, x, . . . , xn−1} already yields highly satisfactory results, see the numerical

experiments in Section 2.3.
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with g(·) defined in (15), ε1(K) := E
[
ε1(Z)|X = g−1(K)

]
and ε2 :=

∑NV−1
p=1 ε̂2p.

A brief analysis of the errors ε1(·) and ε2 can be found in Appendix A. In Babuška et al. (2007),
in an elliptic PDE framework, a rigorous convergence analysis of the stochastic collocation method
is provided, where exponential convergence with respect to the number of “Gauss points” is proven.
Our numerical experiments in Section 2.3.1 for a base case are in line with this.

Computation of the approximation in (26) is efficient, as it only requires NV inversions of FV (t)(·),
see (20). Determining x and z and the OLS estimates β̂0p, β̂1p, . . . , β̂n−1,p does not involve signifi-
cant computational cost. In the following, we refer to the approach presented in this section as the
‘stochastic collocation – regression’ or ‘SC–R’ approach.

In a Monte Carlo simulation framework, we apply the SC-R approach as described in Algorithm
1. In this algorithm i = 1, 2, . . . , N denotes the time-step and j = 1, 2, . . . ,M indicates the path.
For simulating the SABR-LV model we use a standard Euler discretization scheme, whereas for the
Heston-SLV model we apply the adapted version of the QE scheme, see equations (10)-(14). After
the Monte Carlo simulation described in Algorithm 1 we price European call options based on the
obtained values for S(·) at the time of maturity. This results in the model implied volatility values
σmodel displayed in Figures 2.4 and 2.5 and the errors reported in Tables 2 and 3. In the Monte
Carlo simulation, it may be necessary to apply one or more of the enhancements we describe in
the follow-up section.

for each time-step ti, i = 1, 2, . . . , N do
1 Generate M pairs (si,j , vi,j), j = 1, 2, . . . ,M by going forward one time-step in the Euler scheme

(SABR-LV model) or the adapted QE scheme (Heston-SLV model).
2 Compute E [V (ti)|S(ti) = si,j ] using the SC-R approach, see equation (26).
3 Establish the local volatility component σ2(ti, si,j) by equation (6) for the SABR-LV model or

equation (9) for the Heston-SLV model – use its value in step 1.
end

4 Price European call options based on the obtained values for S(·) at the time to maturity.

Algorithm 1: Pricing European call options by a Monte Carlo simulation of the SABR-LV
and Heston-SLV models, incorporating the SC-R approach (Section 2.1).

Remark 2.1 In a stochastic local volatility framework, directly applying OLS regression may
yield reasonable results as well. However, as we describe in Remark 3.2 of Van der Stoep et al.
(2014), non-negativity of the conditional expectation cannot be guaranteed for cases where the Feller
condition is violated and improvements must be made. Further, by applying stochastic collocation
we can use the analytical expression of the CDF of V (·) in order to obtain values for the coefficients
a0, a1, . . .. Moreover, in the context of the local volatility model with stochastic interest rates, see
Section 3, by projecting S(·) on a standard normal random variable we can employ the analytical
expression for moments of a truncated standard normal random variable, see Result 3.1.

2.2. Enhancements

In this section we discuss three adaptations to the stochastic collocation – regression method which
may enhance the results.

First, we observe that at the boundaries of the X-domain (recall X := g−1(K) = F−1
X (FS(t)(K)))

the performance of the regression deteriorates due to the presence of a small number of observations,
which may yield a significant increase of ε2. We therefore set for K ≤ smin: E [V (t)|S(t) = K] =
E [V (t)|S(t) ≤ smin] and for K ≥ smax: E [V (t)|S(t) = K] = E [V (t)|S(t) ≥ smax], where smin and
smax are percentiles of the S(t)-distribution, i.e. smin = F−1

S(t)(ps,min) and smax = F−1
S(t)(ps,max).

Here 0 ≤ ps,min < ps,max ≤ 1 denote fractions of the total number of Monte Carlo realizations.
In all pricing experiments in Section 2.3.2 we apply this adaptation and choose ps,min = 0.1 and
ps,max = 0.9.

10
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The approximation of the expectation in (26) is not guaranteed to be positive. This may be
problematic in the case that a significant part of the variance realizations is close to zero, e.g. if
the Feller condition in the Heston-SLV model is strongly violated. In this case we may split the
conditional expectation in two parts in the following way:

E [V (t)|S(t) = K] = E [V (t)|S(t) = K,V (t) ≤ v∗] Q[V (t) ≤ v∗]

+E [V (t)|S(t) = K,V (t) > v∗] (1−Q[V (t) ≤ v∗]) . (27)

The first conditional expectation we approximate by E [V (t)|V (t) ≤ v∗], the second conditional
expectation is approximated by the stochastic collocation – regression approach. We can choose v∗

to be a fixed value, or based on a fixed percentile p∗v, i.e. v∗ = F−1
V (t)(p

∗
v). We prefer the latter, as in

this case at each time-step in the Monte Carlo simulation we naturally control the fraction of the
total number of observations on which we apply the stochastic collocation – regression approach.
So we obtain

E [V (t)|S(t) = K] = (E [V (t)|V (t) ≤ v∗] + ε3)FV (t)(v
∗)

+

a0 +

NV−1∑
p=1

ap

n−1∑
k=0

β̂kp
(
g−1(K)

)k
+ ε1(K) + ε2

(1− FV (t)(v
∗)
)

:= V(K) + ε, (28)

where ε denotes the approximation error. By means of this adaptation we leave out the smallest
variance realizations when applying the stochastic collocation – regression approach, which makes
it less likely that the corresponding SC–R approximation yields negativity. To this approximation
we moreover add the positive term (E [V (t)|V (t) ≤ v∗])FV (t)(v

∗).
Although the former adaptation guarantees non-negativity for V(K), in extreme cases the frac-

tion of V (·)-realizations close to zero is substantial, and we would need to choose a relatively
large value for p∗v to ensure non-negativity of V(K). This would make the approximation for the
conditional expectation inaccurate, as in this case it is for a large part determined by the naive
approximation E [V (t)|V (t) ≤ v∗]FV (t)(v

∗). Therefore, in the case that the approximation V(K)
still yields negative values for an appropriate value of pv∗ (in our numerical experiments we choose
p∗v in the range 0.01− 0.1), we apply another correction, namely

E [V (t)|S(t) = K] = V(K) + ε−min
K
{0, (1 + δ)V(K)} ,

with 0 < δ < 1. This correction is interpreted as follows: in the case that a part of V(K) is
negative, we apply a vertical “shift” such that it becomes positive. If V(K) is completely non-
negative, the vertical shift is zero1. This correction guarantees non-negativity of the approximation
of the conditional expectation.

2.3. Numerical experiments

In this section we test the accuracy of the approximation of the conditional expectation in (26). We
first test the method for a base case where an analytical reference value is available. Subsequently,
we consider the SABR-LV and Heston-SLV models in a Monte Carlo simulation framework. In
particular, given a pre-specified market, we add to an either poorly or satisfactorily calibrated

1Numerical experiments demonstrate that merely applying the third correction, i.e. applying a vertical shift, typically yields

worse pricing results compared to combining the second and third corrections mentioned in Section 2.2.
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‘pure’ SABR or Heston model the local volatility component, consisting of Dupire’s local volatility
and the conditional expectation approximation (26),

2.3.1. The 2D-GBM model: a base case. We start with testing the approximation of the
conditional expectation (26) for a model which is given by two correlated Geometric Brownian
Motions (GBMs):

dY1(t) = σ1Y1(t)dW1(t), dY2(t) = σ2Y2(t)dW2(t), Y1(0) = y10, Y2(0) = y20, (29)

with dW1(t)dW2(t) = ρdt. The expectation of Y2(t) conditional on the event Y1(t) = y1 is (An and
Li 2015)

E [Y2(t)|Y1(t) = y1] = y20

(
y1

y10

)ρσ2
σ1

et(
1

2
ρσ1σ2− 1

2
σ2
2ρ

2). (30)

Let1 y10 = 1, y20 = 0.05, ρ = −0.5 and t = 5. As a first experiment, suppose we choose NY2
= 6

collocation points and n = 7 basis functions. In Figure 2.1 we compare the reference (30) and
the approximation (26) obtained by the stochastic collocation – regression (SC–R) approach for a
moderate case (left, σ1 = σ2 = 0.3) and a more extreme case (right, σ1 = σ2 = 0.9). An excellent
fit is obtained.
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Figure 2.1. Comparison of the reference (30) and the SC–R approximation (26) for a moderate case (left) and a
more extreme case (right).

The reference (30) allows for a numerical analysis of the errors ε1(·) and ε2, which are introduced
by the stochastic collocation method and the regression step, respectively. We choose the parameter
values just mentioned and σ1 = σ2 = 0.3. We make use of the result in the following lemma.

Lemma 2.1 Given the two-dimensional model (29). Let X and Z denote standard normal random
variables and assume for an arbitrary t that the elements Yi(t) = yi, i = 1, 2, X = x, Z = z are
related by y1 = g(x), y2 = h(z), with g(·) and h(·) defined in (15) and (17), respectively. This
implies that X and Z are jointly bivariate normally distributed.

1In a stochastic volatility model these parameter values are representative choices for S0, V0 and ρs,v , respectively.
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Proof. For a proof of Lemma 2.1, see Appendix B.

Recall the error due to the stochastic collocation method: ε1(K) := E [ε1(Z)| g(X) = K]. In a
Monte Carlo simulation framework, for a fixed t, let ε1(y1j) denote the error corresponding to the
jth realization of Y1(t), y1j . From (23) and (30) it follows that it is given by

ε1(y1j) = y20

(
y1j

y10

)ρσ2
σ1

et(
1

2
ρσ1σ2− 1

2
σ2
2ρ

2) − f(y1j),

with

f(y1j) := a0 + a1E
[
Z|X = g−1 (y1j)

]
+ . . .+ aNY2−1E

[
ZNY2−1

∣∣X = g−1 (y1j)
]
. (31)

As Z and X are jointly bivariate normally distributed, see Lemma 2.1, we are able to evaluate
each conditional expectation in (31) analytically. For arbitrary p ∈ {1, 2, . . . , NY2

− 1}, applying
the Cholesky decomposition, straightforward calculus yields

E
[
Zp|X = g−1(y1j)

]
=

p∑
k=0

(
p

k

)
ρp−k

(
1− ρ2

) k
2
(
g−1(y1j)

)p−k
µk, (32)

with µk = (k− 1)!! if k is even and µk = 0 if k is odd. The double exclamation marks stand for the
“double factorial”. For an even integer n > 0 it is defined as n!! = n · (n− 2) · (n− 4) . . . 6 · 4 · 2 and
for an odd integer n > 0 it is n!! = n · (n − 2) · (n − 4) . . . 5 · 3 · 1 and, by an extension, −1!! = 1.
Further, by definition, 0!! = 1.

Given (32), for different NY2
values we compute E1 := log

(
1
M

∑M
j=1 |ε1(y1j)|

)
, where M denotes

the total number of observations. In Figure 2.2 on the left-hand side E1 is displayed against the
number of collocation points. An exponential convergence is observed, which is in line with Babuška
et al. (2007), where in an elliptic PDE framework a rigorous proof for exponential convergence of
the stochastic collocation method is provided. The error does not decrease further for NY2

> 14,
as machine precision has been reached (exp(−36) ≈ 2 · 10−16).

We proceed with analyzing ε2 :=
∑NY2−1

p=1 ε̂2p, the error due to regression. Define ε2j :=∑NY2−1
p=1 ε̂2pj = f(y1j) − f̂(y1j), j = 1, 2, . . . ,M , with f(·) given by (31), where the conditional

expectations E
[
Zp|X = g−1(y1j)

]
, p = 1, 2, . . . , NY2

− 1 are evaluated by the analytical formula

(32), and f̂(·) denotes

f̂(y1j) := a0 + a1Ê
[
Z|X = g−1 (y1j)

]
+ . . .+ aNY2−1Ê

[
ZNY2−1

∣∣X = g−1 (y1j)
]
, (33)

where Ê
[
Zp|X = g−1(y1j)

]
, p = 1, 2, . . . , NY2

− 1 is obtained by OLS regression. We consider the

logarithm of the mean squared error: E2 := log
(

1
M

∑M
j=1 ε

2
2j

)
. We observe for E2 a convergence of

order O(− log(M)), see the plot in the middle of Figure 2.2, where we consider M = 1 · 103, 5 ·
103, 1 · 104, 5 · 104, 1 · 105, 5 · 105, 1 · 106, 5 · 106, 1 · 107.

Last, we study the dependence of E2 on the number of basis functions, see the right-hand plot
of Figure 2.2, where we consider n = 1, 2, . . . , 12 basis functions. We observe that for n = 5 the
smallest error is achieved. For n > 5 the increase in E2 is due to overfitting, where oscillations in
the approximation of the conditional expectation may occur.

In practice, for the Heston-SLV and SABR-LV models we typically choose 4 − 6 collocation
points; our numerical experiments confirm that with this number of collocation points sufficiently
accurate results are obtained. In general, we choose the number of basis functions n in the range
5− 9, depending on how extreme the parameters of the calibrated ‘pure’ Heston or SABR model
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Figure 2.2. Left: the relation between the error E1 = log
(

1
M

∑M
j=1 |ε1(y1j)|

)
and the number of collocation points

NY2 (M = 1 · 106). Middle: the relation between the error E2 = log
(

1
M

∑M
j=1 ε

2
2j

)
and the logarithm of the number

of realizations M (NY2 = 14, n = 5). Right: the relation between the error E2 and the number of basis functions n
(NY2 = 14, M = 1 · 106).

are. In the follow-up section we consider the performance of the stochastic collocation – regression
approach for the Heston-SLV and SABR-LV models in more detail.

2.3.2. The SABR-LV and Heston-SLV models. In this section we test the performance of
the stochastic collocation – regression approach for the SABR-LV model (4)-(5) and the Heston-
SLV model (7)-(8). Stochastic local volatility models, that are considered as the standard for pricing
in an FX context, combine desirable features of a stochastic volatility model, e.g. preserving the
shape of the forward volatility smile and reflecting more realistic smile dynamics, and the local
volatility model, namely a perfect calibration to arbitrage-free European plain vanilla options.

We first consider the SABR-LV model. Let S0 = 1, V0 = 0.05, β = 0.5, γ = 0.5, ρ = −0.5 and
t = 2. We generate for this parameter set (S, V )-realizations by simulating the ‘pure’ SABR model.
Given the realizations at t = 2, for different numbers of basis functions we compare approximations
obtained by the stochastic collocation – regression approach (26) and the non-parametric approach
(Van der Stoep et al. 2014), using 10 bins, which serves as a reference. We consider NV = 4 and
n = 3, 5, 7. Results are displayed in Figure 2.3. For n > 7 no significant increase in accuracy was
observed. For the Heston-SLV model we expect a similar increase in accuracy of the stochastic
collocation – regression approach.

To assess whether for a given number of collocation points NV and basis functions n the stochastic
collocation – regression approach performs sufficiently accurate, we perform pricing experiments. In
particular, given a priori specified market implied volatilities, we price European call options by a
‘pure’ Heston or SABR model1 and the Heston-SLV (‘H-SLV’) and SABR-LV model, respectively.
By definition of stochastic local volatility, the Heston-SLV and SABR-LV models should yield
implied volatilities that perfectly match the ones corresponding to the market. At each time-step
in the Monte Carlo simulation2 we establish the conditional expectation according to (26). We
generate synthetic market prices by the Heston model, which we assume to be calibrated perfectly
to the market. For this we choose some parameter sets from Clark (2011) which may be encountered

1Implied volatilities for the ‘pure’ Heston model are obtained based on Fourier techniques.
2The Monte Carlo simulation consists of 2 · 105 paths (20 seeds, each seed constitutes 104 paths) and 200 time-steps per year,

unless otherwise mentioned.
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Figure 2.3. The conditional expectation approximation (26) obtained by the stochastic collocation – regression
approach for n = 3 (left), n = 5 (middle) and n = 7 (right) compared to the non-parametric method (Van der Stoep
et al. 2014). Number of collocation points is NV = 4.

in typical FX markets, see Table 1 (market data as of 16 September 2008).
Given the market data, we assume a both satisfactorily and poorly calibrated Heston model

(parameter values are 20% and 80% off, respectively). On top of this model we add the local
volatility component to compensate for the calibration error. For each set in Table 1, we consider
the implied volatilities corresponding to (1) the market (the perfectly calibrated Heston model with
parameters given in Table 1), (2) the (satisfactorily or poorly) calibrated ‘pure’ Heston model, (3)
the Heston-SLV model and (4) the traditional local volatility model. Given the expiry T , similar as
in Piterbarg (2006) we consider the strikes Ki = exp(0.1δi

√
T ) (we choose S0 = 1 and zero interest

rate), with δi = −1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5. We simulate the Heston-SLV model according
to the adapted QE scheme given by equations (10)-(14). Implied volatilities for the ‘pure’ Heston
model are obtained by a standard Fourier pricing technique.

For all cases we choose NV = 6. For ‘market’ Sets 1 and 2 we choose n = 5 basis functions. For
Set 3 n = 7 for the poorly calibrated case and n = 15 for the satisfactorily calibrated case. For Set
4 these numbers are n = 5 and n = 9, respectively. As mentioned earlier, in all pricing experiments
we apply the first adaptation to the method described in Section 2.2. Further, for Sets 3 and 4, the
satisfactorily calibrated case, we make use of the second and third adaptation specified in Section
2.2; we choose p∗v = 0.01 and δ = 0.1. For Sets 1 and 3 the results are provided by Tables 2 and
3, respectively. Given the standard deviations, we observe that for both the local volatility model
and the Heston-SLV model for all strikes the reference is within the 95%-confidence interval1. A
lower standard deviation can be obtained by increasing the number of Monte Carlo paths2. For
Set 4 we report the implied volatilities in Figure 2.4. The results for Set 2 are essentially the same
as these for Set 1 and therefore, to save some space, they are not presented.

We proceed with similar pricing experiments for the SABR-LV model; we consider the cases
where the ‘pure’ SABR model is satisfactorily and poorly calibrated to the market data (generated
by the Heston model with the parameters as specified in Table 1). Contrary to the Heston-SLV
case, we report the results for Set 3 in Figure 2.5 and for Sets 2 and 4 in Tables 4 and 5, respectively.

1The boundaries of the 95%-confidence interval are µ(σ1,model, σ2,model, σ3,model, . . .)±1.96·σ(σ1,model, σ2,model, σ3,model, . . .),

with µ(·) and σ(·) denoting the mean and standard deviation, respectively, and σi,model stands for the model implied volatility

(obtained from Monte Carlo) corresponding to the ith seed.
2E.g., when repeating the experiment for the Heston-SLV model (NV = 6, n = 5), given ‘Heston market’ Set 1, with 20 seeds,
5 · 105 paths per seed, we obtain the errors 0.02, 0.00, 0.01, 0.01, 0.00, 0.03, 0.01 and corresponding standard deviations

0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02.

15



September 29, 2016 Quantitative Finance Main˙SC˙R˙QuantFin˙revised˙final

Set Ccypair T V0 ρs,v γ κ V

1 EURGBP 1 0.01 0.23 0.21 1.50 0.01
2 EURUSD 2 0.02 −0.14 0.20 0.75 0.02
3 AUDJPY 3 0.07 −0.54 0.93 0.50 0.07
4 USDJPY 5 0.02 −0.71 0.39 0.30 0.02

Table 1. Heston parameters in typical FX markets (market data as of 16 September 2008, see Clark (2011)).

‘Heston market’ Set 1
Sat. calibrated Poorly calibrated

K εH εH-SLV εLV εH εH-SLV εLV

0.86 0.32 0.04 (0.09) 0.04 (0.11) 1.48 0.01 (0.11) 0.02 (0.09)
0.90 0.10 0.04 (0.08) 0.05 (0.09) 1.00 0.01 (0.09) 0.01 (0.08)
0.95 0.09 0.05 (0.08) 0.06 (0.09) 0.72 0.01 (0.09) 0.01 (0.09)
1.00 0.15 0.04 (0.09) 0.04 (0.09) 0.77 0.01 (0.11) 0.01 (0.10)
1.05 0.08 0.01 (0.10) 0.03 (0.10) 1.13 0.02 (0.12) 0.02 (0.11)
1.11 0.06 0.03 (0.13) 0.03 (0.12) 1.64 0.01 (0.12) 0.02 (0.15)
1.16 0.22 0.00 (0.17) 0.02 (0.14) 2.20 0.01 (0.15) 0.03 (0.19)

Table 2. Errors εmodel := |σmarket − σmodel| in % corresponding to ‘Heston market’ Set 1. ‘Sat.’ stands for the
satisfactorily calibrated Heston model and σ denotes the Black-Scholes implied volatility. Numbers in parentheses

are standard deviations over the seeds.

‘Heston market’ Set 3
Sat. calibrated Poorly calibrated

K εH εH-SLV εLV εH εH-SLV εLV

0.77 1.14 0.01 (0.20) 0.04 (0.18) 1.09 0.13 (0.18) 0.05 (0.20)
0.84 1.26 0.05 (0.18) 0.04 (0.17) 2.17 0.09 (0.18) 0.05 (0.18)
0.92 1.35 0.07 (0.18) 0.04 (0.18) 3.19 0.06 (0.19) 0.04 (0.16)
1.00 1.33 0.11 (0.19) 0.04 (0.19) 4.01 0.03 (0.19) 0.03 (0.15)
1.09 1.03 0.14 (0.22) 0.01 (0.21) 4.30 0.01 (0.20) 0.02 (0.17)
1.19 0.34 0.07 (0.28) 0.01 (0.25) 3.66 0.05 (0.21) 0.02 (0.22)
1.30 0.44 0.10 (0.35) 0.01 (0.30) 2.18 0.06 (0.24) 0.04 (0.27)

Table 3. Errors εmodel := |σmarket − σmodel| in % corresponding to ‘Heston market’ Set 3. ‘Sat.’ stands for the
satisfactorily calibrated Heston model and σ denotes the Black-Scholes implied volatility. Numbers in parentheses

are standard deviations over the seeds.

Given the standard deviations, we observe that for the SABR-LV model for all strikes – except for
K = 0.72 and K = 0.80 for ‘Heston market’ Set 4 – the reference is within the 95%-confidence
interval. Further, for the standard SABR model, only for ‘Heston market’ Set 2, the satisfactorily
calibrated case, the reference is within the 95%-confidence interval (see footnote 1). Here we leave
out the highly accurate results corresponding to Set 1, to save some space. All results are obtained
with NV = 4, n = 5 (Sets 1, 2) and n = 7 basis functions (Sets 3, 4) – these numbers correspond to
the first experiment in this section. In all pricing experiments we apply the first adaptation to the
method described in Section 2.2. Both the second and the third correction mentioned in Section
2.2 is not used. However, for Sets 3 and 4, in the calibration of the ‘pure’ SABR model we include
a constraint on the vol-vol parameter, see Remark 2.2.

Remark 2.2 (Limitations of the SC-R approach) Considering expiries up to 6 years, for the
Heston-SLV model the stochastic collocation – regression approach yields highly accurate results

for the calibrated ‘pure’ Heston parameters that satisfy F := 2κV̄
γ2 − 1 ≥ −0.8, regardless of the

‘Heston market’ we assume. For extreme cases for which F ≈ −0.8 we typically choose NV = 6,
the number of basis functions n in the range 7− 9 and make use of all enhancements described in
Section 2.2, with p∗v in the range 0.01−0.1 and δ = 0.1. Trivially, in the calibration one can control
to which extent the Feller condition is violated by imposing constraints on the parameters, such
that the stochastic collocation – regression approach works without the enhancements of Section
2.2 and for lower numbers of collocation points and basis functions. For our approach to work for
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Figure 2.4. Black-Scholes implied volatilities corresponding to Set 4 with the satisfactorily (left) and poorly (right)
calibrated Heston model. ‘H-SLV’ stands for the Heston-Stochastic Local Volatility model. Results are obtained with
2 · 105 paths (2 seeds, each seed constitutes 105 paths) and 200 time-steps per year.

‘Heston market’ Set 2
Sat. calibrated Poorly calibrated

K εSABR εSABR-LV εSABR εSABR-LV

0.81 0.02 (0.23) 0.01 (0.25) 2.93 (0.21) 0.04 (0.25)
0.87 0.03 (0.18) 0.04 (0.19) 2.87 (0.14) 0.05 (0.19)
0.93 0.04 (0.14) 0.04 (0.16) 2.79 (0.11) 0.04 (0.16)
1.00 0.03 (0.13) 0.02 (0.14) 2.73 (0.10) 0.03 (0.15)
1.07 0.04 (0.14) 0.00 (0.15) 2.72 (0.11) 0.01 (0.16)
1.15 0.08 (0.14) 0.05 (0.16) 2.78 (0.12) 0.03 (0.17)
1.24 0.15 (0.17) 0.16 (0.20) 2.90 (0.14) 0.11 (0.21)

Table 4. Errors εmodel := |σmarket − σmodel| in % corresponding to ‘Heston market’ Set 2. ‘Sat.’ stands for the
satisfactorily calibrated Heston model and σ denotes the Black-Scholes implied volatility. Numbers in parentheses

are standard deviations over the seeds.

‘Heston market’ Set 4
Sat. calibrated Poorly calibrated

K εSABR εSABR-LV εSABR εSABR-LV

0.72 1.08 (0.21) 0.54 (0.22) 2.44 (0.22) 0.44 (0.21)
0.80 0.78 (0.14) 0.32 (0.13) 1.98 (0.14) 0.25 (0.13)
0.89 0.32 (0.09) 0.11 (0.08) 1.33 (0.08) 0.10 (0.08)
1.00 0.35 (0.06) 0.10 (0.06) 0.46 (0.05) 0.03 (0.06)
1.12 0.73 (0.06) 0.10 (0.08) 0.14 (0.06) 0.04 (0.07)
1.25 0.10 (0.09) 0.01 (0.09) 0.32 (0.08) 0.00 (0.09)
1.40 0.44 (0.13) 0.11 (0.14) 0.82 (0.13) 0.09 (0.14)

Table 5. Errors εmodel := |σmarket − σmodel| in % corresponding to ‘Heston market’ Set 4. ‘Sat.’ stands for the
satisfactorily calibrated Heston model and σ denotes the Black-Scholes implied volatility. Numbers in parentheses

are standard deviations over the seeds.

the SABR-LV model, for ‘Heston market’ Sets 3 and 4 we need to impose in the calibration of the
‘pure’ SABR model the constraints γ < 0.55 and γ < 0.4, respectively, which seems very reasonable
in practice.
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Figure 2.5. Black-Scholes implied volatilities corresponding to Set 3 with the satisfactorily (left) and poorly (right)
calibrated SABR model. Results are obtained with 2 · 105 paths (2 seeds, each seed constitutes 105 paths) and 200
time-steps per year.

3. Local Volatility Model with Stochastic Rates

In this section we present an evaluation approach for the local volatility model extended with
stochastic interest rates. The method is similar as the one employed in a stochastic local volatility
context ; based on the fact that cumulative distribution functions are equally distributed, we first
project S(·) on a standard normal random variable. Subsequently we apply regression to approxi-
mate a conditional expectation.

As pointed out in Deelstra and Rayée (2012), in the long-dated FX options market the effect
of interest rate volatility becomes increasingly relevant for a longer expiry and may become as
important as that of the FX spot volatility. Further, also in an FX context, Piterbarg (Piterbarg
2006) considers for the pricing of Power-Reverse Dual-Currency (PRDC) swaps, the local volatility
model incorporating stochastic interest rates, assuming that the domestic and foreign interest rates
follow Hull-White dynamics. He states that FX options exhibit a significant volatility skew and,
moreover, that PRDC swaps, due to their structure, are highly sensitive to it. Therefore, the
assumption of lognormality of the FX rates in the standard three-factor pricing model is not
appropriate to price and hedge long-dated FX products. Further, as pointed out in Benhamou
et al. (2012), long-term callable path-dependent equity options require an appropriate modelling
of the underlying asset process and, moreover, the early-exercise feature – in particular for a large
time-span – suggests interest rates risk. Enhancing the local volatility model with stochastic interest
rates is also the subject of research in Atlan (2006), Ren et al. (2007), Guyon and Henry-Labordère
(2012), amongst others.

Similar as in e.g. Piterbarg (2006), Deelstra and Rayée (2012), Benhamou et al. (2012), let the
interest rate be governed by Hull-White dynamics, which is also the case in the traditional three-
factor pricing model. Under the risk-neutral Q-measure, the dynamics of the Local Volatility-Hull
White (LV-HW) model are given by the following system of equations (see e.g. Atlan (2006)):

dS(t)/S(t) = r(t)dt+ σ(t, S(t))dWQ
s (t), (34)

dr(t) = λ (θ(t)− r(t)) dt+ ηdWQ
r (t), (35)

with dWQ
s (t)dWQ

r (t) = ρr,sdt. In the interest rate process the speed of mean reversion λ and

18
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the volatility coefficient η are related with the time-dependent term structure function θ(·) via1

θ(t) = f(0, t) + 1
λ
∂
∂tf(0, t) + η2

2λ2

(
1− e−2λt

)
, which yields a model fit with the initial yield curve,

where f(0, t) denotes the initial instantaneous forward rate corresponding to expiry t, defined by
f(0, t) = −∂ log (P (0, t)) /∂t and P (0, t) is the current value of the zero-coupon bond, which is
given by

P (0, t) = exp

(
−
∫ t

0
ψ(s)ds+A(t)

)
, (36)

with ψ(t) = r0e−λt + λ
∫ t

0 θ(s)e
−λ(t−s)ds and A(t) = η2

2λ3

(
λt− 2(1− e−λt) + 1

2

(
1− e−2λt

))
.

From the expression for the instantaneous forward rate, the initial interest rate r0 is implied by
the identity r(t) = f(t, t). Further, the local volatility component reads

σ2(t,K) =

∂C(t,K)
∂t −KEQ

[
r(t)
M(t)1S(t)>K

∣∣∣F(t0)
]

1
2K

2 ∂
2C(t,K)
∂K2

, (37)

where M(t) denotes the value of the moneyness account, determined by dM(t) = r(t)M(t)dt. As
we always consider t0 = 0, we leave out the filtration for notational purposes from now on.

In the local volatility component the expectation EQ
[
r(t)
M(t)1S(t)>K

]
is problematic in a calibration

sense, as no direct link with the market quotes can be observed (Deelstra and Rayée 2012). Also,
no analytical expressions for the joint distribution of r(t)/M(t) and S(t) are available. Further, the
discretization scheme suggests that for each time-step in the simulation, the expectation, which in
principle is a deterministic function of si,j , needs to be evaluated for each path. This is expensive
and undesirable. In the following section we present a novel approach for the evaluation of the
expectation, which is both efficient and accurate. The method is similar to the one presented in the
stochastic local volatility setting in Section 2.

3.1. Establishing EQ
[

r(t)
M(t)

1S(t)>K

]
In this section we determine an approximation for the non-trivial expectation in the local volatility
component (37). Similar to the approach for evaluating stochastic local volatility models, the
method essentially consists of two projection steps. We first apply a projection on a standard normal
random variable, employing the equality in distribution of cumulative distribution functions, and
subsequently we make use of ordinary least squares regression.

We start by applying a change of measure:

EQ

[
r(t)

M(t)
1S(t)>K

]
= P (0, t)Et

[
r(t)1S(t)>K

]
. (38)

At the right-hand side, under the t-forward measure, r(·) is normally distributed with mean

µtr(t) = r(0)e−λt +

∫ t

0
θ̃(u)e−λ(t−u)du, θ̃(u) := λθ(u) +

η2

λ

(
e−λ(t−u) − 1

)

1The expression for θ(·) is obtained by decomposing the Hull-White model, see e.g. Pelsser (2000).
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and standard deviation

σtr(t) =

(
η2

2λ

(
1− e−2λt

))1/2

.

Further, the CDF of S(t) under the t-forward measure, denoted by F tS(t)(·), can be derived from

the following well-known relation (see e.g. Gatheral (2006)):

∂C(t,K)

∂K
= −P (0, t)Qt [S(t) > K] ,

where C(t,K) is the price at t = 0 (‘today’) of a European call option with maturity t and strike
K and P (0, t) denotes the zero-coupon bond with expiry t. This relation directly implies

F tS(t)(K) = 1−Qt [S(t) > K] = 1 +
1

P (0, t)

∂C(t,K)

∂K
.

To evaluate the expectation at the right-hand side of equation (38), for a fixed t we project S(t) onto

a standard normal distribution X
d
= N (0, 1) via the function g(·), defined by1 g(·) := F−1

S(t)(FX(·)),

which ensures S(t)
d
= g(X) and, moreover, for elements S(t) = s and X = x: s = g(x). This

element-wise equality implies x = g−1(s) = F−1
X (F tS(t)(s)), which yields for the expectation in

(38):

EQ

[
r(t)

M(t)
1S(t)>K

]
= P (0, t)Et

[
r(t)1g(X)>K

]
= P (0, t)Et

[
r(t)1X>g−1(K)

]
. (39)

We proceed with the second projection step. Trivially, from (39) we write (as FX(g−1(K)) =
F tS(t)(K))

EQ

[
r(t)

M(t)
1S(t)>K

]
= P (0, t)Et

[
r(t)|X > g−1(K)

] (
1− FX(g−1(K))

)
= P (0, t)

(
µtr(t) + σtr(t)E

t
[
Z|X > g−1(K)

]) (
1− F tS(t)(K)

)
.

Similar to the approach presented in the stochastic local volatility setting, to evaluate the conditional
expectation, we apply a projection on a set of basis functions ψk(·), k = 1, 2, . . . , n (n <∞) which
depend on X. We again choose the simple set of orthogonal polynomials {1, x, x2, . . . , xn−1} and
apply OLS regression to compute the corresponding coefficients, which yields

E
[
Z|X > g−1(K)

]
= β̂0 + β̂1E

[
X|X > g−1(K)

]
+ β̂2E

[
X2
∣∣X > g−1(K)

]
+ . . .+ β̂n−1E

[
Xn−1

∣∣X > g−1(K)
]

+ ε.

The truncated moments of X allow for an analytic evaluation, which we state in Result 3.1.

1For notation purposes we suppress the t-superscript in the inverse of the CDF of S(t).
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Result 3.1 (Moments of a truncated standard normal random variable) Given X
d
= N (0, 1) and

define mi := E
[
Xi
∣∣X > a

]
, with a ∈ R. The truncated moments are given by

mi = (i− 1)mi−2 +
ai−1fN (0,1)(a)

1− FN (0,1)(a)
, i = 1, 2, . . . ,

with m−1 = 0, m0 = 1 and fN (0,1)(·) and FN (0,1) denoting the standard normal probability density
and cumulative distribution functions, respectively.

Combining results yields

EQ

[
r(t)

M(t)
1S(t)>K

]
= P (0, t)

(
µtr(t) + σtr(t)

(
β̂0 + β̂1E

[
X|X > g−1(K)

]
+ β̂2E

[
X2
∣∣X > g−1(K)

]
+ . . .+ β̂n−1E

[
Xn−1

∣∣X > g−1(K)
]))(

1− F tS(t)(K)
)

+ ε. (40)

The error ε is introduced in the regression step and is discussed in Appendix A. In Section 2.3.1
we demonstrate a decrease of this error with respect to the number of Monte Carlo realizations.

3.1.1. Alternative approach. Instead of applying regression, an alternative approach is based
on the assumption that r(·) and X in (39) are governed by a joint bivariate normal distribution. For

two jointly normally distributed random variables X1
d
= N (µ1, σ1) and X2

d
= N (µ2, σ2), correlated

with correlation ρ, the following result holds:

E [X11X2>k] =

µ1 + ρσ1

fN (0,1)

(
k−µ2

σ2

)
1− FN (0,1)

(
k−µ2

σ2

)
 (1− FX2

(k)) , (41)

where fN (0,1)(·) and FN (0,1)(·) are the standard normal PDF and CDF, respectively, and FX2
(·) is

the CDF corresponding to the random variable X2. A proof of this result is given in Appendix B.
By the result in (41) the expectation in (39) is approximated as follows:

Et
[
r(t)1X>g−1(K)

]
=

(
µtr(t) + ρtr,X(t)σtr(t)

fN (0,1)

(
g−1(K)

)
1− FN (0,1) (g−1(K))

)(
1− FX(g−1(K))

)
+ ε,

with g−1(K) = F−1
X (F tS(t)(K)), where the error term ε is introduced by assuming that r(t) and X

are jointly bivariate normally distributed under the t-forward measure. Further, as FX(g−1(K)) =
F tS(t)(K), we have

EQ

[
r(t)

M(t)
1S(t)>K

]
= P (0, t)

(
µtr(t) + ρtr,X(t)σtr(t)

fN (0,1)

(
g−1(K)

)
1− F tS(t)(K)

)(
1− F tS(t)(K)

)
+ ε, (42)

where the correlation parameter is numerically (i.e. based on the Monte Carlo paths) established
by applying a change of measure:

ρtr,X(t)
def
=

Et [r(t)X]− Et [r(t)] Et [X]

σtr(t)σ
t
X

=
Et [r(t)X]

σtr(t)
=

1

P (0, t)σtr(t)
EQ

[
r(t)

M(t)
X

]
,
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with X = g−1(K), P (0, t) is defined in (36) and σtr(t) =
(
η2

2λ(1− e−2λt)
)1/2

.

A comparison of (40) and (42) makes clear that the latter can be considered as a special case of
the more generic expression in (40). We apply the SC-R approach in (40) or the alternative in (42)
in a Monte Carlo simulation framework according to Algorithm 2. As for Algorithm 1, the indices
i = 1, 2, . . . , N and j = 1, 2, . . . ,M denote the time-step and path, respectively.

for each time-step ti, i = 1, 2, . . . , N do
1 Generate M pairs (si,j , ri,j), j = 1, 2, . . . ,M by going forward one time-step in the standard Euler

discretization scheme of the Local Volatility-Hull White model.

2 Compute EQ
[

r(ti)
M(ti)

1S(ti)>si,j

]
according to either (40) or the alternative in (42).

3 Establish the local volatility component σ2(ti, si,j) by equation (37) – use its value in step 1.
end

4 Price European call options based on the obtained values for S(·) at the time to maturity.

Algorithm 2: Pricing European call options by a Monte Carlo simulation of the LV-HW model,
incorporating the SC-R approach (Section 3.1) or the alternative (Section 3.1.1).

Our numerical experiments in Section 3.2 indicate that the approximations (40) and (42) show a
similar performance for the shorter expiries, whereas for the longer expiries the former outperforms
the latter. The reason for this is the fact that the error due to the bivariate normality assumption
becomes more pronounced for longer expiries, i.e. the joint distribution of r(·) and X in (39) then
resembles less a bivariate normal distribution.

3.2. Numerical experiments

In this section we test the accuracy of the approximation in (40) and the alternative (42). We price
European call options by means of a Monte Carlo simulation1 of the Local Volatility-Hull White
model. At each time-step in the simulation we either use the approximation (40) or approximate
the expectation according to (42). We consider two sets of Hull-White parameters in the literature,
see Table 6. In line with the literature we choose for both sets r0 = 0.02.

We generate synthetic market data by applying Fourier techniques to the Heston model, which
we assume to be calibrated perfectly to the market. We choose three sets of Heston parameters for
which the Feller condition is strongly violated, namely the parameter sets presented in Andersen
(2008), see Table 7. In the regression we choose n = 5 basis functions, so we consider the first four
moments of the truncated standard normal distribution. Similar as in Piterbarg (2006), given the
expiry T we consider the strikes Ki = F T0 exp(0.1δi

√
T ), with F T0 = S0/P (0, T ) = 1/P (0, T ) (as

S0 = 1) denoting the initial forward and δi = −1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5.
For the two shortest expiries per Hull-White set the results are provided by Tables 8, 9 (‘Heston

market’ Set 1), 10, 11 (‘Heston market’ Set 2), 12 and 13 (‘Heston market’ Set 3). We report the
absolute error ε := |σmarket − σLV-HW| in %, with σ denoting the Black-Scholes implied volatility.
The error εalternative corresponds to the alternative approach of Section 3.1.1. Given the standard

1The Monte Carlo simulation consists of 2 · 105 paths (20 seeds, each seed constitutes 104 paths) and 200 time-steps per year,

unless otherwise mentioned.

Set T λ η ρr,s

A 1, 2, 5 0.01 0.01 0.6
B 5, 10, 15 0.01 0.007 −0.15

Table 6. Hull-White model parameters as in Grzelak and
Oosterlee (2011) (Set A) and Piterbarg (2006), Grzelak and

Oosterlee (2012) (Set B).

Set V0 ρs,v γ κ V

1 0.04 −0.9 1 0.5 0.04
2 0.04 −0.5 0.9 0.3 0.04
3 0.09 −0.3 1 1 0.09

Table 7. ‘Heston market’ parameters as in Andersen
(2008).
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‘Heston market’ Set 1, Hull-White Set A
T = 1 T = 2

K ε εalternative K ε εalternative
0.88 0.00 (0.27) 0.01 (0.25) 0.84 0.01 (0.22) 0.03 (0.21)
0.92 0.01 (0.23) 0.01 (0.22) 0.90 0.01 (0.20) 0.02 (0.18)
0.97 0.02 (0.21) 0.02 (0.19) 0.97 0.01 (0.18) 0.01 (0.16)
1.02 0.04 (0.17) 0.04 (0.16) 1.04 0.03 (0.15) 0.01 (0.13)
1.07 0.05 (0.13) 0.05 (0.11) 1.12 0.04 (0.11) 0.06 (0.08)
1.13 0.05 (0.10) 0.05 (0.09) 1.20 0.01 (0.12) 0.02 (0.10)
1.19 0.04 (0.11) 0.04 (0.10) 1.29 0.02 (0.15) 0.03 (0.15)

Table 8. Errors ε := |σmarket − σLV-HW| in % corresponding to the ‘Heston market’ Set 1, Hull-White Set A (σ
denotes the Black-Scholes implied volatility). Numbers in parentheses are standard deviations over the seeds.

‘Heston market’ Set 1, Hull-White Set B
T = 5 T = 10

K ε εalternative K ε εalternative
0.79 0.04 (0.15) 0.13 (0.14) 0.76 0.01 (0.11) 0.38 (0.10)
0.88 0.03 (0.13) 0.11 (0.12) 0.89 0.00 (0.11) 0.31 (0.08)
0.90 0.02 (0.12) 0.07 (0.10) 1.04 0.01 (0.10) 0.21 (0.08)
1.11 0.00 (0.09) 0.02 (0.08) 1.22 0.03 (0.09) 0.05 (0.07)
1.24 0.01 (0.08) 0.09 (0.07) 1.43 0.06 (0.08) 0.26 (0.06)
1.38 0.01 (0.11) 0.10 (0.10) 1.68 0.01 (0.08) 0.50 (0.05)
1.55 0.02 (0.16) 0.03 (0.14) 1.96 0.01 (0.18) 0.28 (0.14)

Table 9. Errors ε := |σmarket − σLV-HW| in % corresponding to the ‘Heston market’ Set 1, Hull-White Set B (σ
denotes the Black-Scholes implied volatility). Numbers in parentheses are standard deviations over the seeds.

‘Heston market’ Set 2, Hull-White Set A
T = 1 T = 2

K ε εalternative K ε εalternative
0.88 0.09 (0.27) 0.09 (0.27) 0.84 0.05 (0.23) 0.07 (0.23)
0.92 0.08 (0.24) 0.07 (0.24) 0.90 0.05 (0.21) 0.06 (0.21)
0.97 0.06 (0.21) 0.06 (0.20) 0.97 0.05 (0.19) 0.05 (0.18)
1.02 0.05 (0.17) 0.04 (0.16) 1.04 0.04 (0.18) 0.03 (0.17)
1.07 0.05 (0.16) 0.04 (0.16) 1.12 0.05 (0.20) 0.04 (0.19)
1.13 0.05 (0.17) 0.05 (0.17) 1.20 0.09 (0.24) 0.08 (0.24)
1.19 0.08 (0.19) 0.07 (0.19) 1.29 0.14 (0.31) 0.13 (0.31)

Table 10. Errors ε := |σmarket − σLV-HW| in % corresponding to the ‘Heston market’ Set 2, Hull-White Set A (σ
denotes the Black-Scholes implied volatility). Numbers in parentheses are standard deviations over the seeds.

deviations, we observe that for all LV-HW experiments both the SC-R approach and the alternative
yield 95%-confidence intervals2 that cover the reference implied volatility, except for one case: the
alternative approach with ‘Heston market’ Set 1, Hull-White Set B, T = 10. For the expiries T = 5
and T = 15 corresponding to Hull-White Sets A and B, respectively, the results are displayed in
Figures 3.1 and 3.2, respectively. With ‘LV-HW alt.’ we denote the alternative approach.

In general, for both the approximation (40) and its alternative (42) the results are highly sat-
isfactory. For the shorter expiries the two methods show a comparable performance, however for
T = 10 and T = 15 we observe that the regression-based approach outperforms the alternative –
we clearly observe this in Figure 3.2. The reason for this is that the alternative approach relies on
the bivariate normality assumption of r(·) and X in (39). The error introduced by the bivariate
normality assumption becomes more pronounced for longer expiries, since the joint distribution
of r(·) and X resembles less a bivariate normal distribution when going forward in time. In the
left-hand plot of Figure 3.2 we observe a slight mismatch on the right-hand side of the strike range.

2The boundaries of the 95%-confidence interval are µ(σ1,model, σ2,model, σ3,model, . . .)±1.96·σ(σ1,model, σ2,model, σ3,model, . . .),
with µ(·) and σ(·) denoting the mean and standard deviation, respectively, and σi,model stands for the model implied volatility
(obtained from Monte Carlo) corresponding to the ith seed.
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Figure 3.1. Black-Scholes implied volatilities corresponding to Hull-White Set A, T = 5 and the ‘Heston market’
Sets 1 (left), 2 (middle) and 3 (right), using 200 time-steps per year for Sets 1 and 2. For Set 3 500 time-steps per year
are used, as 200 time-steps did not yield highly satisfactory results. ‘LV-HW alt.’ denotes the alternative approach
presented in Section 3.1.1. Results are obtained with 2 · 105 paths (2 seeds, each seed constitutes 105 paths).

‘Heston market’ Set 2, Hull-White Set B
T = 5 T = 10

K ε εalternative K ε εalternative
0.79 0.08 (0.20) 0.11 (0.20) 0.76 0.05 (0.15) 0.20 (0.15)
0.88 0.07 (0.18) 0.09 (0.18) 0.89 0.04 (0.14) 0.14 (0.15)
0.90 0.05 (0.16) 0.05 (0.16) 1.04 0.01 (0.14) 0.04 (0.14)
1.11 0.03 (0.16) 0.00 (0.16) 1.22 0.02 (0.15) 0.09 (0.16)
1.24 0.04 (0.18) 0.00 (0.19) 1.43 0.00 (0.20) 0.13 (0.19)
1.38 0.06 (0.24) 0.04 (0.24) 1.68 0.05 (0.28) 0.05 (0.27)
1.55 0.10 (0.32) 0.09 (0.32) 1.96 0.06 (0.37) 0.05 (0.35)

Table 11. Errors ε := |σmarket − σLV-HW| in % corresponding to the ‘Heston market’ Set 2, Hull-White Set B (σ
denotes the Black-Scholes implied volatility). Numbers in parentheses are standard deviations over the seeds.
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Figure 3.2. Black-Scholes implied volatilities corresponding to Hull-White Set B, T = 15 and the ‘Heston market’
Sets 1 (left), 2 (middle) and 3 (right). ‘LV-HW alt.’ denotes the alternative approach presented in Section 3.1.1.
Results are obtained with 2 · 105 paths (2 seeds, each seed constitutes 105 paths) and 200 time-steps per year.
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‘Heston market’ Set 3, Hull-White Set A
T = 1 T = 2

K ε εalternative K ε εalternative
0.88 0.14 (0.26) 0.14 (0.26) 0.84 0.09 (0.29) 0.10 (0.29)
0.92 0.13 (0.24) 0.13 (0.24) 0.90 0.08 (0.28) 0.09 (0.28)
0.97 0.12 (0.23) 0.11 (0.23) 0.97 0.08 (0.28) 0.08 (0.27)
1.02 0.11 (0.24) 0.11 (0.24) 1.04 0.08 (0.29) 0.08 (0.28)
1.07 0.10 (0.25) 0.10 (0.25) 1.12 0.08 (0.31) 0.08 (0.31)
1.13 0.09 (0.27) 0.09 (0.27) 1.20 0.09 (0.34) 0.09 (0.34)
1.19 0.09 (0.29) 0.09 (0.29) 1.29 0.11 (0.37) 0.11 (0.37)

Table 12. Errors ε := |σmarket − σLV-HW| in % corresponding to the ‘Heston market’ Set 3, Hull-White Set A (σ
denotes the Black-Scholes implied volatility). Numbers in parentheses are standard deviations over the seeds.

‘Heston market’ Set 3, Hull-White Set B
T = 5 T = 10

K ε εalternative K ε εalternative
0.79 0.04 (0.27) 0.04 (0.28) 0.76 0.01 (0.35) 0.01 (0.38)
0.88 0.03 (0.28) 0.03 (0.29) 0.89 0.00 (0.36) 0.01 (0.38)
0.90 0.03 (0.30) 0.03 (0.30) 1.04 0.00 (0.38) 0.01 (0.40)
1.11 0.03 (0.31) 0.03 (0.32) 1.22 0.02 (0.40) 0.01 (0.43)
1.24 0.04 (0.32) 0.03 (0.33) 1.43 0.02 (0.43) 0.01 (0.45)
1.38 0.05 (0.34) 0.04 (0.35) 1.68 0.03 (0.46) 0.01 (0.48)
1.55 0.05 (0.38) 0.04 (0.39) 1.96 0.04 (0.49) 0.01 (0.52)

Table 13. Errors ε := |σmarket − σLV-HW| in % corresponding to the ‘Heston market’ Set 3, Hull-White Set B (σ
denotes the Black-Scholes implied volatility). Numbers in parentheses are standard deviations over the seeds.

This is not due to the performance of the approximation methods, but due to general Monte Carlo
bias1.

4. Conclusion

In this article we considered in a Monte Carlo simulation framework two classes of hybrid local
volatility models, namely stochastic local volatility models and the local volatility model extended
with stochastic interest rates. For both model classes a non-trivial (conditional) expectation needs
to be evaluated, which cannot be extracted from the market quotes and is expensive to compute.
In this article we presented a novel, efficient approach to the evaluation of these expectations.
The method essentially consists of two projection steps; the first projection employs the equality
in distribution of cumulative distribution functions, which stands at the basis of the stochastic
collocation method, the second projection step relies on standard regression techniques. By means of
numerical experiments we confirm that our approach facilitates an efficient Monte Carlo evaluation
and yields highly accurate pricing results for European-type options.
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and Robustness Studies. Sankhyā: The Indian Journal of Statistics, Series B, 1974, pp. 115–128.
Nobile, F., Tempone, R. and Webster, C.G., A Sparse Grid Stochastic Collocation Method for Partial

Differential Equations with Random Input Data. SIAM Journal on Numerical Analysis, 2008, 46, 2309–
2345.

Pascucci, A. and Mazzon, A., The Forward Smile in Local-Stochastic Volatility Models. Available at SSRN,
2015.

Pelsser, A., Efficient Methods for Valuing Interest Rate Derivatives, 2000, Springer Science & Business
Media.

Piterbarg, V., Cross-Currency Exotics: Smiling Hybrids. Risk, 2006, 19, 66–71.
Piterbarg, V., Markovian Projection Method for Volatility Calibration. Risk, 2007.
Rebonato, R., Volatility and Correlation in the Pricing of Equity, FX, and Interest-rate Options, 1999, John

Wiley & Sons, Ltd.
Rebonato, R., McKay, K. and White, R., The SABR/LIBOR Market Model: Pricing, Calibration and Hedg-

ing for Complex Interest-Rate Derivatives, 2011, Wiley.com.
Ren, Y., Madan, D. and Qian, M.Q., Calibrating and Pricing with Embedded Local Volatility Models. Risk,

2007, 20, 138–143.
Sankaran, S. and Marsden, A.L., A Stochastic Collocation Method for Uncertainty Quantification and Prop-

agation in Cardiovascular Simulations. Journal of Biomechanical Engineering, 2011, 133, 031001.
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Appendix A: Error analysis & discussion

In this section we briefly discuss the (asymptotics of the) errors in (26) which are due to the
stochastic collocation method (ε1(·)) and the projection on an orthonormal basis and subsequently
applying regression (ε2).
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A.1. Stochastic collocation error

The first error is ε1(K) := E
[
ε1(Z)|X = g−1(K)

]
, with Z denoting a standard normal random

variable. It is introduced by projecting, for a given t, the random variable V (t) on Z via a Lagrange
polynomial hNV (·), which interpolates through the collocation values vi = F−1

V (t)(FZ(zi)), where

the collocation points zi are chosen in an optimal way, namely based on the zeros of Hermite
polynomials.

We start the analysis of ε1(·) by the following (in)equalities:

|E [h(Z)− hNV (Z)]| ≤ E [|h(Z)− hNV (Z)|] (by Jensen’s inequality) (A1)

≤
(

E
[
(h(Z)− hNV (Z))2

])1/2
, (A2)

where the latter inequality is a standard relation between Lp-norms, see e.g. Steele (2001).
As pointed out in the error analysis in Grzelak et al. (2014), the advantage of using optimal

collocation points is that the stochastic collocation method can be connected to the computation
of integrals by Gauss quadrature, which for the general function Ψ(·), weight function fZ(·) and
quadrature weights ωi, i = 1, 2, . . . , NV reads:

E [Ψ(Z)] =

∫
R

Ψ(z)fZ(z)dz =

NV∑
i=1

Ψ(zi)ωi + εNV . (A3)

In this article we choose the collocation variable Z
d
= N (0, 1), for which a simple relation between

the ‘stochastic collocation pairs’ {zi, ωi}NVi=1 and the Gauss-Hermite quadrature pairs {zHi , ωHi }
NV
i=1

exists. Whereas in the stochastic collocation method the weight function fZ(z) = 1√
2π

exp
(
−1

2z
2
)

is

used, Gauss-Hermite quadrature is based on fZ(z) = exp(−z2). However, standard calculus yields∫
R Ψ(z) 1√

2π
e−

1

2
z2dz =

∫
R Ψ(z

√
2) 1√

π
e−z

2

dz. From this one can show the relations zHi = zi/
√

2

and ωHi = ωi
√
π, which implies that for a standard normal collocation variable the error due to

stochastic collocation is given by the error for the Gauss-Hermite quadrature, which is, see e.g.
Abramowitz and Stegun (1972), given by:

εNV =
NV !
√
π

2NV
Ψ(2NV )(ξ̂)

(2NV )!
, (A4)

with ξ̂ ∈ [min(z) max(z)], z = (z1, z2, . . . , zNV ). By choosing Ψ(z) = (h(z) − hNV (z))2, with
h(·) = F−1

V (t)(FZ(·)) and hNV (·) the corresponding approximating Lagrange polynomial, equation

(A3) yields the error:

E
[
(h(Z)− hNV (Z))2

]
=

∫
R

(h(z)− hNV (z))2fZ(z)dz

=

NV∑
i=1

(h(zi)− hNV (zi))
2ωi + εNV

= εNV ,

as h(zi) = hNV (zi). Ψ(z) = (h(z) − hNV (z))2 can be written more explicitly as the square of the
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standard Lagrange interpolation error, see e.g. Abramowitz and Stegun (1972):

Ψ(z) =

(
1

NV !

dNV h(z)

dzNV

∣∣∣∣
z=ξ̂

NV∏
i=1

(z − zi)

)2

, (A5)

with ξ̂ ∈ [min(z) max(z)], z = (z1, z2, . . . , zNV ). This error may be bounded by choosing z = ξ̂ for

which
∣∣∣dNV h(z)

dzNV

∣∣∣ attains its maximum.

Substituting (A5) in (A4) yields a complete specification for εNV , and it can be shown that it
converges to zero as NV → ∞ (under the condition that Ψ(·) is sufficiently smooth). Then, from
the inequalities (A1) and (A2), combined with the identity

E [h(Z)− hNV (Z)] =

∫
R

E [h(Z)− hNV (Z)|X = x] fX(x)dx,

the error ε1(x) := E [h(Z)− hNV (Z)|X = x] converges to zero as NV →∞, for arbitrary x ∈ R.

A.2. Regression error

The second error term ε2 :=
∑NV−1

p=1 ε̂2p is due to the projection of the unknown conditional

expectations E
[
Zp|X = g−1(K)

]
on a set of basis functions {1, x, x2, . . . , xn−1} and applying OLS

regression. This is polynomial regression, which is a special case of multiple linear regression. In a
Monte Carlo simulation framework, given M observations for the underlying S(·), sj , we write, as
we evaluate the local volatility component in K = sj :

E [Zp|X = xj ] = b0p + b1pxj + . . .+ bn−1,px
n−1
j + ε2pj , j = 1, 2, . . . ,M, (A6)

with xj := g−1(sj) and ε2pj is the unobserved error term corresponding to the jth realization. We

apply OLS regression to compute β̂kp, k = 0, 1, . . . , n−1, p = 1, 2, . . . , NV −1, which are estimates

for bkp. This yields Ê [Zp|X = xj ] = β̂0p + β̂1pxj + . . .+ β̂n−1,px
n−1
j + ε̂2pj , j = 1, 2, . . . ,M.

Let x = (1 x x2 . . . xn−1) be an M × n matrix and denote its jth row by xj . Under some
standard assumptions for the regression model (A6), e.g. for j = 1, 2, . . . ,M the errors ε2pj should
have conditional mean zero, i.e. E[ε2pj |x] = 0 (‘strict exogeneity’), amongst others, the Gauss-

Markov theorem – see e.g. Greene (2002) – states that β̂p :=
(
β̂0p, β̂1p, . . . , β̂n−1,p

)
is the Best

Linear Unbiased Estimator (‘BLUE’) of bp := (b0p, b1p, . . . , bn−1,p) amongst all βp candidates. β̂p

is ‘best’ in a least squares sense, i.e. it is the unique value for βp for which the sum of squared

residuals
∑M

j=1

(
zpj − xjβ

T
p

)2
is minimized, with zj = F−1

Z (FV (t)(vj)). If we additionally assume

that the error terms ε2pj , j = 1, 2, . . . ,M in (A6) are independent and identically distributed with

mean zero and finite variance σ2, one can prove that β̂p is a consistent estimator of bp (convergence
in probability)

lim
M→∞

P
(∣∣∣β̂p − bp

∣∣∣ ≥ ε) = 0 ∀ε > 0,

and, moreover, applying the central limit theorem, that β̂p is asymptotically normal (convergence
in distribution):

β̂p
d→ N

(
bp,

σ2

M
Q−1

)
if M →∞, with Q defined by lim

M→∞
P

(∣∣∣∣x′x

M
−Q

∣∣∣∣ ≥ ε) ∀ε > 0.
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Q is a positive definite matrix.

Remark A.1 (Number of basis functions) Although β̂p is the ‘best’ estimator of bp in the sense
that it has the lowest variance compared to all other unbiased estimators βp, the absolute error can
still be significant though, e.g. due to an inappropriate choice of the basis functions or the number
of basis functions. Tests for the significance of the polynomial terms, in particular the highest order
term, can be conducted, where the null hypothesis states that β̂kp = 0 for some k = 0, 1, . . . , n− 1.
Related to this, one can employ either a forward selection procedure or a backward elimination
procedure, in which the model is successively fit in increasing or decreasing order under statistical
testing, respectively. Other criteria one can consider to test whether a multiple linear regression
model is well-constructed are e.g. the well-known R2-value (coefficient of determination) and the
condition number of the matrix involved in the regression, which is a measure for the ill-posedness
and multicollinearity of the problem.

Appendix B: Proofs of Lemma 2.1 and the result in Section 3.1.1

In this section we provide proofs for Lemma 2.1 and the result in Section 3.1.1, which we state
here as Lemmas B.1 and B.2, respectively.

Lemma B.1 Given the two-dimensional model (29). Let X and Z denote standard normal random
variables and assume for an arbitrary t that the elements Yi(t) = yi, i = 1, 2, X = x, Z = z are
related by y1 = g(x), y2 = h(z), with g(·) and h(·) defined in (15) and (17), respectively. This
implies that X and Z are jointly bivariate normally distributed.

Proof. We start with writing (29) in terms of independent Brownian motions W̃1(·) and W̃2(·):

dY1(t) = σ1Y1(t)dW̃1(t), dY2(t) = σ2Y2(t)
(
ρdW̃1(t) +

√
1− ρ2dW̃2(t)

)
, (B1)

with Y1(0) = y10 and Y2(0) = y20. The solution to (B1) reads

Y1(t) = y10 exp

(
−1

2
σ2

1t+ σ1W̃1(t)

)
, Y2(t) = y20 exp

(
−1

2
σ2

2t+ σ2

(
ρW̃1(t) +

√
1− ρ2W̃2(t)

))
,

(B2)

respectively. One can easily show log(Yi(t))
d
= N (µi, σi), with µi := log(yi0)− 1

2σ
2
i t and σi := σi

√
t,

i = 1, 2. Further, the element-wise equality y1 = g(x), with g(·) specified in (15), implies, as

X
d
= N (0, 1),

x = g−1(y1) = F−1
X (FY1(t)(y1)) = F−1

N (0,1)FN (0,1)

(
log(y1)− µ1

σ1

)
=

log(y1)− µ1

σ1
,

which yields for y1 and similarly for y2, substituting the values of µi and σi, i = 1, 2:

y1 = y10 exp

(
−1

2
σ2

1t+ σ1

√
tx

)
, y2 = y20 exp

(
−1

2
σ2

2t+ σ2

√
tz

)
,

thus

Y1(t) = y10 exp

(
−1

2
σ2

1t+ σ1

√
tX

)
, Y2(t) = y20 exp

(
−1

2
σ2

2t+ σ2

√
tZ

)
. (B3)

Equations (B2) and (B3) imply X = 1√
t
W̃1(t) and Z = 1√

t

(
ρW̃1(t) +

√
1− ρ2W̃2(t)

)
= ρX +
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√
1− ρ2Z̃, with Z̃ := 1√

t
W̃2(t). As we are able to express Z in terms of X via the Cholesky

decomposition, Z and X are jointly bivariate normally distributed.

Lemma B.2 For two jointly normally distributed random variables X1
d
= N (µ1, σ1) and

X2
d
= N (µ2, σ2) correlated with correlation ρ the following result holds:

E [X11X2>k] =

µ1 + ρσ1

fN (0,1)

(
k−µ2

σ2

)
1− FN (0,1)

(
k−µ2

σ2

)
 (1− FX2

(k)) ,

where fN (0,1)(·) and FN (0,1)(·) are the standard normal PDF and CDF, respectively, and FX2
(·) is

the CDF corresponding to the random variable X2.

Proof. We start with writing

E [X11X2>k] = E [E (X11X2>k|X2 > k)] = E [1X2>kE (X1|X2 > k)] . (B4)

For the inner expectation we set X2 = σ2Z2 + µ2 and X1 = σ1

(
ρZ2 +

√
1− ρ2Z1

)
+ µ1, where

Z2 and Z1 are independent standard normal random variables. The expression of X1 in terms of
Z2 is established by assuming that X1 and X2 are bivariate normally distributed1. Straightforward
calculus yields E (X1|X2 > k) = ρσ1E (Z2|Z2 > (k − µ2)/σ2) +µ1. The conditional expectation is

given by E (Z2|Z2 > (k − µ2)/σ2) =
fN(0,1)

(
k−µ2
σ2

)
1−FN(0,1)

(
k−µ2
σ2

) . So

E (X1|X2 > k) = ρσ1

fN (0,1)

(
k−µ2

σ2

)
1− FN (0,1)

(
k−µ2

σ2

) + µ1.

Substituting this result in (B4) yields the result in the lemma.

1The joint distribution of two normal random variables does not need to be bivariate normal. Only the reverse holds in general.
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