Rectangular and Coherent Sets of Indistinguishable Models

Anne G. Balter & Antoon Pelsser

Winter School Mathematical Finance Lunteren, The Netherlands 23 January, 2017

Outline

- Application I: Robust Investment
- Literature
- Model
 - Deterministic
 - Rectangularity
 - Stochastic
- Application II: Bang-Bang control
- Conclusion
- References

-

Objective

- Robustness
- Set of alternative models
- Optimisation
- Research on quantification of uncertainty
 - Characteristics of indistinguishable set
 - Link with Type I and II error, test horizon
 - All deviations $|\lambda(t,\omega)| \leq \frac{2.48}{\sqrt{T}}$

Robust Investment

• Merton (1969): Agent generates utility from terminal wealth

$$\max_{\pi} \min_{\mathbb{L} \in \mathcal{L}} \mathbb{E}^{\mathbb{L}}[u(X(T))]$$

• Allocate π to risky asset S with

$$dS_t = \mu S_t dt + \sigma S_t \left(dW_t + \lambda dt \right)$$

- Rest on bank account B with riskfree rate r
- Equity premium puzzle
- Robust optimal investment strategy subject to $\lambda^2 \leq k^2$

$$\pi^* = \max\left(\frac{\mu - r - \sigma k}{\gamma \sigma^2}, 0\right)$$

Strategies

Table: Robust Optimal Investments

$\gamma \setminus \mathcal{T}$	1	100	200	π^*_{M}
0.1	0%	12.5%	466.5%	1562.5%
0.2	0%	6.25%	233.2%	781.25%
0.5	0%	2.5%	93.3%	312.5%
1	0%	1.25%	46.65%	156.25%
3	0%	0.42%	15.55%	52.1%
5	0%	0.25%	9.33%	31.25%

The optimal robust investment strategy by the addition of a constraint is shown, $\pi_{\rm C}^*$ for several values of $\mathcal{T} = \{1, 100, 200\}$ with $k = \frac{2.48}{\sqrt{\mathcal{T}}}$. The last column shows the classical Merton solution without model uncertainty.

- Risk versus uncertainty
- The Ellsberg paradox (Ellsberg, 1961)
- Bayesian prior, posterior (Thomas Bayes, 1701 1761)
- Multiple prior model from Gilboa and Schmeidler (1989)
- Extension of the standard multiple prior approach Garlappi et al. (2007)

- Robustness: Hansen, Sargent and Tallarini (1999); Hansen, Sargent and Turmuhambetova (2006); Hansen, Sargent and Wang (2002); Hansen and Sargent (2008); Hansen and Sargent (2015)
- ϕ -Divergence: Ben-Tal, Den Hertog, De Waegenaere, Melenberg and Rennen (2013)
- Model Confidence Set: Hansen, Lunde and Nason (2011)
- Confidence Interval for Parameters

・ロト ・同ト ・ヨト ・ヨト

э

Anne G. Balter Sets of Indistinguishable Models

< 同 ▶

3

э

Motivation

- Goal: we would like to identify and characterise the set of alternative models *ex ante*
- Independent from objective problem
- Consider a large class of alternatives
- Statistically indistinguishable models:
 - Based on Type I and II error and test horizon
- Outline
 - Model
 - Stochastic example
 - Deterministic

Model

• SDEs of form

$$dX = \mu(t,\omega) dt + \sigma(t,\omega) dW(t)$$

- Possible alternative models $dW_t + \lambda(t,\omega) dt$
- Ex ante (t = 0)
- Those $\lambda(t,\omega)$ indistinguishable from $\lambda=0$
- $dW_t + \lambda(t, \omega)dt$ not only adjusting the mean of the probability distribution
- Stochastic example

< ≣ > <

Stochastic Example

- Mean repelling process: $\lambda(t,\omega) = a \tanh(aW(t))$
- Alternative fatter tails

Let

$$:(\mathcal{T}) = \frac{1}{2} \left(e^{-\frac{1}{2}a^2\mathcal{T} + aW(\mathcal{T})} + e^{-\frac{1}{2}a^2\mathcal{T} - aW(\mathcal{T})} \right)$$

- Under L¹ a mixture of N(aT, T) and N(−aT, T), together not normal, mean 0 and variance T + (aT)²
- Under $\mathbb P$ always $W(\mathcal T) \sim N(0,\mathcal T)$

 $^{{}^1\}mathbb{P}$ and \mathbb{L} stand for baseline and alternative.

Model (2)

- Test $H_0 : \mathbb{P}$ versus $H_A : \mathbb{L}$
- Hence, $L(\mathcal{T})$ equals the likelihood ratio test statistic
- Radon-Nikodym derivative (Girsanov)

$$L(\mathcal{T}) = \exp\left\{-\frac{1}{2}\int_0^{\mathcal{T}}\lambda(t,\omega)^2dt + \int_0^{\mathcal{T}}\lambda(t,\omega)dW^{\mathbb{P}}(t,\omega)\right\}$$

- Value $L(\mathcal{T},\omega)$ determined by realisation ω
- \bullet Test if model ${\mathbb P}$ should be rejected in favour of model ${\mathbb L}$
- Two simple hypotheses, Neyman-Pearson Lemma most powerful test is likelihood ratio test

→ 3 → 4 3

Model (3)

 \bullet Type I error: incorrectly rejecting model $\mathbb P$

 $\mathbb{P}[\mathcal{L}(\mathcal{T}) \geq \gamma] = \alpha$

 \bullet Type II error: incorrectly rejecting model $\mathbb L$

$$\mathbb{L}[L(\mathcal{T}) < \gamma] = \beta$$

• Power: probability of accepting model $\mathbb L$ when model $\mathbb L$ is the true model

$$\begin{split} \mathbb{L}[L(\mathcal{T}) \geq \gamma] &= 1 - \beta \\ &= \mathbb{E}^{\mathbb{P}}\left[L(\mathcal{T})\mathbb{1}(L(\mathcal{T}) \geq \gamma)\right] \end{split}$$

(E)

Deterministic

- Radon-Nikodym, without ω, log normal
- E.g. $\alpha = 0.05$, then $\Phi^{-1}(\alpha) = -1.64$
- If we take $\beta = 0.20$ then power is 0.80 and we have $\Phi^{-1}(0.80) = 0.84$
- Hence, the class of all indistinguishable models is then given by all models that satisfy

$$\left(\int_0^{\mathcal{T}} \lambda(t)^2 \, dt\right)^{\frac{1}{2}} \le 0.84 - (-1.64) = 2.48$$

\mathcal{T}

- Future moment in time at which test would *hypothetically* be performed
- Extra amount of data that one would take into consideration
- Time period during which model would remain the same

• = • •

Rectangularity

- Rectangularity \Leftrightarrow time-consistency \Leftrightarrow m-stability \Leftrightarrow BSDEs
- Power \Leftrightarrow CVaR \Leftrightarrow Coherent risk measure
- For time-consistent coherent risk measures (Barrieu and El Karoui (2007))

•
$$|\lambda(t,\omega)| \leq k$$

- Optimal solution at any time-point *t* does not depend on history between [0, *t*]
- Optimal policy devised at time 0 for t > 0 is still valid at time t given information \mathcal{F}_t
- Intersect classes

Optimisation

Recall

$$L(\mathcal{T}) = \exp\left\{-\frac{1}{2}\int_0^{\mathcal{T}}\lambda(t,\omega)^2dt + \int_0^{\mathcal{T}}\lambda(t,\omega)dW^{\mathbb{P}}(t,\omega)\right\}$$

• Optimisation problem

$$\max_{\substack{\gamma, |\lambda(t,\omega)| \le k}} \mathbb{E} \left[L(\mathcal{T}) \mathbb{1}(L(\mathcal{T}) \ge \gamma) \right]$$
(MP)
s.t. $\mathbb{E} \left[\mathbb{1}(L(\mathcal{T}) \ge \gamma) \right] = \alpha$
 $dL = \lambda(t, \omega) L dW, L_0 = 1$

э

• Maximum for $|\lambda(t,\omega)| \equiv k \Rightarrow \log$ Normal

Stochastic

- Given that the optimal L*(T) is a lognormal martingale with volatility k
- The optimised power at time t = 0 and L(0) = 1 is therefore equal to $\mathbb{E} \left[L^*(\mathcal{T}) \mathbb{1} \left(L^*(\mathcal{T}) > \gamma^* \right) \right] = \mathbb{L} \left[L^*(\mathcal{T}) > \gamma^* \right] = \Phi \left(\Phi^{-1}(\alpha) + k\sqrt{\mathcal{T}} \right)$
- Set of indistinguishable models $|\lambda(t,\omega)^*| \leq k = 2.48/\sqrt{\mathcal{T}}$

伺 と く ヨ と く ヨ と … ヨ

Theorem (Rectangular and Coherent Sets of Indistinguishable Models)

Consider a baseline model $dX(t) = \mu(t, \omega)dt + \sigma(t, \omega)dW(t)$. The set of all models with $dW(t) + \lambda(t, \omega)dt$ and $|\lambda(t, \omega)| \le k$ is rectangular and coherent, where

$$k = \frac{\Phi^{-1}(1-\beta) - \Phi^{-1}(\alpha)}{\sqrt{\mathcal{T}}} \tag{1}$$

A B M A B M

forms an indistinguishable set for a Type I error of α , a Type II error of β and a test horizon T.

Bounds on Divergences

- ϕ -Divergences/f-Divergences (non-symmetric distance measures)
- Robust results in optimisation problems
- Continuous ϕ -divergence

$$D_{\phi}(L(\mathcal{T},\omega)) = \mathbb{E}^{\mathbb{L}}\left[\phi\left(\frac{1}{L(\mathcal{T})}\right)\right] = \mathbb{E}^{\mathbb{P}}\left[L(\mathcal{T})\phi\left(\frac{1}{L(\mathcal{T})}\right)\right]$$

- For each measure $\phi(\cdot)$ given and convex
- Size of the uncertainty quantified by c

$$D_{\phi}(L(\mathcal{T},\omega)) \leq c$$

 The divergences are expressed in terms of the ratio x = 1/L(T,ω) under the measure L

Bounds on Divergences

Divergence	$\phi(\mathbf{x})$	$c \Leftrightarrow \lambda(t,\omega) \equiv k$	$k\sqrt{\mathcal{T}} = 2.48$
Kullback-Leibler	$x \ln x - x + 1$	$\frac{1}{2}k^2\mathcal{T}$	3.08
Burg entropy	$-\ln x + x - 1$	$\frac{1}{2}k^2\mathcal{T}$	3.08
J-divergence	$(x-1) \ln x$	$ar{k}^2 \mathcal{T}$	6.15
χ^2 -divergence	$\frac{1}{x}(x-1)^2$	$e^{k^2 T} - 1$	467.90
Modified χ^2 -divergence	$(x - 1)^2$	$e^{k^2T}-1$	467.90
Hellinger distance	$(\sqrt{x}-1)^2$	$2-2e^{-\frac{1}{8}k^2\mathcal{T}}$	1.07
Variation distance	x - 1	$4N(\frac{1}{2}k\sqrt{T})-2$	1.57
$\chi ext{-divergence of order } artheta > 1$	$ x-1 ^{\vartheta}$	numerical	Table 2
$Cressie\text{-}Read\ \vartheta \neq 0, 1$	$rac{1 - artheta + artheta x - x^artheta}{artheta(1 - artheta)}$	expr	Table 2

< 1 →

< ∃ >

э

æ

Bounds on Divergences

Divergence $\diagdown \vartheta$	1.5	2.0	2.5	3.0
χ -divergence of order ϑ	10.40	467.90	1.02×10^{6}	1.03×10^{8}
Cressie-Read	12.05	233.95	2.72×10^{4}	1.72×10^{7}

Image: A image: A

э

æ

Bang-Bang

- Baseline model: Brownian motion
- Stochastic deviation $\lambda(t,\omega) = a \cdot \operatorname{sgn} (W(t,\omega))$
- a > 0
 - Mean repelling process
 - Increase the variance of X(T) under model \mathbb{L}
- *a* < 0
 - mean reverting process
 - Decrease the variance of X(T) under model \mathbb{L}

★ Ξ →

Bang-Bang

- $\bullet \ {\sf Under} \ {\mathbb P}$
 - dX(t) = dW(t)
 - Model X normal distributed
- ullet Under ${\mathbb L}$
 - $dX(t) = a \cdot \operatorname{sgn}(X(t))dt + dW(t)$
 - Model X unknown distribution and variance changed
- Distribution
 - $\ln L(\mathcal{T}) \sim^{\mathbb{P}} N\left(-\frac{1}{2}a^{2}\mathcal{T}, a^{2}\mathcal{T}\right)$ • $\ln L(\mathcal{T}) \sim^{\mathbb{L}} N\left(\frac{1}{2}a^{2}\mathcal{T}, a^{2}\mathcal{T}\right)$
- Explicit bound $|a| \leq rac{ \Phi^{-1}(eta) \Phi^{-1}(1-lpha) }{\sqrt{\mathcal{T}}}$
- Does satisfy rectangular and coherence axioms

.

BΒ

æ

Conclusion

- Quantify uncertainty
- Most powerful test
- Ex ante
- For given size and power
- Stochastic deviation from the drift

Barrieu, P. M. and El Karoui, N. (2007). Pricing, hedging and optimally designing derivatives via minimization of risk measures.

- Ben-Tal, A., Den Hertog, D., De Waegenaere, A., Melenberg, B., and Rennen, G. (2013). Robust solutions of optimization problems affected by uncertain probabilities. *Management Science*, 59(2):341–357.
- Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. The quarterly journal of economics, pages 643-669.
- Garlappi, L., Uppal, R., and Wang, T. (2007). Portfolio selection with parameter and model uncertainty: A multi-prior approach. *Review of Financial Studies*, 20(1):41–81.
- Gilboa, I. and Schmeidler, D. (1989). Maxmin expected utility with non-unique prior. Journal of mathematical economics, 18(2):141–153.
- Hansen, L. P. and Sargent, T. J. (2008). Robustness. Princeton university press.
- Hansen, L. P. and Sargent, T. J. (2015). Sets of models and prices of uncertainty. University of Chicago manuscript.
- Hansen, L. P., Sargent, T. J., Tallarini, T. D., et al. (1999). Robust permanent income and pricing. Review of Economic studies, 66(4):873–907.
- Hansen, L. P., Sargent, T. J., Turmuhambetova, G., and Williams, N. (2006). Robust control and model misspecification. Journal of Economic Theory, 128(1):45–90.
- Hansen, L. P., Sargent, T. J., and Wang, N. E. (2002). Robust permanent income and pricing with filtering. Macroeconomic dynamics, 6(01):40–84.
- Hansen, P. R., Lunde, A., and Nason, J. M. (2011). The model confidence set. Econometrica, 79(2):453-497.
- Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous-time case. The review of Economics and Statistics, pages 247–257.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

3