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What this course is about

I Polynomial models provide an analytically tractable and
statistically flexible framework for financial modeling

I New factor process dynamics, beyond affine, enter the scene

I Definition of polynomial jump-diffusions and basic properties

I Existence and building blocks

I Polynomial models in finance: option pricing, portfolio choice,
risk management, economic scenario generation,..

I Examples: stochastic volatility, interest rates, credit risk
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Course Outline

Part I Definition and Basic Properties

Part II Existence and Building Blocks

Part III Financial Modeling

Part IV Stochastic Volatility Models

Part V Interest Rate and Credit Risk Models
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Some Literature

I Polynomial processes: [Wong, 1964], [Mazet, 1997],
[Forman and Sørensen, 2008],[Cuchiero, 2011],
[Cuchiero et al., 2012], [Filipović and Larsson, 2016], and
others

I Polynomial models in finance: [Zhou, 2003],
[Delbaen and Shirakawa, 2002], [Larsen and Sørensen, 2007],
[Gouriéroux and Jasiak, 2006], [Eriksson and Pistorius, 2011],
[Filipović et al., 2016], [Filipović et al., 2014],
[Ackerer and Filipović, 2015], [Ackerer et al., 2015],
[Filipović and Larsson, 2017], and others

This course is based on the highlighted papers. Most results in
Parts I–III are from [Filipović and Larsson, 2017].
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Part I

Definition and Basic Properties
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Outline

Polynomial Jump-Diffusions

Affine Jump-Diffusions
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Polynomial Jump-Diffusions

Affine Jump-Diffusions
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Setup

I Filtered probability space (Ω,F ,Ft ,P)

I State space E ⊆ Rd

I E -valued jump-diffusion Xt with extended generator given by

Gf (x) =
1

2
tr(a(x)∇2f (x)) + b(x)>∇f (x)

+

∫

Rd

(
f (x + ξ)− f (x)− ξ>∇f (x)

)
ν(x , dξ)

for measurable a : Rd → Sd , b : Rd → Rd , and Lévy
transition kernel ν(x , dξ) from Rd into Rd with∫
Rd ‖ξ‖ ∧ ‖ξ‖2ν(x , dξ) <∞
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Definition of Jump-Diffusion

I That is, Xt is E -valued special semimartingale, such that

M f
t = f (Xt)− f (X0)−

∫ t

0
Gf (Xs) ds is a local martingale

for any bounded C 2 function f (x), [Jacod and Shiryaev, 2003,
Thm II.2.42]

I Note: this holds for any C2 function f (x) such that, for any finite t,

∫ t

0

∫
Rd

∣∣∣f (Xs + ξ)− f (Xs )− ξ>∇f (Xs )
∣∣∣ ν(Xs , dξ) ds <∞.

Indeed, then the term is in A+
loc

, see [Jacod and Shiryaev, 2003, Thm II.1.8 and proof of Thm II.2.42]
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Polynomials on E

I Polynomial on E : restriction p = q|E of a polynomial q on Rd

I Degree deg p = min{deg q : p = q|E , q polynomial on Rd}
I Space of polynomials of degree n or less

Poln(E ) = {p polynomial on E with deg p ≤ n}

has dimPoln(E ) ≤
(n+d

n

)
with equality if int(E ) 6= ∅

I Ring of polynomials

Pol(E ) = ∪n≥1Poln(E )

I Multi-index notation

k = (k1, . . . , kd) ∈ Nd
0 , xk = xk1

1 · · · xkd
d , |k| =

d∑

i=1

ki
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Definition of Polynomial Jump-Diffusion (PJD)

Definition 1.1.
G is well-defined on Pol(E ) if

1. Jump measure of Xt admits moments of all orders,

∫
Rd ‖ξ‖n ν(x , dξ) <∞ for all x ∈ E and n ≥ 2;

2. Gf (x) = 0 on E for any f ∈ Pol(Rd) with f (x) = 0 on E .

Definition 1.2.
G is polynomial on E if it is well-defined on Pol(E ) and

GPoln(E ) ⊆ Poln(E ) for all n ∈ N.

In this case, we call Xt a polynomial jump-diffusion (PJD) on E .
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Example

I State space E = R× {0}, d = 2

I The partial differential operator

Gf (x , y) =
1

2
∂xx f (x , y) + ∂y f (x , y)

is not well-defined on Pol(E ): y vanishes on E but Gy = 1

I Note G is generator of dXt = (dBt , dt), which leaves E

I Positive maximum principle implies: G is well-defined on E if
for any X0 = x in E there exists E -valued jump-diffusion Xt

with generator G, see [Filipović and Larsson, 2016,
Lemma 2.3].
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Characterization of Polynomial Jump-Diffusions

Lemma 1.3.
Assume G is well-defined on Pol(E ). The following are equivalent:

1. G is polynomial on E .

2. a(x), b(x), and ν(x , dξ) satisfy

bi (x) ∈ Pol1(E ), drift

aij(x) +

∫

Rm

ξiξjν(x , dξ) ∈ Pol2(E ), modified 2nd characteristic

∫

Rm

ξαν(x , dξ) ∈ Pol|α|(E ), jumps

for all i , j = 1, . . . , d and all |α| ≥ 3.

In this case, the polynomials on E listed in property 2 are uniquely
determined by the action of G on Pol(E ).
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Characterization of Polynomial Jump-Diffusions

Proof.
Plug in polynomials p in Gp and collect and match terms . . .
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Properties of Polynomial Jump-Diffusions
Let Xt be a PJD with generator G on E .

Lemma 1.4.
For any f ∈ Pol(E ) the process

M f
t = f (Xt)− f (X0)−

∫ t

0
Gf (Xs) ds

is a local martingale.

Sketch of proof.

Lemma 1.3 implies that

∫

Rd

(
f (x + ξ)− f (x)− ξ>∇f (x)

)2

︸ ︷︷ ︸
minimal degree ≥ 4

ν(x , dξ) ∈ Pol(E ).

The lemma follows from [Jacod and Shiryaev, 2003, Thm II.1.33
and proof of Thm II.2.42].
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Properties of Polynomial Jump-Diffusions cont’d

Lemma 1.5.
For any k ∈ N there exists a finite Ck such that

E[1 + ‖Xt‖2k | F0] ≤
(

1 + ‖X0‖2k
)
eCk t , t ≥ 0.

Sketch of proof.

Using arguments from [Cuchiero et al., 2012, Thm 2.10] or
[Filipović and Larsson, 2016, Lemma B.1].
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Properties of Polynomial Jump-Diffusions cont’d

Lemma 1.6.
For any f ∈ Pol(E ) and finite c the process M f

t 1{‖X0‖≤c} is a
martingale.

Sketch of proof.

The compensator of quadratic variation of M f
t is given by

〈M f ,M f 〉t = 〈f (X ), f (X )〉t =

∫ t

0
Γ(f , f )(Xs) ds

and Γ(f , f ) ∈ Pol(E ), for the carré-du-champ operator Γ. The
lemma follows from Lemmas 1.4 and 1.5.
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Carré-du-Champ Operator
The carré-du-champ operator Γ(f , g) is defined by

Γ(f , g)(x) = G(fg)(x)− f (x)Gg(x)− g(x)Gf (x)

= ∇f (x)>a(x)∇g(x)

+

∫

Rd

(f (x + ξ)− f (x))(g(x + ξ)− g(x))ν(x , dξ).

It is related to the co-variation of f (X ) and g(X ),

[f (X ), g(X )]t =

∫ t

0
∇f (Xs)>a(Xs)∇g(Xs) ds

+
∑

s≤t
(f (Xs)− f (Xs−))(g(Xs)− g(Xs−)),

and its compensator by

〈f (X ), g(X )〉t =

∫ t

0
Γ(f , g)(Xs) ds.
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Towards the Moment Transform Formula

I Let G be polynomial on E

I Fix n ∈ N, denote 1 + N = dimPoln(E ) ≤
(n+d

n

)
<∞

I G restricts to linear operator on Poln(E )

I Fix a basis 1, h1(x), . . . , hN(x) of Poln(E ), denote

H(x) = (h1(x), . . . , hN(x))

I Coordinate representation ~p of p ∈ Poln(E ):

p(x) = (1,H(x))~p

I Matrix representation G of G: G(1,H(x)) = (1,H(x))G ,

Gp(x) = (1,H(x))G~p
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Moment Transform Formula

Theorem 1.7.
For any p ∈ Poln(E ) we have that

E[p(XT ) | Ft ] = (1,H(Xt))e (T−t)G~p

is a polynomial in Xt of degree ≤ n, for all T ≥ t.
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Moment Transform Formula: Proof

Sketch of proof.

Fix finite c and write A = {‖X0‖ ≤ c}. By Lemma 1.6, the
function F (s) = E[(1,H(Xs))1A | Ft ] satisfies

F (s) = (1,H(Xt))1A +

∫ s

t
E[G(1,H(Xu))1A | Ft ] du

= F (t) +

∫ s

t
F (u)G du,

thus E[(1,H(XT ))1A | Ft ] = (1,H(Xt))e (T−t)G1A.
Now let c ↑ ∞.
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Example: Scalar Polynomial Diffusions

I Generic scalar polynomial diffusion on interval E ⊆ R

dXt = (b + βXt) dt +
√

a + αXt + AX 2
t dWt

I Basis {1, x , x2, · · · , xn} of Poln(E )

I Coordinate representation of p(x) =
∑n

k=0 pkxk :

~p = (p0, . . . , pn)>

I Matrix representation of G: (n + 1)× (n + 1)-matrix

G =




0 b 2 a
2

0 · · · 0

0 β 2
(
b + α

2

)
3 · 2 a

2
0

.

.

.

0 0 2
(
β + A

2

)
3
(
b + 2 α

2

) . . . 0

0 0 0 3
(
β + 2 A

2

) . . . n(n − 1) a
2

.

.

. 0
. . . n

(
b + (n − 1) α

2

)
0 . . . 0 n

(
β + (n − 1) A

2

)
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More Examples of Polynomial Jump-Diffusions

I Any affine process is a PJD

I Lévy driven GARCH diffusion:

dXt = (b + βXt) dt + Xt− dLt

for a Lévy martingale Lt

I Jacobi type processes on E = unit ball

dXt = (b + βXt) dt +
√

(1− ‖Xt‖2) ΣdWt

and more general diffusions on quadric (compact) sets in Rd

Polynomial Jump-Diffusions 23/224



Outline

Polynomial Jump-Diffusions

Affine Jump-Diffusions
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Definition of Affine Jump-Diffusion (AJD)

Let Xt be jump-diffusion on E ⊆ Rd with generator G
Definition 2.1.
G is affine on E if, for all x ∈ E , u ∈ iRd

G exp(u>x) = (F (u) + R(u)>x) exp(u>x),

for functions F : iRd → C and R = (R1, . . . ,Rd)> : iRd → Cd . In
this case, we call Xt an affine jump-diffusion (AJD) on E .

Note: this is a relaxed definition compared to [Duffie et al., 2003]
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Characterization of Affine Jump-Diffusions

Lemma 2.2.
The following are equivalent:

1. G is affine on E .

2. a(x), b(x), and ν(x , dξ) are affine on E ,

a(x) = a0 +
∑d

i=1 xiai ,

b(x) = b0 +
∑d

i=1 xibi ,

ν(x , dξ) = ν0(dξ) +
∑d

i=1 xiνi (dξ),

for some ai ∈ Sd , bi ∈ Rd , and signed measures νi (dξ) on Rd .

In this case, F (u) and R(u) are given by (write F (u) ≡ R0(u))

Ri (u) =
1

2
u>aiu + b>i u +

∫

Rd

(
eu
>ξ − 1− u>ξ

)
νi (dξ).
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Characterization of Affine Jump-Diffusions: Proof

Sketch of Proof.
Observe that

Geu>x
eu>x

=
1

2
u>a(x)u + b(x)>u +

∫

Rd

(
eu
>ξ − 1− u>ξ

)
ν(x , dξ)

and match terms..

Affine Jump-Diffusions 27/224



Affine are Polynomial Jump-Diffusions

Corollary 2.3.

If Xt is an AJD and G is well-defined on Pol(E ) then Xt is a PJD.
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Affine Transform Formula

Theorem 2.4.
Let Xt be an AJD on E , u ∈ iRd , T > 0, and let φ(τ) and
ψ(τ) = (ψ1(τ), . . . , ψd(τ))> solve the generalized Riccati
equations

φ′(τ) = F (ψ(τ)), φ(0) = 0

ψ′(τ) = R(ψ(τ)), ψ(0) = u

for 0 ≤ τ ≤ T . If

Reφ(τ) + Reψ(τ)>x ≤ 0, 0 ≤ τ ≤ T , x ∈ E ,

then the affine transform formula holds,

E[exp(u>XT ) | Ft ] = exp(φ(T − t, u) + ψ(T − t, u)>Xt).
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Affine Transform Formula: Proof

Sketch of proof.

Drift of Mt = exp(φ(T − t) + ψ(T − t)>Xt) is

Geφ+ψ>Xt = (−φ′ + F (ψ)− ψ′ + R(ψ)>Xt)Mt = 0

and |Mt | ≤ 1, hence Mt is a martingale.
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Affine Transform Formula: Extension beyond iRd

Fact: If φ(T − t, u) and ψ(T − t, u) have an analytic extension in
u on U ⊂ Cd , the affine transform formula

E[exp(u>XT ) | Ft ] = exp(φ(T − t, u) + ψ(T − t, u)>Xt).

holds for all u ∈ U, see [Duffie et al., 2003, Thm 2.16].
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Part II

Existence and Building Blocks
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Outline

Polynomial Diffusions [Filipović and Larsson, 2016]

Invariance Properties: Exponentiation

Invariance Properties: Subordination
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Outline

Polynomial Diffusions [Filipović and Larsson, 2016]

Invariance Properties: Exponentiation

Invariance Properties: Subordination

Polynomial Diffusions [Filipović and Larsson, 2016] 34/224



Overview

I PJDs have great potential for financial applications

I What do we know about their existence? Uniqueness?

I This section shows results for polynomial diffusions

I Based on [Filipović and Larsson, 2016]
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Polynomial Diffusions: Ingredients

Ingredients:

I Drift function b : Rd → Rd with bi ∈ Pol1(Rd)

I Diffusion function a : Rd → Sd with aij ∈ Pol2(Rd)

I “Polynomial” operator on Rd

Gf (x) =
1

2
tr(a(x)∇2f (x)) + b(x)>∇f (x)

I State space E ⊆ Rd
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Polynomial Diffusions: Issues

Find conditions on a, b,E for

I Existence of E -valued solutions to corresponding SDE

dXt = b(Xt) dt + σ(Xt) dWt (3.1)

for continuous σ : Rd → Rd×d with σσ> = a on E

I Uniqueness in law for E -valued solutions to (3.1)

I Boundary (non-)attainment of E

For applications: find large parametric classes of such a, b,E
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Example: Scalar Polynomial Diffusions

I Generic scalar polynomial diffusion on interval E ⊆ R

dXt = (b + βXt) dt +
√

a + αXt + AX 2
t dWt

I Basis {1, x , x2, · · · , xn} of Poln(E )

I Coordinate representation of p(x) =
∑n

k=0 pkxk :

~p = (p0, . . . , pn)>

I Matrix representation of G: (n + 1)× (n + 1)-matrix

G =




0 b 2 a
2

0 · · · 0

0 β 2
(
b + α

2

)
3 · 2 a

2
0

.

.

.

0 0 2
(
β + A

2

)
3
(
b + 2 α

2

) . . . 0

0 0 0 3
(
β + 2 A

2

) . . . n(n − 1) a
2

.

.

. 0
. . . n

(
b + (n − 1) α

2

)
0 . . . 0 n

(
β + (n − 1) A

2

)
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Towards Uniqueness: determinacy of moment problem

I Determinacy of moment problem: moments determine
distribution

I Sufficient condition: finite exponential moments (analyticity
of characteristic function at zero)
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Exponential moments

Theorem 3.1.
If

E
[
e δ‖X0‖

]
<∞ for some δ > 0 (3.2)

and the diffusion coefficient satisfies the linear growth condition

‖a(x)‖ ≤ C (1 + ‖x‖) for all x ∈ E (3.3)

for some constant C , then for each t ≥ 0 there exists ε > 0 with

E
[
e ε‖Xt‖

]
<∞.
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Uniquess in law from moment problem

Theorem 3.2.
Let X be an E -valued solution to (3.1). If for each t ≥ 0 there
exists ε > 0 with E[exp(ε‖Xt‖)] <∞, then any E -valued solution
to (3.1) with the same initial law as X has the same law as X .
In particular, this holds if (3.2) and (3.3) are satisfied:

E
[
e δ‖X0‖

]
<∞ for some δ > 0

‖a(x)‖ ≤ C (1 + ‖x‖) for all x ∈ E .
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Limits and an open problem

I Theorem 3.2 does not apply for geometric Brownian motion

dXt = Xt dBt

I Open problem: Can one find a process Y , essentially different
from geometric Brownian motion, such that all joint moments
of all finite-dimensional marginal distributions,

E[Y α1
t1
· · ·Y αm

tm ]

coincide with those of geometric Brownian motion?
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Pathwise uniqueness for d = 1

Theorem 3.3.
If the dimension is d = 1, then uniqueness in law for E -valued
solutions to (3.1) holds.
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Combined result

Assume SDE (3.1) decomposes for X = (Y ,Z ) as

dYt = bY (Yt) dt + σY (Yt) dWt (3.4)

dZt = bZ (Yt ,Zt) dt + σZ (Yt ,Zt) dWt

Theorem 3.4.
Assume that uniqueness in law for EY -valued solutions to (3.4)
holds, and that σZ is locally Lipschitz in z locally in y on E : for
each compact subset K ⊆ E , there exists a constant κ such that
for all (y , z , y ′, z ′) ∈ K × K ,

‖σZ (y , z)− σZ (y ′, z ′)‖ ≤ κ‖z − z ′‖.

Then uniqueness in law for E -valued solutions to (3.1) holds.
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Stochastic invariance problem

I Existence of Rd -valued solution to (3.1) holds due to
continuity and linear growth of b and σ

I Existence of E -valued solution to (3.1) thus boils down to
stochastic invariance of E

I Assume E is basic closed semialgebraic set

E = {p ≥ 0 | p ∈ P} ∩M

where
M = {q = 0 | q ∈ Q}

for finite collections of polynomials P and Q
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Examples

I E = Rd
+:

P = {pi (x) = xi | i = 1..d} , Q = ∅

I E = [0, 1]d :

P = {pi (x) = xi , pd+i (x) = 1− xi | i = 1..d} , Q = ∅

I E = unit ball:

P =
{

p(x) = 1− ‖x‖2
}
, Q = ∅

I E = Sm+:

P = {pI (x) = det xII | I ⊂ {1, . . . ,m}} , Q = ∅

I E = {x ∈ Rd
+ | x1 + · · ·+ xd = 1} unit simplex:

P = {pi (x) = xi | i = 1..d} , Q = {q(x) = 1− x1 − · · · − xd}
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Necessary conditions

Theorem 3.5.
Suppose there exists an E -valued solution to (3.1) with X0 = x,
for any x ∈ E . Then

1. a∇p = 0 and Gp ≥ 0 on E ∩ {p = 0} for each p ∈ P;

2. a∇q = 0 and Gq = 0 on E for each q ∈ Q.

𝑝 = 0  

𝑝 = 0  

𝑝 = 0  
∇𝑝  

∇𝑝  

∇𝑝  
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Sufficient conditions

Geometry of E :

(G1) ∇r(x), r ∈ Q, are linearly independent for all x ∈ M

(G2) the ideal generated by Q∪ {p} is real for each p ∈ P

Conditions on a, b:

(A0) a ∈ Sd+ on E

(A1) a∇p = 0 and Gp > 0 on M ∩ {p = 0} for each p ∈ P
(A2) a∇q = 0 and Gq = 0 on M for each q ∈ Q
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Some interpretations

(G1) ∇r(x), r ∈ Q, are linearly independent for all x ∈ M

implies that M is submanifold of dimension d − |Q|.

(G2) the ideal generated by Q∪ {p} is real for each p ∈ P
(A1) a∇p = 0 and Gp > 0 on M ∩ {p = 0} for each p ∈ P
together imply that a∇p = h p on M for some vector of
polynomials h (real Nullstellensatz).

Lemma 3.6.
Let p ∈ Pol(Rd) be irreducible. The ideal generated by p is real if
and only if p changes sign on Rd : p(x)p(y) < 0 for some x , y.

Polynomial Diffusions [Filipović and Larsson, 2016] 49/224



Existence theorem

Theorem 3.7.
Suppose (G1)–(G2) and (A0)–(A2) hold. Then G is polynomial on
E , and there exists a continuous σ : Rd → Rd×d such that
a = σσ> on E and SDE (3.1) admits an E-valued solution X for
any initial law of X0, which spends zero time at the boundary of E :

∫ t

0
1{p(Xs)=0}ds = 0 for all t ≥ 0 and p ∈ P. (3.5)
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Boundary attainment

Theorem 3.8.
Let X be an E -valued solution to (3.1) satisfying (3.5). Let p ∈ P
and h be a vector of polynomials such that a∇p = h p on M.

1. If there exists a neighborhood U of E ∩ {p = 0} such that

2Gp − h>∇p ≥ 0 on E ∩ U (3.6)

then p(Xt) > 0 for all t > 0.

2. Let x ∈ E ∩ {p = 0} and assume

Gp(x) ≥ 0 and 2Gp(x)− h(x)>∇p(x) < 0.

Then there exists ε > 0 such that if ‖X0 − x‖ < ε almost
surely, then X hits {p = 0} with positive probability.
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Example

I Square-root diffusion on E = R+

dXt = b dt + σ
√

Xt dBt

I a(x) = σ2x , b(x) = b

I P = {p} with p(x) = x , Q = ∅
I a(x)p′(x) = σ2p(x), hence h(x) = σ2 and

2Gp(x)− σ2p′(x) = 2b − σ2

→ Feller condition 2b ≥ σ2 for boundary non-attainment
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Outline

Polynomial Diffusions [Filipović and Larsson, 2016]

Invariance Properties: Exponentiation

Invariance Properties: Subordination
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Motivation

I Build PJDs from basic PJDs

I Introduce nonlinearities into financial models

I Idea: start from simple building blocks (Gaussian process,
Lévy process, ..), exponentiate or subordinate

I This works thanks to invariance of polynomial property!
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Exponentiation of Polynomial Jump-Diffusion

I Let Xt be a PJD with generator G on E ⊆ Rd

I Fix n ∈ N, let 1 + N = dimPoln(E ), and (1,H(x)) be a basis
of Poln(E ) where we write

H(x) = (h1(x), . . . , hN(x))

I Let G be matrix representing G on Poln(E )

Theorem 4.1.
The process X̄t = H(Xt) is a PJD on H(E ) ⊆ RN .

I Fact: the drift of (1, X̄t) is (1, X̄t)G dt (why?)

I We next characterize the generator Ḡ of X̄t

Invariance Properties: Exponentiation 55/224



Some Facts about Polm(H(E ))

I Fact: H : E → H(E ) is injective: there exists L : RN → Rd

with Li ∈ Pol1(RN) such that

Li (H(x)) = xi , x ∈ E

I Pullback φ∗ defined by φ∗f = f ◦ φ for any function f

Lemma 4.2.
For every m ∈ N the pullback H∗ : Polm(H(E ))→ Polmn(E ) is a
linear isomorphism with inverse L∗.

Numerically very useful consequence:

dimPolm(H(E ))︸ ︷︷ ︸
=dimPolmn(E)

≤
(

mn + d

mn

)
<

(
m + N

m

)
= dimPolm(RN)
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Dimension Reduction

Illustration for d = 3, E = R3, n = 2, such that N = 9,

dimPol10(H(E )) = 1771, dimPol10(RN) ≈ 105, dimPol20(RN) ≈ 107.
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Action of Ḡ on Polm(H(E ))

I Fact: the generator of X̄t = H(Xt) is Ḡ = L∗GH∗

I Fix m ∈ N, let 1 + N̄ = dimPolmn(E ) and

h0(x) = 1, h1(x), . . . , hN(x), hN+1(x), . . . , hN̄(x)

be a basis of Polmn(E )

I Gives basis h̄i = L∗hi on Polm(H(E ))

I Let Ḡ be matrix representing G on Polmn(E )

Lemma 4.3.
The matrix representing Ḡ of Polm(H(E )) is Ḡ .
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Affine Property is not invariant under Exponentiation

I Consider the affine (square-root) diffusion

dXt = κ(θ − Xt)dt + σ
√

XtdWt

I Augmented process (Xt ,Yt) = (Xt ,X
2
t ) is not affine (why?):

dXt = κ(θ − Xt)dt + σ
√

XtdWt

dYt = ((2κθ + σ2)Xt − 2κYt)dt + 2σ
√

XtYtdWt

I However (Xt ,Yt) is polynomial, consistent with Theorem 4.1
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An Extension

As above:

I Let Xt be a PJD with generator GX on E ⊆ Rd

I Fix n ∈ N, let 1 + N = dimPoln(E ), and (1,H(x)) be a basis
of Poln(E ) where we write

H(x) = (h1(x), . . . , hN(x))

New:

I Let Yt be a semimartingale on Re such that Zt = (Xt ,Yt) is a
jump-diffusion with generator

GZ f (z) =
1

2
tr(aZ (x)∇2f (z)) + bZ (x)>∇f (z)

+

∫

Rd+e

(
f (z + ζ)− f (z)− ζ>∇f (z)

)
νZ (x , dζ)

(Yt has conditionally independent increments given Xt)
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Decomposition of Characteristics

I According to decomposition Zt = (Xt ,Yt) we write

aZ (x) =

(
aX (x) aXY (x)

aYX (x) aY (x)

)
, bZ (x) =

(
bX (x)
bY (x)

)
,

νZ (x , dζ) = νZ (x , dξ × dη), ζ = (ξ, η)

I Constituents of polynomial operator GX are

aX (x), bX (x), νX (x , dξ)

for marginal measure of νZ (x , dξ × dη) given by

νX (x ,A) =

∫

Rd+e

1A(ξ)νZ (x , dξ × dη)
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Extension of Polynomial Jump-Diffusion

Theorem 4.4.
The following are equivalent:

1. The process Z t = (H(Xt),Yt) is a PJD on H(E )× Re ;

2. aZ (x), bZ (x), and νZ (x , dξ) satisfy

bY
j (x) ∈ Poln(E ),

aYij (x) +

∫

Rd+e

ηiηjν
Z (x , dξ × dη) ∈ Pol2n(E ),

aXYij (x) +

∫

Rd+e

ξiηjν
Z (x , dξ × dη) ∈ Pol1+n(E ),

∫

Rd+e

ξαηβνZ (x , dξ × dη) ∈ Pol|α|+n|β|(E ),

for all i , j and all |α|+ |β| ≥ 3.

Invariance Properties: Exponentiation 62/224



Sanity Check

I Theorem 4.4 is trivial for n = 1 (why?)
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Some Facts about Polm(H(E )× Re)

I Fact: φ(x , y) = (H(x), y) : E × Re → H(E )× Re is injective:

ψ(φ(x , y)) = (x , y), (x , y) ∈ E × Re

for ψ(x̄ , y) = (L(x̄), y) : RN × Re → Rd × Re

Lemma 4.5.
For every m ∈ N the pullback φ∗ : Polm(H(E )× Re)→ Vm is a
linear isomorphism with inverse ψ∗ where

Vm = span
{

p(x)yβ : p ∈ Pol(E ), deg p + n|β| ≤ nm
}

⊆ Polmn(E × Re)

I Fact: the generator of Z̄t = (H(Xt),Yt) is GZ̄ = ψ∗GZφ∗
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Extension Theorem 4.4 cont’d

Theorem 4.4 (cont’d).

Property 1 or 2 is equivalent to

3. GZVm ⊆ Vm for all m ∈ N.

I This equivalence is illustrated by

Extension Theorem 4.4 cont’d

Theorem 4.4 (cont’d).

Property 1 or 2 is equivalent to

3. GZVm ⊆ Vm for all m ∈ N.

I This equivalence is illustrated by

Polm(H(E )× Rd) Polm(H(E )× Rd)

Vm Vm

GZ̄

ϕ∗ ϕ∗

GZ
ψ∗ ψ∗

I Numerically very useful consequence:

dimPolm(H(E )× Re)︸ ︷︷ ︸
=dimVm≤dimPolmn(E×Re)

≤
(
mn + d + e

mn

)
<

(
m + N + e

m

)

︸ ︷︷ ︸
=dimPolm(RN×Re)
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I Numerically very useful consequence:

dimPolm(H(E )× Re)︸ ︷︷ ︸
=dimVm≤dimPolmn(E×Re)

≤
(

mn + d + e

mn

)
<

(
m + N + e

m

)

︸ ︷︷ ︸
=dimPolm(RN×Re)

Invariance Properties: Exponentiation 65/224



Action of GZ̄ on Polm(H(E )× Re)

I Assume Z̄t is a PJD on H(E )× Re

I Fix m ∈ N, let 1 + N̄ = dimPolmn(E ) and

h0(x) = 1, h1(x), . . . , hN(x), hN+1(x), . . . , hN̄(x)

be a basis of Polmn(E )

I Gives basis of Vm of the form

hZ
i (x , y) = hj(x)yβ, deg hj + n|β| ≤ mn

I Gives basis hZ̄
i = ψ∗hZ

i of Polm(H(E )× Re)

Lemma 4.6.
The matrix representing GZ̄ on Polm(H(E )× Re) equals GZ , the
matrix representing GZ on Vm.

Invariance Properties: Exponentiation 66/224



A Choice of Basis

I Assume hZ
i (x , y) = hi (x) for i = 0 . . . N̄ (β = 0)

I Then GZ has the form

GZ =

(
G X̄ ∗
0 ∗

)

I However, we need symbolic calculus to determine GZ , i.e.
GZhZ

i (x , y) for hZ
i (x , y) = hj(x)yβ with β 6= 0
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Application of the Extension Theorem 4.4

Corollary 4.7.

Let e = e ′ + e ′′, P(x) = (p1(x), . . . , pe′(x))> and Q(x) = (qij(x)),
1 ≤ i ≤ e ′′, 1 ≤ j ≤ d, with

pi (x) ∈ Poln(E ), qij(x) ∈ Poln−1(E ).

Then

dYt =

(
P(Xt) dt

Q(Xt−) dXt

)

satisfies conditions of Theorem 4.4, such that Zt = (H(Xt),Yt) is
a PJD on H(E )× Re .
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Co-Variation and Compensator

I Corollary 4.7 covers co-variation

d [Xi ,Xj ]t = d(Xi ,tXj ,t)− Xi ,t−dXj ,t − Xj ,t−dXi ,t

and its compensator

d〈Xi ,Xj〉t = ΓX (xi , xj)(Xt) dt

for the carré-du-champ operator ΓX (xi , xj) ∈ Pol2(E )

I Application: variance swaps!
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Outline

Polynomial Diffusions [Filipović and Larsson, 2016]

Invariance Properties: Exponentiation

Invariance Properties: Subordination
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Markov Setup

I Let Xt be a PJD with generator G on E ⊆ Rd

I Assumption: Xt is Markov with transition kernel pt(x , dy) on
E , such that

E[f (Xs+t) | Fs ] =

∫

E
f (y)pt(Xs , dy)

I Let Zt be an nondecreasing Lévy process (subordinator) with
Lévy measure νZ (dζ) and drift bZ ≥ 0,

GZ f (z) = bZ f ′(z) +

∫

E
(f (z + ζ)− f (z)) νZ (dζ)

see [Sato, 1999, Thm 21.5].

I Fact: distribution µt(dz) of Zt satisfies µt+s = µt ∗ µs :

∫
f (z)µt+s(dz) =

∫
f (z)(µt∗µs)(dz) :=

∫ ∫
f (x+y)µt(dx)µs(dy)
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Bochner’s Theorem

Theorem 5.1.
The time-changed X̃t = XZt is a PJD on E with transition kernel

p̃t(x , dy) = E[pZt (x , dy)] =

∫ ∞

0
pz(x , dy)µt(dz)

and generator on E given by

G̃f (x) = bZGf (x) +

∫ ∞

0

∫

E
(f (y)− f (x)) pζ(x , dy)νZ (dζ)

Proof.
See [Sato, 1999, Thm 32.1], and also [Linetsky, 2007, Thm 6.2] for
more details on characteristics.
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Action of G̃ on Poln(E )

I Fix n ∈ N, let 1 + N = dimPoln(E ), and (1,H(x)) a basis of
Poln(E ) where

H(x) = (h1(x), . . . , hN(x))

I Matrix representing G on Poln(E ): G(1,H(x)) = (1,H(x))G

I Matrix G̃ representing G̃ on Poln(E ) is then

G̃ = bZG +

∫ ∞

0

(
eGζ − IdN

)
νZ (dζ)
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Affine Property is not invariant under Subordination

I OU process dXt = −κXt dt + σ dWt is affine with normal t.k.

pt(x , dy) ∼ N
(
e−κtx ,

σ2

2κ

(
1− e−2κt

))

I Poisson subordinator Zt with βZ = 0 and νZ (dζ) = δ{1}(dζ)

I Theorem 5.1: time-changed X̃t = XZt is polynomial

I But X̃t is not affine if κ 6= 0:

G̃eux =

∫

E
(euy − eux) p1(x , dy) =

(
e(e−κt−1)ux+C(t) − 1

)
eux

for C (t) = σ2u2

4κ

(
1− e−2κt

)
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Goal

I Construct asset return models based on PJDs for . . .

I option pricing (P = Q)

I portfolio choice

I portfolio risk management

I economic scenario generation

I . . .
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Polynomial Asset Return Framework

I Let Xt be a PJD with generator G on E ⊆ Rd

I Let d = d ′ + e and write Xt = (X ′t ,Rt)

I e asset price processes S1,t . . . Se,t with returns

dSi ,t

Si ,t−
= rt dt + dRi ,t

I Risk-free rate rt
I Excess returns dRi ,t

I Assumption: ∆Ri ,t > −1 and in fact, write ξ = (ξ′, ξR),

∫
Rd log(1 + ξRi )2kν(x , dξ) <∞, i = 1 . . . e
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Risk-Neutral Dynamics

I Specifying the simple returns allows a simple characterization
of risk-neutral dynamics (P = Q)

Lemma 6.1.
P = Q is a risk-neutral measure if and only if Rt has zero drift,
bR(x) = 0, such that Rt is a local martingale.
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Log Returns

I The logarithmic excess returns Yt are defined by

Si ,t = Si ,0 e
∫ t

0 rs ds+Yi,t

Lemma 6.2.
Stochastic exponential calculus implies

dYi ,t =
(
bR
i (Xt)− 1

2 aRii (Xt)−
∫
Rd

(
ξRi − log(1 + ξRi )

)
ν(Xt , dξ)

)
dt

+ dMi ,t

where Mi ,t are local martingales with d〈Mc
i ,M

c
j 〉t = aRij (Xt)dt and

∆Mi ,t = log(1 + ∆Ri ,t). The jump measure of Zt = (Xt ,Yt)
admits moments of all orders.
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Polynomial Log Returns

I Does Zt = (Xt ,Yt) satisfy Extension Theorem 4.4 ?

Lemma 6.3.
Assume jump measure of Xt is of the mixed type

ν(x , dξ) = ν0(dξ) +
d∑

i=1

xiνi (dξ) +
d∑

i ,j=1

xixjνij(dξ) + n(x , dξ)

for signed measures ν0(dξ), . . . , νd(dξ) and νij(dξ), i , j = 1 . . . d,
on Rd and transition kernel n(x , dξ) from Rd into Rd ′ × {0}e .
Then Zt satisfies Extension Theorem 4.4 for n = 2, such that
Z̄t = (H(Xt),Yt) is a PJD on H(E )× Re .
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Conditional Independent Returns

I If characteristics of Xt = (X ′t ,Rt) only depend on X ′t ,

a(x) = a(x ′), b(x) = b(x ′), ν(x , dξ) = ν(x ′, dξ)

I Then Zt = (X ′t ,Yt) satisfies Extension Theorem 4.4 for n = 2,
such that Z̄t = (H(X ′t),Yt) is a PJD on H(E ′)× Re

I This reduces dimension!
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Example: Factor Models

I Factor models assume excess return is

dRi ,t = β>i dX F
t + dX idio

i ,t , i = 1 . . . e

where

I X F
t is dF -dimensional factor process

I βi loading vector of ith excess return
I dX idio

i,t idiosyncratic component of ith excess return

I Put in polynomial asset return framework as

Xt = (X F
t ,X

idio
t ,X ′t)

with d = dF + e + d ′, such that (Xt ,Rt) is a PJD with
conditionally independent returns dRt given Xt
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Towards Real-World Dynamics

I Assume we have specified PJD Xt under Q (a, b, ν)

I Goal: equivalent change of measure P ∼ Q such that
P-characteristics of Xt are

aP(x) = a(x),

bP(x) = b(x) + a(x)φ(x) +

∫

Rd

(ψ(ξ)− 1)ξ ν(x , dξ),

νP(x , dξ) = ψ(ξ)ν(x , dξ)
(6.1)

where
I φ(x) ∈ Rd is market price of diffusion risk
I ψ(ξ) > 0 is market price of risk of the jump event of size ξ
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Equivalent Change of Measure

Assumption: E(L) is a true martingale for

dLt = φ(Xt)
>dX c

t +

∫

Rd

(ψ(ξ)− 1)
(
µX (dξ, dt)− ν(Xt , dξ)dt

)
,

where X c
t is the continuous local martingale part of Xt and

µX (dξ, dt) the integer-valued random measure associated to the
jumps of Xt .

Lemma 6.4.
P ∼ Q with Radon-Nikodym density process E(L) and Xt has
P-characteristics given by (6.1).
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Polynomial Property under Real-World Measure

Corollary 6.5.

Assume jump measure of Xt is of the mixed type as in Lemma 6.3.
Then Xt is a PJD under P if and only if

(a(x)φ(x))i +

∫

Rd

(ψ(ξ)− 1)ξi




d∑

k,l=1

xkxlνkl(dξ) + n(x , dξ)




∈ Pol1(E ), i = 1 . . . d .

In this case, Zt satisfies Extension Theorem 4.4 for n = 2, such
that Z̄t = (H(Xt),Yt) is a PJD on H(E )× Re also under P.
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Pricing European Call Options

I Call option on Si with strike K and maturity T has price

E
[
e−

∫ T
0 rsds(Si ,T − K )+ | F0

]

= E
[(

Si ,0e
Yi,T − Ke−

∫ T
0 rsds

)+
| F0

]

I Assumption: deterministic interest rates rt
I Pricing boils down to computing expectation of the form

E [F (YiT ) | F0]

for discounted payoff function F (yi ) = (eyi − c)+
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Pricing Path-Dependent Options

Barrier and fader options on Si have payoff of the form PT f (Si ,T )
at maturity T where

I f (Si ,T ) is some European style nominal payoff function

I PT is path-dependent variable of the form

PT =

{
1{inft≤T Si,t≥b}, barrier type
1
T

∫ T
0 1{Si,t≥b}dt, fader type.

for some barrier b

Such options do not admit closed form prices and need to be
numerically approximated.

Polynomial Asset Return Models 89/224



Pricing Path-Dependent Options: Approximation

I Discretising the time interval 0 = t0 < t1 < · · · < tm = T
leads to

PT ≈
{∏m

j=1 1{Si,tj−1
≥b}, barrier type

∑m
j=1 1{Si,tj−1

≥b}
tj−tj−1

T , fader type.

I Pricing boils down to computing expectations of the form

E [F (Yi ,t1 , . . . ,Yi ,tm) | Ft0 ]

for discounted payoff function F
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Generic Pricing Problem in Finance

Let Xt be a PJD with generator G on E ⊆ Rd .

Pricing an (path-dependent) option boils down to compute
conditional expectation

It0 = E[F (X) | Ft0 ]

for some

I time partition 0 ≤ t0 < t1 < · · · < tm
I (polynomial) projection X = P(Xt1 , . . . ,Xtm) on E = P(Em)

I discounted payoff function F (x) with x = (x1, . . . , xm) ∈ E

The following method extends [Filipović et al., 2013]
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Weighted L2 Space

I Denote g(dx) regular conditional distribution of X given Ft0

I Let w(dx) be auxiliary probability kernel from (Ω,Ft0) to E
such that

g(dx)� w(dx) P-a.s. (7.1)

with likelihood ratio function denoted by `(x) such that

g(dx) = `(x)w(dx).

I Define L2
w = L2

w (E) with norm given by

‖f ‖2
w =

∫

E
f (x)2w(dx)

and corresponding scalar product

〈f , h〉w =

∫

E
f (x)h(x)w(dx).
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Orthogonal Polynomials

I Assumption: L2
w contains all polynomials on E,

Pol(E) ⊂ L2
w (7.2)

I Let {h0(x) = 1, h1(x), . . . } be an orthonormal set of
polynomials spanning the closure Pol(E) in L2

w .

I Assumption: the likelihood ratio function lies in L2
w ,

`(x) ∈ L2
w . (7.3)

I As a consequence, its Fourier coefficients

`k = 〈hk , `〉w =

∫

E
hk(x)`(x)w(dx) = E [hk(X) | Ft0 ]

are in closed form by moment transform formula Theorem 1.7.
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Projected Price

I Assumption: the discounted payoff function lies in L2
w ,

F (x) ∈ L2
w .

I Denote F̄ the orthogonal projection of F onto Pol(E) in L2
w .

I Elementary functional analysis implies that the projected price

Īt0 = E[F̄ (X) | Ft0 ]

equals

Īt0 =

∫

E
F̄ (x)g(dx) =

〈
F̄ , `
〉
w

=
∑

k≥0

Fk`k (7.4)

with Fourier coefficients given by

Fk = 〈hk , F̄ 〉w = 〈hk ,F 〉w =

∫

E
hk(x)F (x)w(dx). (7.5)
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Proxy Price

I Fact: Īt0 = It0 if the projection F̄ = F in L2
w .

I Note: F̄ = F if Pol(E) = L2
w , which depends on w(dx).

I Proxy price: approximate the price by truncating series (7.4),

I
(K)
t0

=
K∑

k=0

Fk`k ,

for finite K , such that the pricing error is

ε(K) = It0 − I
(K)
t0

= It0 − Īt0︸ ︷︷ ︸
projection bias

+ Īt0 − I
(K)
t0︸ ︷︷ ︸

truncation error

with truncation error Īt0 − I
(K)
t0
→ 0 for K →∞.

Polynomial Expansion Methods 96/224



Proxy Measures

I Computation of I
(K)
t0

as numerical integration over E,

I
(K)
t0

=
K∑

k=0

〈F , `khk〉w =

∫

E
F (x)g (K)(dx), (7.6)

for the proxy measure

g (K)(dx) =
(∑K

k=0 `khk(x)
)

w(dx).

I Fact: g (K)(E) = 1 because 〈hk , h0 = 1〉w = 0 for k ≥ 1

I But g (K)(dx) is only a signed measure in general.

I Fact: g (K)(dx)→ g(dx) in a L2
w -weak sense: for all f ∈ L2

w

lim
K→∞

∫

E
f (x)g (K)(dx) =

∫

E
f (x)g(dx).
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Choice of Auxiliary Kernel

I In specific cases: closed-form Fourier coefficients Fk , e.g.
[Ackerer et al., 2015] for call options

I In general: numerical integration of (7.5), or equivalently (7.6)

I Depends on the choice of auxiliary kernel w(dx)

I How to choose w(dx)?

I Either good guessing, e.g. mixture of normals

w(dx) = (1− λ)nµ1,σ1(x)dx + λnµ2,σ2(x)dx

matching first two moments of g(dx)

I Or via simulation, see next..
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Simulation Approach: Markov Setup

I Assume Markov setup: parametric family of probability
measure {Pθ}θ∈Θ on (Ω,F) such that Xt is a PJD with
generator Gθ under any Pθ

I Denote gθ(dx) the Pθ-regular conditional distribution of X
given Ft0

I Fix baseline parameter θ0 ∈ Θ, fix initial x0 ∈ E , and set

w(dx) = Eθ0 [X ∈ dx | Xt0 = x0]

I Assume
gθ(dx)� w(dx) Pθ-a.s.

with likelihood ratio function `θ(x) ∈ L2
w Pθ-a.s. for all θ ∈ Θ
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Simulation Approach: Orthonormal Polynomials

Obtain ONB {h0(x) = 1, h1(x), . . . } of Pol(E) in L2
w without

numerical integration:

I Let h̃0(x) = 1, h̃1(x), . . . be any basis of Pol(E).

I Moment transform formula Theorem 1.7: scalar products

〈h̃k , h̃l〉w = Eθ0

[
h̃k(X)h̃l(X) | Xt0 = x0

]

in closed form

I Perform exact Gram–Schmidt orthonormalization gives
orthonormal basis {h0 = 1, h1, . . . } of Pol(E) in L2

w

I Yields closed-form Fourier coefficients

`θk = 〈hk , `
θ〉w =

∫

E
hk(x)`θ(x)w(dx) = Eθ [hk(X) | Ft0 ]
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Simulation Approach: Fourier Coefficients of F (x)

I Approximate w(dx) by simulating X under Pθ0 given Xt0 = x0

I Estimate the Fourier coefficients

Fk = Eθ0 [hk(X)F (X) | Xt0 = x0]

by Monte-Carlo method

I Numerical efficiency: pre-compute and store simulation; using

polynomial expansion above allows to compute proxies I
(K)
t0

efficiently for various θ ∈ Θ and thus calibrate θ to data
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Alternative Approach: Edgeworth Expansion

I Use an Edgeworth expansion of the characteristic function

E
[
e zF (X) | Ft0

]
= e

∑∞
n=1 Cn

zn

n!

= eC1z+C2
z2

2

(
1 + C3

z3

3!
+ O(z4)

)

where Cn refers to the nth cumulant of g(dx)

I Moment transform formula Theorem 1.7 gives closed-form
expressions for Cn

I Apply standard Fourier inversion to infer It0 , e.g.
[Carr and Madan, 1998] for at-the-money call options and
[Fang and Oosterlee, 2008] for out-of-the-money call options
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Specification Problem

I We have seen how to change measure and how to price
options in a general polynomial asset return framework

I How shall we specify the polynomial factor process Xt?

I Example: every affine model falls into the polynomial
framework

I Example: factor models with conditionally independent returns

I Here we focus on (novel) non-affine polynomial models
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Linear Diffusion Models: Framework

I A novel flexible class of diffusion based models

I Assume Xt = (X ′t ,Rt) is a linear diffusion (hence polynomial)

dXt = (b + βXt)dt + (C + X1,tΓ1 + · · ·+ Xd ,tΓd)dWt

for some m-dimensional standard Brownian motion Wt

I Nice (in contrast to affine models):

I a priori no constraints on parameters
I unique strong solution always exists in Rd

I Allows for stochastic volatility and correlations 〈Xi ,Xj〉
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Alternative Volatility Representation

I Linear volatility

(C + X1,tΓ1 + · · ·+ Xd ,tΓd)dWt

can alternatively be represented as

∑m
k=1 (ck + γkXt) dWk,t

where ck are column vectors of C and ith column of γk is kth
column of Γi : γk,i = Γi ,k
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Linear Diffusion Models: Cond. Independent Returns

Start with an observation:

Lemma 8.1.
Let Xt be a linear diffusion on E and (1,H(x)) a basis of Poln(E )
for some n ∈ N. Then H(Xt) is a linear diffusion on H(E ).

Build up linear diffusion models with cond. independent returns:

1. Let Xt be d-dim. linear diffusion on E ⊆ Rd

2. Specify excess returns

dRt = Q(Xt) dWt

for Q(x) ∈ Re×m with qij ∈ Poln(E ) for some n ∈ N
3. Let (1,H(x)) be a basis of Poln(E ). Then (H(Xt),Rt) is a

linear diffusion on H(E )× Re
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Examples for d = e = 1

I Revisit some examples for d = e = 1

dXt = (b + βXt)dt + (c + γXt) dW X
t

dRt = Xt dW R
t

with leverage d〈W X ,W R〉 = ρ dt

I extended Stein and Stein (1991): OU (affine)

dXt = (b + βXt)dt + c dW X
t

I extended Hull–White (1987): log-normal (not affine)

dXt = (b + βXt)dt + γXt dW X
t

see also [Sepp, 2016]
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Example for d = e = 1: Quadratic Volatility

I Quadratic volatility, [Filipović et al., 2016]:

dXt = (b + βXt)dt + (c + γXt) dW X
t

dRt = X 2
t dW R

t

with leverage d〈W X ,W R〉 = ρ dt

I Lemma 8.1: (Xt ,X
2
t ) is a linear diffusion on {(x , x2)}

I Extension Theorem 4.4: (Xt ,X
2
t ,Rt) is a linear diffusion on

{(x , x2)} × R
I Lemma 6.3: (Xt ,X

2
t ,Yt) is a linear diffusion on {(x , x2)} × R

for log-excess return Yt

I For OU (γ = 0): (Xt ,X
2
t ) is affine but (Xt ,X

2
t ,Yt) is not

affine if mean-reversion level is non-zero, b 6= 0 (why?)
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Stochastic Volatility and Correlation Models

I Let Xt = (X `
t ,X

′
t) be linear diffusion, d = d` + d ′

I Specify excess returns

dRi ,t = σi ,t `
>
i ,t dWt

for volatility process σi ,t and loadings process `i ,t
I Volatility process linear in Xt ,

σi ,t = ki + κ>i Xt ,

for parameters ki ∈ R and κi ∈ Rd

I Loadings process linear in X `
t ,

`i ,t = λi + ΛiX
`
t ,

for parameters λi ∈ Rm and Λi ∈ Rm×d` , m = dim Wt
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Unit Sphere-Valued Diffusion

Denote S = {‖x‖ = 1} the unit sphere in Rd`

Lemma 8.2.
Assume X `

t is autonomous with X0 ∈ S and of the form

dX `
t = β`X `

t dt +
m∑

k=1

γ`kX `
t dWk,t

for γ`k ∈ Skewd` and β` + 1
2

∑m
k=1 γ

`>
k γ`k ∈ Skewd` . Then X `

t ∈ S.

I Assumption: Conditions of Lemma 8.2 hold and

‖λi‖ ≤ 1, Λ>i Λi = (1− ‖λi‖)Idd`

I Then ‖`i ,t‖ ≡ 1
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Obtain Stochastic Volatility and Correlation Model

As above: (H(Xt),Rt) and (H(Xt),Yt) are linear diffusions, where
(1,H(x)) is a basis of Pol2(S × Rd ′), with

I stochastic volatility of returns

√
d〈Ri ,Ri 〉t

dt
= |σi ,t |

I stochastic instantaneous correlation between returns

d〈Ri ,Rj〉t
|σi ,t ||σj ,t | dt

= `>i ,t`j ,t = λ>i λj + X `>
t Λ>i ΛjX

`
t
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Stochastic volatility models

The volatility of stock price log-returns is stochastic

Black-Scholes Heston (affine SVJD)

volatility constant stochastic ∈ R+

calls and puts closed-form Fourier transform
exotic options closed-form ...

Black-Scholes model ⊂ Jacobi model → Heston model

I stochastic volatility on a parametrized compact support

I vanilla and exotic option prices have a series representation

I fast and accurate price approximations
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Jacobi Stochastic Volatility model

Fix 0 ≤ vmin < vmax . Define the quadratic function

Q(v) =
(v − vmin)(vmax − v)

(
√

vmax −
√

vmin)2
≤ v

Jacobi Model
Stock price dynamics St = eXt given by

dVt = κ(θ − Vt) dt + σ
√

Q(Vt) dW1t

dXt = (r − Vt/2) dt + ρ
√

Q(Vt) dW1t +
√

Vt − ρ2 Q(Vt) dW2t

(9.1)
for κ, σ > 0, θ ∈ [vmin, vmax ], interest rate r , ρ ∈ [−1, 1], and
2-dimensional BM W = (W1,W2)

Remark: e−rtSt = e−rt+Xt is a martingale
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Some properties

The function Q(v)

v ≥ Q(v), v = Q(v) if and only if v =
√

vminvmax , and Q(v) ≥ 0
for all v ∈ [vmin, vmax ]

0 vmin v∗ vmax

0
vmin

v∗

vmax

Instantaneous variance
d〈X ,X 〉t = Vt ∈ [vmin, vmax ] is a Jacobi process
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Some properties (cont.)

Instantaneous correlation

d〈V ,X 〉t√
d〈V ,V 〉t

√
d〈X ,X 〉t

= ρ
√

Q(Vt)/Vt

Polynomial model

(Vt ,Xt) is a polynomial diffusion – efficient calculation of
moments

Black-Scholes model nested
Take vmin = vmax = σ2

BS

Heston model as a limit case
If vmin → 0 and vmax →∞ then (Vt ,Xt) converges weakly in the
path space to the Heston model
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Implied volatility

Bounded implied volatility

Option with positive BS gamma (⇔ convex payoff for Europ.)
√

vmin ≤ σIV ≤
√

vmax

⇒ Forward start option σIV does not explode
(Jacquier and Roome 2015)
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Log-price density

We define
CT =

∫ T
0

(
Vt − ρ2Q(Vt)

)
dt

Theorem 9.1.
Let ε < 1/(2vmaxT ). If CT > 0 then the distribution of XT admits
a density gT (x) on R that satisfies

∫

R
eεx

2
gT (x) dx <∞ (9.2)

If
E
[
CT
−1/2

]
<∞ (9.3)

then gT (x) and eεx
2
gT (x) are uniformly bounded and continuous

on R. A sufficient condition for (9.3) is vmin > 0 and ρ2 < 1.

Remark: The Heston model does not satisfy (9.2) for any ε > 0
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A crucial corollary

Corollary 9.2.

Assume (9.3) holds. Then `(x) = gT (x)
w(x) ∈ L2

w , where

L2
w :=

{
h :

∫

R
|h(x)|2w(x) dx

}

and w(x) is any Gaussian density with variance σ2
w satisfying

σ2
w >

vmaxT

2
(9.4)

I (Filipovic, Mayerhofer, Schneider 2013) For the Heston model

we have that `(x) = gT (x)
w(x) ∈ L2

w , where w(x) is a (bilateral)
Gamma density
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Weighted L2–space

The weight function

w(x) = Gaussian density with mean µw and variance σ2
w

The weighted Hilbert space

L2
w =

{
f (x) | ‖f ‖2

w =

∫

R
f (x)2 w(x)dx <∞

}

which is a Hilbert space with scalar product

〈f , g〉w =

∫

R
f (x)g(x) w(x)dx

Orthonormal basis – Generalized Hermite polynomials

Hn(x) =
1√
n!
Hn

(
x − µw
σw

)

where Hn(x) are the standard Hermite polynomials
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Price approximation

Pricing problem

Assume that XT has a density gT (x)

πf = E[f (XT )] =

∫

R
f (x)gT (x)dx

Price series expansion

Suppose `(x) = gT (x)/w(x) ∈ L2
w and f (x) ∈ L2

w . Then

πf = 〈f , `〉w =
∑

n≥0

fn`n (9.5)

for the Fourier coefficients and Hermite moments

fn = 〈f ,Hn〉w , `n = 〈`,Hn〉w =

∫

R
Hn(x)gT (x) dx

Price approximation

πf ≈ π(N)
f =

N∑

n=0

fn`n =
N∑

n=0

〈f , `nHn〉w =

∫

R
f (x)g

(N)
T (x) dx

(9.6)Jacobi Stochastic Volatility Model [Ackerer et al., 2015] 127/224



Density approximation

“Gram-Charlier A expansion”

g
(N)
T (x) = w(x)

N∑

n=0

`nHn(x)

Gram-Charlier expansions of prices: Jarrow and Rudd (1982), Corrado and

Su (1996) ... Drimus, Necula, and Farkas (2013), Heston and Rossi (2015)...

−0.2 0 0.2

0

2

4

6
g
(50)
T
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−0.4

−0.2

0

0.2

0.4
`n

σw ∈ {1ν, 1.5ν, 2ν} with ν =
√

vmaxT/2 + ε, T = 1/12, X0 = 0, κ = 0.5,

θ = V0 = (0.25)2, σ = 0.25, vmin = (0.10)2, ρ = −0.5, and vmax = 1
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European calls and puts - Fourier coefficients

Theorem 9.3.
Consider the discounted payoff function for a call option with log
strike k,

f (x) = e−rT
(
ex − ek

)+

Its Fourier coefficients fn for n ≥ 1 are given by

fn = e−rT+µw 1√
n!
σw In−1

(
k − µw
σw

;σw

)

The functions In(µ; ν) are defined recursively by

I0(µ; ν) = e
ν2

2 Φ(ν − µ);

In(µ; ν) = Hn−1(µ)eνµφ(µ) + νIn−1(µ; ν), n ≥ 1

where Hn(x) are the standard Hermite polynomials, Φ(x) denotes
the standard Gaussian distribution function, and φ(x) its density
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Computational cost

Theorem 9.4.
The coefficients `n are given by

`n = [h1(V0,X0), . . . , hM(V0,X0)] eTGn eπ(0,n), 0 ≤ n ≤ N

where ei is the i–th standard basis vector in RM and h0, . . . , hM is
a basis of polynomials. Gn is the (M ×M)–matrix representing the
infinitesimal generator of (Vt ,Xt) on PolN – sparse matrix

10 20 100 500

10−2

10−1

1

`n, Gn

se
co
n
d
s

10 20 100 500

10−4

10−3 fn
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Example: Call option pricing
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0
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f n
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)
f

0 25 50 75 100 0 25 50 75 100

Figure: The Fourier coefficients (first row), the Hermite coefficients
(second row), and the price expansion (third row) as a function of the
order n. The parameters values are T = 1/12, X0 = k = 0, κ = 0.5,
θ = V0 = (0.25)2, σ = 0.25, vmin = (0.10)2, ρ = −0.5, and
vmax ∈ {0.3, 1, 5}
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Error bounds

Pricing error πf − π(N)
f = ε(N)

∣∣∣ε(N)
∣∣∣ =

∣∣∣∣∣
∑

n>N

fn`n

∣∣∣∣∣ ≤

√√√√
(∑

n>N

f 2
n

)(∑

n>N

`2
n

)

Type of bounds

1. Analytic: `2
n, f

2
n ≤ C × n−k for some k > 1 and C > 0

2. Numeric:
∑

n>N `
2
n = ‖`‖2

w −
∑N

n=0 `
2
n

0 100 200 300

0.1%

1%

10%
b(n)/π

(n)
f

0 100 200 300

0.028

0.029

0.030 π
(n)
f ± b(n)
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Volatility smiles - Call option

Fix θ =
√

vminvmax = v∗ and scale up vmin

0 0.2 0.4
0

0.25

0.50

vmin = (0.10)2
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vmin = (0.175)2
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√

Q(v) (1st row) and smile (2nd row)
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SPX implied volatility calibration
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√
θ κ σ ρ

√
V0

√
Vmin

√
Vmax RMSE

Jacobi 0.3660 0.7507 1.0072 -0.6057 0.1178 0.0499 0.4476 0.8461
Heston 0.3655 0.7498 0.8573 -0.6047 0.1178 0.9447
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Key corollary revisited

Log-returns density

Yti = Xti − Xti−1

for 0 ≤ t0 < t1 < t2 < · · · < tn, Y = (Yti ) has a density gt0,...,tn(y)

Weighting with Gaussians

Define w(y) =
∏n

i=1 wi (yi ) where wi (yi ) is a Gaussian density with

variance σ2
wi

, then
gt0,...,tn (y)

w(y) ∈ L2
w if

σ2
wi
>

vmax(ti − ti−1)

2

Jacobi Stochastic Volatility Model [Ackerer et al., 2015] 137/224



Forward start call option

Payoff function e−rt2(St2 − ekSt1)+ with 0 = t0 < t1 < t2

f̃ (y1, y2) = e−rt2(eX0+y1+y2 − ek+X0+y1)+

Fourier coefficients

f̃m1,m2 =

∫

R2

f̃ (y)Hm1(y1)Hm2(y2)w(y)dy

= f
(0,k)
m2

σm1
w√
m1!

eX0−rT+µw1 +σ2
w1
/2

Hermite moments

`m1,m2 = E[Hm1(Yt1)Hm2(Yt2)]

= E [Hm1(Yt1)E [Hm2(Yt2) | Ft1 ]]

Price approximation

πFS =
∑

m1,m2≥0

f̃m1,m2`m1,m2 ≈
m1+m2≤N∑

m1,m2=0

f̃m1,m2`m1,m2 =: π
(N)
FS
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Forward start call option (cont.)
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Forward start options on the return

1d 2w 1m

25%

30%

vmax = 1

1d 2w 1m

vmax = (0.3)2

Figure: Implied volatility of a forward start option on the return with
maturity t + T , and strikes k = −0.10 (black line), k = −0.05 (blue
line), and k = 0 (red line) are displayed as a function of maturity T .
Here t = 1/12, X0 = 0, κ = 0.5, V0 = θ = (0.25)2, σ = 0.25,
vmin = 10−4, and ρ = −0.5
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Conclusion

I new stochastic volatility model, Vt is a Jacobi process

I option price series representation in weighted L2
w space

I Hermite moments (polynomial model)
I Fourier coefficient (recursive formulas)

I computationally fast, empirically & Heston model,
pricing error bounds

I methodology applies to exotic option pricing
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Variance Swaps

I Underlying price process (e.g. S&P 500 index)

dSt

St−
= rt dt + σt dW ∗

t +

∫

R
(e x − 1) (µ(dt, dx)− νt(dx)dt)

I The annualized realized variance over [t,T ] equals

RV(t,T ) =
1

T − t

(∫ T

t
σ2
s ds+

∫ T

t

∫

R
x2 µ(ds, dx)

)

I A variance swap initiated at t with maturity T pays

RV(t,T )−VS(t,T )

I VS(t,T ): variance swap rate fixed at t
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Forward Variance

I Fair valuation:

VS(t,T ) = EQ
t [RV(t,T )]

I Define the spot variance

vt = σ2
t +

∫

R
x2 νt(dx)

I Define the forward variance

f (t,T ) = EQ
t [vT ]

I Then the variance swap rate equals

VS(t,T ) =
1

T − t

∫ T

t
f (t, s) ds
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Quadratic Variance Swap Model

I Bivariate PP diffusion state process

dX1t = (b1 + β11 X1t+β12 X2t) dt +
√

a1 + α1X1t + A1X 2
1t dW ∗

1t

dX2t = (b2 + β22 X2t) dt +
√

a2 + α2X2t + A2X 2
2t dW ∗

2t

I Spot variance is specified by

vt = φ0 + ψ0X1t + π0X 2
1t
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Explicit Forward Variance Curve

I f (t,T ) = φ(T − t) + ψ(T − t)>Xt + X>t π(T − t) Xt

I Linear ODEs for φ, ψ, and π can be vectorized by setting

q(τ) =
(
φ(τ) ψ1(τ) ψ2(τ) π11(τ) π12(τ) π22(τ)

)>

I The linear system then reads

dq(τ)

dτ
=




0 b1 b2 a1 0 a2

0 β11 β12 2b1 + α1 2b2 0
0 0 β22 0 2b1 2b2 + α2

0 0 0 2β11 + A1 2β12 0
0 0 0 0 β11 + β22 β12

0 0 0 0 0 2β22 + A2




q(τ)

q(0) =
(
φ0 ψ0 0 π0 0 0

)>
.
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Data

Figure: Variance swap rates
√
VS(t, t + τ) on the S&P 500 index from

Jan 4, 1996 to Jun 7, 2010. Source: Bloomberg

I In-sample (pre-crisis): Jan 4, 1996 to Apr 2, 2007
I Out-of-sample: Apr 3, 2007 to Jun 7, 2010Quadratic Variance Swap Models [Filipović et al., 2016] 148/224



Estimation Results: Bivariate Model

I Best fit for

dX1t = (`+ (λ+ β11) X1t+β12 X2t) dt +
√

1 + A1X 2
1t dW1t

dX2t = (b2 + β22 X2t) dt +
√

X2t + A2X 2
2t dW2t

I Recall spot variance vt = φ0 + ψ0X1t + π0X 2
1t

β11 β12 b2 β22 A1 A2

-5.1720 4.2324 0.1824 -0.2483 3.3895 0.0985
(0.0903) (0.2346) (0.0322) (0.0021) (0.1206) (0.0001)

φ0 ψ0 π0 MPR ` λ

0.0175 0.0130 0.0283 -0.1770 -0.0021
( 0.0002) (0.0008) (0.0004) (0.0190) (0.0868)

Table: Estimated parameters (robust standard errors into parentheses)
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In-Sample Analysis: Filtered Factors

Figure: Filtered factors X1 vs. stochastic mean reversion level `+β12X2

−(λ+β11) .
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Out-of-Sample Analysis: Predicted VS

Figure: Out-of-sample predicted variance swap rates vs. data for
6 months maturity. The quadratic diffusion model captures extreme
movements and spikes.
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Motivation

Dynamic credit risk models
I Security pricing (bonds and CDSs ∼$XX billions daily vol.)

I Risk management (portfolio, XVA, Basel III, IFRS 9)

Reduced form models (v.s. structural models)
I Simplicity: exogenous defaults driven by market factors

(Jarrow and Turnbull 1995, Lando 1998, Elliott, Jeanblanc, and Yor 2000)

I Affine default intensity models (Duffie and Singleton 1999, . . . )

I Limitations: high dimension, non-vanilla pricing problems

This paper
I New flexible class of (linear) credit risk models

(related to Gabaix 2009, Filipović, Trolle, and Larsson 2016)

I Tractable: explicit bond and CDS pricing formulas

I Versatile: simple price approximation with moments
Linear Credit Risk Model [Ackerer and Filipović, 2015] 155/224
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Cox construction of default time

I Default intensity process λt driven by some factors Xt

λt = f (Xt) ≥ 0

≈ probability of default over a small period dt is λtdt

I Default time τ is defined by

τ = inf

{
t ≥ 0 :

∫ t

0
λsds ≥ E

}

where E is an exponential random variable with mean 1

I Conditional survival probability

P [τ > t | (Xs)0≤s≤t ] = exp

(
−
∫ t

0
f (Xs)ds

)

positive non-increasing function of t starting at 1Linear Credit Risk Model [Ackerer and Filipović, 2015] 157/224



Alternative construction

I Let St be a positive non-increasing process starting at 1

I Default time τ is defined by

τ = inf {t ≥ 0 : St ≤ U}

where U is a uniform variable on (0, 1)

I When St is driven by some factors Xt we obtain

P [τ > t | (Xs)0≤s≤t ] = St

I Two filtrations
I Ft = all the information about Xt up to time t
I Gt = Ft and whether default occurred by time t
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The linear framework

Specification

Model directly the survival process St ! Linear drift

dSt = −γ>Xtdt − dMS
t

dXt = (βSt + BXt)dt + dMX
t

γ, β ∈ Rm, B ∈ Rm×m, Ft-martingales MS
t ∈ R and MX

t ∈ Rm

Conditions to verify

I non-increasing process: −γ>Xtdt − dMS
t ≤ 0

I positive process: St > 0

When MS
t = 0 the default intensity is given by

λt =
γ>Xt

St
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One-factor model

Set m = 1, MS
t = 0, and MX

t such that Xt ∈ [0,St ]

dSt = −γXtdt

dXt = (βSt + BXt)dt + σ
√

Xt(St − Xt)dWt

Conditions are verified by construction for any γ > 0

I dSt ≤ 0 since Xt ≥ 0

I St ≥ e−γt > 0 since λt = γXt

St
∈ [0, γ]

Lemma

The process (St ,Xt) is well-defined if and only if

β ≥ 0 and (γ + B + β) ≤ 0
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One-factor model II

Inward pointing condition

The state space of the process (St ,Xt) is of the form

dS

dX

dX

dX

dS

(1, 0) (1, 1)

(0, 0)
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One-factor model III
The default intensity has an autonomous dynamics

dλt = (`1 − λt)(λt − `2) dt + σ
√
λt(γ − λt) dWt

One-factor affine default intensity model

dλt = `2(λt − `1) dt + σ
√
λt dWt

Drift

0 `1 γ

0

Diffusion

σ

3σ

σ

0 γ

0

Linear Credit Risk Model [Ackerer and Filipović, 2015] 162/224



The linear hypercube model
Polynomial diffusion (Filipović and Larsson 2016) with state space

E =
{

(s, x) ∈ R1+m : s ∈ (0, 1] and x ∈ [0, s]m
}

The process dynamics rewrites

dSt = −γ>Xt dt

dXt = (βSt + BXt) dt + Σ(St ,Xt) dWt

with Σ(s, x) = diag
(
σ1

√
x1(s − x1), . . . , σm

√
xm(s − xm)

)

The default intensity satisfies 0 ≤ λt ≤ γ>1

Lemma

The process (Xt , St) is well defined if and only if

βi −
∑

j 6=i

B−ij ≥ 0 and γi + Bii + βi +
∑

j 6=i

(γj + Bij)
+ ≤ 0

Linear Credit Risk Model [Ackerer and Filipović, 2015] 163/224



Outline

Linear Credit Risk Model [Ackerer and Filipović, 2015]
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Defaultable bond

Assume henceforth constant risk-free interest rate r
Security B pays one if τ > T and zero otherwise

BZ (t,T ) = 1{τ>t}E
[
e−r(T−t)

1{τ>T} | Gt
]

= 1{τ>t}E
[
e−r(T−t) ST

St
| Ft

]

= 1{τ>t}
e−r(T−t)

St
ψZ (t,T )>

(
St

Xt

)

with the vector ψZ (t,T )> = (1; 0m)>eA(T−t) which follows from

E
[(

ST

XT

)
| Ft

]
= eA(T−t)

(
St

Xt

)
with A =

(
0 −γ>
β B

)

Affine models require (numerical) resolution of ODEs
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Contingent cash-flow

Security CD pays one at τ if and only if t < τ < T

CD(t,T ) = 1{τ>t}E
[
1{t<τ<T}e

−r(τ−t) | Gt
]

= 1{τ>t}

∫ T

t
e−r(s−t)dP [τ < s | Gt ]

= 1{τ>t}

∫ T

t
e−r(s−t)E

[
γ>Xs

St
| Ft

]
ds

= 1{τ>t}
1

St
ψD(t,T )>

(
St

Xt

)

with the vector ψD(t,T )> =
(
0 γ>

)
A−1
∗
(
eA∗(T−t) − Id

)
and

the matrix A∗ = A− Idr

Affine models require numerical integration

Linear Credit Risk Model [Ackerer and Filipović, 2015] 166/224



Credit default swap

Protection against firm default over the period (T0,T ) in
exchange of premium payments until default or maturity

VCDS(t,T0,T , k) = Vprot(t,T0,T )− k Vprem(t,T0,T )

With constant recovery rate R, protection leg and premium leg are
linear combinations of contingent bonds and cash-flows

VCDS(t,T0,T , k) = 1{τ>t}
1

St
ψCDS(t,T0,T , k)>

(
St

Xt

)

where the vector ψCDS(t,T0,T , k) is explicit

Bonds and CDS prices do not depend on MS
t and MX

t

⇒ Some flexibility in modelling unspanned factors
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Model specification and data

A LHC cascading structure (LHCC)

dSt = −γ1X1tdt

dXit = κi (θiX(i+1)t − Xit) dt + σi
√

Xit(St − Xit) dWit

dXmt = κm(θmSt − Xmt) dt + σm
√

Xmt(St − Xmt) dWmt

Three fits: m ∈ {2, 3}, and m = 3 with γ1 = 25%

Data
1-year to 10-year CDS spreads on J.P. Morgan, r = 2.53%.
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Filtered fitted factors
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Fitted spreads and errors
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specification / RMSE all 1 yr 2 yrs 3 yrs 4 yrs 5 yrs 7 yrs 10 yrs

two-factor 5.08 4.30 4.59 5.36 6.19 5.98 2.67 5.71
three-factor 2.53 1.93 2.56 2.36 2.70 3.65 2.21 1.86

three-factor & γ = 25% 3.77 2.48 2.25 3.59 5.03 4.77 2.43 4.73
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Single-name Europ. CDS Option

CDSO(t,T0,T , k) = E
[
e−r(T0−t)VCDS(T0,T0,T , k)+ | Gt

]

= 1{τ>t}
e−r(T0−t)

St
E
[
Z (T0,T , k)+ | Ft

]

with Z (T0,T , k) = ψCDS(T0,T0,T , k)>
(

ST0

XT0

)
.

LHC model takes values on a compact support

Z (T0,T , k) ∈ [a, b] and analytic moments E [Z (T0,T , k)n | Ft ]

Price approximation

Polynomial series pn(z) converging to (z)+ on [a, b], then

E [pn(Z (T0,T , k)) | Ft ] −−−→
n→∞

E
[
Z (T0,T , k)+ | Ft

]

with non-tight error upper bound ‖pn(z)− (z)+‖∞ on [a, b]
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CDSO price approximates
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Conclusion

I New class of reduced form models for credit-risk

I Model directly the survival process St = P[τ > t | Ft ]

I Analytical formulas for defaultable bond and CDS prices

I Accurate CDS option price approximation (LHC model)

I Promising directions: multi-firm models, XVA, . . .

Linear Credit Risk Model [Ackerer and Filipović, 2015] 175/224
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Near-zero short-term interest rates
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Contribution

I Existing models that respect zero lower bound (ZLB) on interest
rates face limitations:

I Shadow-rate models do not capture volatility dynamics
I Multi-factor CIR and quadratic models do not easily

accommodate unspanned factors and swaption pricing

I We develop a new class of linear-rational term structure models

I Respects ZLB on interest rates
I Easily accommodates unspanned factors affecting volatility and

risk premia
I Admits analytical solutions to swaptions

I Extensive empirical analysis

I Parsimonious model specification has very good fit to interest
rate swaps and swaptions since 1997

I Captures many features of term structure, volatility, and risk
premia dynamics.
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State price density

I Filtered probability space (Ω,F ,Ft ,P)

I State price density: positive process ζt

I Model price at t of any claim CT maturing at T :

Π(t,T ) =
1

ζt
E [ζTCT | Ft ]

This gives an arbitrage-free price system.

I Relation to short rate rt and pricing measure Q:

ζt
ζ0

= e−
∫ t

0 rsds × dQ
dP
|Ft
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Factor model

I Factor process Z with range E ⊂ Rm and linear drift:

dZt = κ (θ − Zt) dt + dMt ,

where κ ∈ Rm×m, θ ∈ Rm, Mt is a martingale.

I Specify state price density as linear in Zt

ζt = e−αt
(
φ+ ψ>Zt

)

where α ∈ R, φ ∈ R, ψ ∈ Rm, such that

φ+ ψ>z > 0 on E

Linear-Rational Term Structure Models [Filipović et al., 2014] 182/224



Linear-rational term structure

Lemma 12.1.
The Ft-conditional expectation of ZT is

E [ZT | Ft ] = θ + e−κ(T−t)(Zt − θ)

⇒ Linear-rational zero-coupon bond prices

P(t,T ) = F (T − t,Zt)

where

F (τ, z) = e−ατ
φ+ ψ>θ + ψ>e−κτ (z − θ)

φ+ ψ>z

⇒ Linear-rational short rate

rt = −∂T log P(t,T )|T=t = α− ψ>κ (θ − Zt)

φ+ ψ>Zt
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Choice of α

Define

α∗ = sup
z∈E

ψ>κ (θ − z)

φ+ ψ>z
and α∗ = inf

z∈E
ψ>κ (θ − z)

φ+ ψ>z
.

I Should arrange so that α∗ <∞ to get rt bounded below

I With α = α∗, we get

rt ∈ [0, α∗ − α∗]

I For the model to be useful, this range must be wide enough

I If eigenvalues of κ have nonnegative real part then

lim
T→∞

− 1

T − t
log P(t,T ) = α infinite maturity ZCB yield
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Unspanned stochastic volatility

I Empirical fact: volatility risk cannot be hedged using bonds
I Collin-Dufresne & Goldstein (02): Interest rate swaps can

hedge only 10%–50% of variation in ATM straddles
(a volatility-sensitive instrument)

I Heidari & Wu (03): Level/curve/slope explain 99.5% of yield
curve variation, but 59.5% of variation in swaption implied vol

I Phenomenon is called Unspanned Stochastic Volatility (USV)

I Fact: nonnegative exponential-affine term structure models
cannot (generically) produce USV
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Spanned vs. unspanned factors

I Recall factor dynamics

dZt = κ (θ − Zt) dt + dMt

I Linear-rational ZCB prices P(t,T ) = F (T − t,Zt) where

F (τ, z) = e−ατ
φ+ ψ>θ + ψ>e−κτ (z − θ)

φ+ ψ>z

⇒ F (τ, z) depends on drift of Zt only

⇒ Specify exogenous factors Ut feeding in martingale part of Zt

⇒ Ut unspanned by term structure, give rise to USV
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Term structure factors

I The term structure kernel U is defined as orthogonal
complement in Rm to factor loadings of the term structure

U =
⋂

τ≥0, z∈E
ker∇zF (τ, z)

Theorem 12.2.

1. Identity U = span
{
ψ, κ>ψ, . . . , κ(m−1)>ψ

}⊥

2. After dimension reduction if necessary we can assume
U = {0}, such that Zt become term structure factors

3. Term structure F (τ, z) injective if and only if U = {0}, κ is
invertible, and φ+ ψ>θ 6= 0
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Interest rate swaps

I Exchange a stream of fixed-rate for floating-rate payments

I Consider a tenor structure

T0 < T1 < · · · < Tn, Ti − Ti−1 ≡ ∆

I At Ti , i = 1 . . . n:

I pay ∆k, for fixed rate k
I receive floating LIBOR ∆L(Ti−1,Ti ) = 1

P(Ti−1,Ti )
− 1

I Value of payer swap at t ≤ T0

Πswap
t = P(t,T0)− P(t,Tn)︸ ︷︷ ︸

floating leg

−∆k
n∑

i=1

P(t,Ti )

︸ ︷︷ ︸
fixed leg

I Forward swap rate St = P(t,T0)−P(t,Tn)
∆
∑n

i=1 P(t,Ti )
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Swaptions

I Payer swaption = option to enter the swap at T0 paying fixed,
receiving floating

I Payoff at expiry T0 of the form

CT0 =
(
Πswap

T0

)+
=

(
n∑

i=0

ciP(T0,Ti )

)+

=
1

ζT0

pswap(ZT0 )+

for the explicit linear function

pswap(z) =
n∑

i=0

cie
−αTi

(
φ+ ψ>θ + ψ>e−κ(Ti−T0)(z − θ)

)

I Swaption price at t ≤ T0 is given by

Πswaption
t =

1

ζt
E[ζT0 CT0 | Ft ] =

1

ζt
Et

[
pswap(ZT0 )+

]

I Efficient swaption pricing via Fourier transform . . . !
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Fourier transform

I Define
q̂(x) = Et [exp (x pswap(ZT0 ))]

for every x ∈ C such that the conditional expectation is well-defined

I Then

Πswaption
t =

1

ζtπ

∫ ∞

0

Re

[
q̂(µ+ iλ)

(µ+ iλ)2

]
dλ

for any µ > 0 with q̂(µ) <∞

I q̂(x) has semi-analytical solution in LRSQ model
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Linear-Rational Square-Root (LRSQ) model

I Objective: A model with joint factor process (Zt ,Ut), where

I Zt : m term structure factors
I Ut : n ≤ m USV factors

I Denoted LRSQ(m,n)

I Based on a (m + n)-dimensional square-root diffusion process Xt

taking values in Rm+n
+ of the form

dXt = (b − βXt)dt + Diag
(
σ1

√
X1t , . . . , σm+n

√
Xm+n,t

)
dBt ,

I Define (Zt ,Ut) = SXt as linear transform of Xt

I Need to specify a (m + n)× (m + n)-matrix S such that

I the implied term structure state space is E = Rm
+

I the drift of Zt does not depend on Ut , while Ut feeds into the
martingale part of Zt
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Linear-Rational Square-Root (LRSQ) model (cont.)

I S given by

S =

(
Idm A

0 Idn

)
with A =

(
Idn
0

)
.

I β chosen upper block-triangular of the form

β = S−1

(
κ 0
0 A>κA

)
S =

(
κ κA− AA>κA
0 A>κA

)

for some κ ∈ Rm×m

I b given by

b = βS−1

(
θ
θU

)
=

(
κθ − AA>κAθU

A>κAθU

)

for some θ ∈ Rm and θU ∈ Rn.
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Linear-Rational Square-Root (LRSQ) model (cont.)

I Resulting joint factor process (Zt ,Ut):

dZt = κ (θ − Zt) dt + σ(Zt ,Ut)dBt

dUt = A>κA (θU − Ut)dt +Diag
(
σm+1

√
U1t dBm+1,t , . . . , σm+n

√
Unt dBm+n,t

)
,

with dispersion function of Zt given by

σ(z , u) = (Idm,A) Diag
(
σ1

√
z1 − u1, . . . , σm+n

√
un

)

I Example: LRSQ(1,1)

dZ1t = κ (θ − Z1t)dt + σ1

√
Z1t − U1tdB1t + σ2

√
U1tdB2t

dU1t = κ (θU − U1t)dt + σ2

√
U1tdB2t
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Example: LRSQ(3, 1)

I β =




κ11 κ12 κ13 0
κ21 κ22 κ23 κ21

κ31 κ32 κ33 κ31

0 0 0 κ11




I




Z1t

Z2t

Z3t

U1t


 = SXt =




X1t + X4t

X2t

X3t

X4t




I σ(z , u) =




σ1
√

z1 − u1 0 0 σ4
√

u1

0 σ2
√

z2 0 0
0 0 σ3

√
z3 0

0 0 0 σ4
√

u1
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Example: LRSQ(3, 2)

I β =




κ11 κ12 κ13 0 0
κ21 κ22 κ23 0 0
κ31 κ32 κ33 κ31 κ32

0 0 0 κ11 κ12

0 0 0 κ21 κ22




I




Z1t

Z2t

Z3t

U1t

U2t




= SXt =




X1t + X4t

X2t + X5t

X3t

X4t

X5t




I σ(z , u) =




σ1
√

z1 − u1 0 0 σ4
√

u1 0
0 σ2

√
z2 − u2 0 0 σ5

√
u2

0 0 σ3
√

z3 0 0
0 0 0 σ4

√
u1 0

0 0 0 0 σ5
√

u2
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Example: LRSQ(3, 3)

I β =

(
κ 0
0 κ

)

I




Z1t

Z2t

Z3t

U1t

U2t

U3t




= SXt =




X1t + X4t

X2t + X5t

X3t + X6t

X4t

X5t

X6t




I σ(z, u) =


σ1
√
z1 − u1 0 0 σ4

√
u1 0 0

0 σ2
√
z2 − u2 0 0 σ5

√
u2 0

0 0 σ3
√

z3 − u3 0 0 σ6
√
u3

0 0 0 σ4
√
u1 0 0

0 0 0 0 σ5
√
u2 0

0 0 0 0 0 σ6
√
u3



Linear-Rational Term Structure Models [Filipović et al., 2014] 197/224



Linear-rational vs. exponential-affine framework

Exponential-affine Linear-rational
Short rate affine LR
ZCB price exponential-affine LR
ZCB yield affine log of LR
Coupon bond price sum of exponential-affines LR
Swap rate ratio of sums of exponential-affines LR
ZLB (X) X
USV (X) X
Cap/floor valuation semi-analytical semi-analytical
Swaption valuation approximate semi-analytical
Linear state inversion ZCB yields bond prices or swap rates

Table 1: Comparison of exponential-affine and linear-rational frameworks.
In the exponential-affine framework, respecting the zero lower bound (ZLB) on interest rates
is only possible if all factors are of the square-root type, and accommodating unspanned
stochastic volatility (USV) is only possible if at least one factor is conditionally Gaussian.
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Linear-rational vs. exponential-affine framework: MPR

Exponential-affine model:

P(t,T ) = eA(T−t)+B(T−t)>Zt

I Zt square-root diffusion under risk-neutral measure Q
I Market price of risk λt determining dQ

dP exogeneous

LRSQ model:

P(t,T ) = e−α(T−t) 1 + 1>θ + 1>e−κ(T−t)(Zt − θ)

1 + 1>Zt

I Zt square-root diffusion under historical measure P

I Market price of risk λt determining dQ
dP endogenous
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Linear-rational vs. exponential-affine framework: MPR

Exponential-affine model:

P(t,T ) = eA(T−t)+B(T−t)>Zt

I Zt square-root diffusion under risk-neutral measure Q

I Market price of risk λt determining dQ
dP exogeneous

LRSQ model:

P(t,T ) = e−α(T−t) 1 + 1>θ + 1>e−κ(T−t)(Zt − θ)

1 + 1>Zt

I Zt square-root diffusion under auxiliary measure A
I Market price of risk λt determining dQ

dP = dQ
dA

dA
dP exogenous
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Extended state price density specification

I Linear state price density specification: market price of risk

λt = −σ(Zt ,Ut)
>ψ

φ+ ψ>Zt
.

I Alternatively, develop model under auxiliary measure A:

I State price density: ζAt = e−αt(φ+ ψ>Zt)
I Factor process dynamics: dZt = κ(θ − Zt)dt + dMA

t
I Basic pricing formula: Π(t,T ) = EA

t

[
ζATCT

]
/ζAt

I Extended state price density specification

ζPt = ζAt EP
t [dA/dP] = ζAt E

(
−
∫ t

0

δ>s dBP
s

)

with (Alvarez & Jermann (2005), Hansen & Scheinkman (2009))

I transitory component ζAt
I permanent component EP

t [dA/dP]
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Extended state price density specification

I Market price of risk now given by

λPt = −σ(Zt ,Ut)
>ψ

φ+ ψ>Zt
+ δt

I In LRSQ model: no additional unspanned risk premium factors

δt = (δ1

√
X1t , . . . , δm+n

√
Xm+n,t)

>

I A is long forward measure:

ζAt P(t,T )

ζA0 P(0,T )
=
φ+ EA

t [ψ>ZT ]

φ+ EA[ψ>ZT ]
→ 1 as T →∞

Hence deflating by ζAt /ζ
A
0 amounts to discounting by gross return

on long-term bond limT→∞
P(t,T )
P(0,T )

It also implies that the long-term bond is growth optimal under A
(Qin & Linetsky 2015)
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Data and estimation approach

I Panel data set of swaps and swaptions

I Swap maturities: 1Y, 2Y, 3Y, 5Y, 7Y, 10Y

I Swaptions expiries: 3M, 1Y, 2Y, 5Y

I 866 weekly observations, Jan 29, 1997 – Aug 28, 2013

I Estimation approach: Quasi-maximum likelihood in conjunction
with the unscented Kalman Filter

Panel A1: Swap data Panel B1: Swaption data

Panel A2: Swap fit, LRSQ(3,3) Panel B2: Swaption fit, LRSQ(3,3)

Panel A3: Swap RMSE, LRSQ(3,3) Panel B3: Swaption RMSE, LRSQ(3,3)
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Figure 2: Data and fit
Panel A1 shows time series of the 1-year, 5-year, and 10-year swap rates (displayed
as thick light-grey, thick dark-grey, and thin black lines, respectively). Panel B1
shows time series of the normal implied volatilities on three “benchmark” swaptions:
the 3-month option on the 2-year swap, the 2-year option on the 2-year swap, and
the 5-year option on the 5-year swap (displayed as thick light-grey, thick dark-grey,
and thin black lines, respectively). Panels A2 and B2 show the fit to swap rates and
implied volatilities, respectively, in case of the LRSQ(3,3) specification. Panels A3
and B3 show time series of the root-mean-squared pricing errors (RMSE) of swap
rates and implied volatilities, respectively, in case of the LRSQ(3,3) specification.
The units in Panels B1, B2, A3, and B3 are basis points. The grey areas mark
the two NBER-designated recessions from March 2001 to November 2001 and from
December 2007 to June 2009, respectively. Each time series consists of 866 weekly
observations from January 29, 1997 to August 28, 2013.
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Model specifications

I Model specifications (always 3 term structure factors)

I LRSQ(3,1): volatility of Z1t containing an unspanned
component

I LRSQ(3,2): volatility of Z1t and Z2t containing unspanned
components

I LRSQ(3,3): volatility of term structure factors containing
unspanned components

I α = α∗ and range of rt :

LRSQ(3,1) LRSQ(3,2) LRSQ(3,3)
Long ZCB yield α 7.46% 6.88% 5.66%
Upper bound on rt 20% 146% 72%
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Level-dependence in factor volatilities

I Volatility of Zit with USV:
√
σ2
i Zit + (σ2

i+3 − σ2
i )Uit

I Volatility of Zit without USV: σi
√

Zit
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V
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Figure 4: Level-dependence in volatility of the term structure factors.
For each term structure factor, its instantaneous volatility is plotted against its level. The
first, second, and third column correspond to the LRSQ(3,1), LRSQ(3,2), and LRSQ(3,3)
specification, respectively. The first, second, and third row correspond to Z1,t, Z2,t, and Z3,t,
respectively. Each plot contains 866 weekly observations from January 29, 1997 to August
28, 2013. The grey areas mark the possible range of factor volatilities for a given factor level.
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Fit to data, LRSQ(3,3)

Panel A1: Swap data Panel B1: Swaption data

Panel A2: Swap fit, LRSQ(3,3) Panel B2: Swaption fit, LRSQ(3,3)

Panel A3: Swap RMSE, LRSQ(3,3) Panel B3: Swaption RMSE, LRSQ(3,3)
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Figure 2: Data and fit
Panel A1 shows time series of the 1-year, 5-year, and 10-year swap rates (displayed
as thick light-grey, thick dark-grey, and thin black lines, respectively). Panel B1
shows time series of the normal implied volatilities on three “benchmark” swaptions:
the 3-month option on the 2-year swap, the 2-year option on the 2-year swap, and
the 5-year option on the 5-year swap (displayed as thick light-grey, thick dark-grey,
and thin black lines, respectively). Panels A2 and B2 show the fit to swap rates and
implied volatilities, respectively, in case of the LRSQ(3,3) specification. Panels A3
and B3 show time series of the root-mean-squared pricing errors (RMSE) of swap
rates and implied volatilities, respectively, in case of the LRSQ(3,3) specification.
The units in Panels B1, B2, A3, and B3 are basis points. The grey areas mark
the two NBER-designated recessions from March 2001 to November 2001 and from
December 2007 to June 2009, respectively. Each time series consists of 866 weekly
observations from January 29, 1997 to August 28, 2013.
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Short-rate dynamics near the ZLB

I Conditional density of rt given r0 ≤ 25bps, LRSQ(3,3)

Panel A: Conditional dist., 1 yr Panel B: Conditional dist., 2 yrs

Panel C: Conditional dist., 5 yrs
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Figure 5: Conditional distribution of short rate.
Conditional on the short rate being between 0 and 25 basis points, Panels A-C display
histograms showing the frequency distribution of the future short rate at a 1-year, 2-year,
and 5-year horizon, respectively. Panel D displays the mean and median paths of the short
rate. The frequency distributions are obtained from 2,600,000 weekly observations (50,000
years) of the short rate simulated from the LRSQ(3,3) specification.
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Volatility dynamics near the ZLB

I Level-dependence in volatility, 3M/1Y IV vs. 1Y rate

1Y swap rate
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Figure 1: Level-dependence in volatility of 1-year swap rate
The figure shows the normal implied volatility of the 3-month option on the 1-year
swap rate (in basis points) plotted against the level of the 1-year swap rate. The
grey area marks the possible range of implied volatilities in case of the LRSQ(3,3)
specification.
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Level-dependence in volatility

I Regress weekly changes in the 3M swaption IV on weekly changes in
the swap rate

∆σN,t = β0 + β1∆St + εt

1 yr 2 yrs 3 yrs 5 yrs 7 yrs 10 yrs Mean

Panel A: β̂1
All 0.18

(2.38)

∗∗ 0.16
(2.88)

∗∗∗ 0.16
(3.31)

∗∗∗ 0.16
(4.12)

∗∗∗ 0.16
(4.59)

∗∗∗ 0.16
(4.97)

∗∗∗ 0.16

0%-1% 1.20
(8.03)

∗∗∗ 0.74
(8.79)

∗∗∗ 0.62
(8.19)

∗∗∗ 0.48
(7.83)

∗∗∗ 0.76

1%-2% 0.54
(2.70)

∗∗∗ 0.64
(6.21)

∗∗∗ 0.46
(6.77)

∗∗∗ 0.52
(5.02)

∗∗∗ 0.45
(5.23)

∗∗∗ 0.26
(8.24)

∗∗∗ 0.48

2%-3% 0.28
(3.10)

∗∗∗ 0.11
(1.97)

∗∗ 0.30
(3.77)

∗∗∗ 0.36
(5.08)

∗∗∗ 0.40
(5.62)

∗∗∗ 0.40
(4.93)

∗∗∗ 0.31

3%-4% −0.02
(−0.22)

0.11
(1.21)

0.06
(0.92)

0.05
(0.80)

0.11
(1.82)

∗ 0.17
(1.96)

∗ 0.08

4%-5% 0.04
(0.31)

−0.07
(−0.82)

0.01
(0.08)

0.08
(1.59)

0.07
(1.76)

∗ 0.07
(1.65)

∗ 0.03

Panel B: R2

All 0.05 0.06 0.08 0.10 0.11 0.10 0.08
0%-1% 0.52 0.54 0.54 0.44 0.51
1%-2% 0.25 0.49 0.45 0.55 0.55 0.27 0.43
2%-3% 0.16 0.06 0.28 0.37 0.44 0.45 0.29
3%-4% 0.00 0.03 0.01 0.01 0.07 0.12 0.04
4%-5% 0.00 0.01 0.00 0.03 0.03 0.03 0.02

Table 4: Level-dependence in volatility.
For each available swap maturity, the table reports results from regressing weekly
changes in the 3-month normal implied volatility of the swap rate on weekly changes
in the level of the swap rate (including a constant). Panel A shows the slope co-
efficients with t-statistics in parentheses, and Panel B shows the R2s. Within each
panel, the first row displays unconditional results, while the second to sixth rows
display results conditional on the swap rate being in the intervals 0%-1%, 1%-2%,
2%-3%, 3%-4%, and 4%-5%, respectively. Each underlying time series consists of
866 weekly observations from January 29, 1997 to August 28, 2013. t-statistics are
corrected for heteroscedasticity and serial correlation up to 12 lags using the method
of Newey and West (1987). ∗, ∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and
1% level, respectively.
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Level-dependence in volatility

I Regress weekly changes in the 3M swaption IV on weekly changes in
the swap rate

∆σN,t = β0 + β1∆St + εt

1 yr 2 yrs 3 yrs 5 yrs 7 yrs 10 yrs Mean

Panel A: β̂1
All 0.18

(2.38)

∗∗ 0.16
(2.88)

∗∗∗ 0.16
(3.31)

∗∗∗ 0.16
(4.12)

∗∗∗ 0.16
(4.59)

∗∗∗ 0.16
(4.97)

∗∗∗ 0.16

0%-1% 1.20
(8.03)

∗∗∗ 0.74
(8.79)

∗∗∗ 0.62
(8.19)

∗∗∗ 0.48
(7.83)

∗∗∗ 0.76

1%-2% 0.54
(2.70)

∗∗∗ 0.64
(6.21)

∗∗∗ 0.46
(6.77)

∗∗∗ 0.52
(5.02)

∗∗∗ 0.45
(5.23)

∗∗∗ 0.26
(8.24)

∗∗∗ 0.48

2%-3% 0.28
(3.10)

∗∗∗ 0.11
(1.97)

∗∗ 0.30
(3.77)

∗∗∗ 0.36
(5.08)

∗∗∗ 0.40
(5.62)

∗∗∗ 0.40
(4.93)

∗∗∗ 0.31

3%-4% −0.02
(−0.22)

0.11
(1.21)

0.06
(0.92)

0.05
(0.80)

0.11
(1.82)

∗ 0.17
(1.96)

∗ 0.08

4%-5% 0.04
(0.31)

−0.07
(−0.82)

0.01
(0.08)

0.08
(1.59)

0.07
(1.76)

∗ 0.07
(1.65)

∗ 0.03

Panel B: R2

All 0.05 0.06 0.08 0.10 0.11 0.10 0.08
0%-1% 0.52 0.54 0.54 0.44 0.51
1%-2% 0.25 0.49 0.45 0.55 0.55 0.27 0.43
2%-3% 0.16 0.06 0.28 0.37 0.44 0.45 0.29
3%-4% 0.00 0.03 0.01 0.01 0.07 0.12 0.04
4%-5% 0.00 0.01 0.00 0.03 0.03 0.03 0.02

Table 4: Level-dependence in volatility.
For each available swap maturity, the table reports results from regressing weekly
changes in the 3-month normal implied volatility of the swap rate on weekly changes
in the level of the swap rate (including a constant). Panel A shows the slope co-
efficients with t-statistics in parentheses, and Panel B shows the R2s. Within each
panel, the first row displays unconditional results, while the second to sixth rows
display results conditional on the swap rate being in the intervals 0%-1%, 1%-2%,
2%-3%, 3%-4%, and 4%-5%, respectively. Each underlying time series consists of
866 weekly observations from January 29, 1997 to August 28, 2013. t-statistics are
corrected for heteroscedasticity and serial correlation up to 12 lags using the method
of Newey and West (1987). ∗, ∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and
1% level, respectively.
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Level-dependence in volatility, LRSQ(3,3)
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Figure 7: Level-dependence in volatility.
For each swap maturity, weekly changes in the 3-month normal implied volatility of
the swap rate are regressed on weekly changes in the level of the swap rate (includ-
ing a constant). Regressions are run unconditionally as well as conditional on the
swap rate being in the intervals 0%-1%, 1%-2%, 2%-3%, 3%-4%, and 4%-5%, respec-
tively. Panels A and C show the average (across swap maturities) slope coefficients
and R2s, respectively. Panels B and D show the average (across swap maturities)
model-implied slope coefficients and R2s, respectively. In each panel, the first bar
corresponds to the unconditional regressions, while the second to sixth bars corre-
spond to the conditional regressions. Model-implied values are obtained by running
the regressions on data simulated from the LRSQ(3,3) specification, where each time
series consists of 2,600,000 weekly observations (50,000 years).
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Unconditional excess returns

I Unconditional 1M excess ZCB returns, % annualized

1 yr 2 yrs 3 yrs 5 yrs 7 yrs 10 yrs
Data Mean 0.58 1.56 2.39 3.61 4.46 5.43

Vol 0.71 1.72 2.82 4.96 6.96 9.86
SR 0.82 0.91 0.85 0.73 0.64 0.55

LRSQ(3,1) Mean 0.37 0.74 1.10 1.77 2.39 3.21
Vol 0.57 1.28 2.14 4.02 5.83 8.19
SR 0.64 0.58 0.51 0.44 0.41 0.39

LRSQ(3,2) Mean 0.37 0.70 1.01 1.60 2.14 2.83
Vol 0.53 1.21 1.97 3.54 5.04 7.08
SR 0.69 0.58 0.51 0.45 0.42 0.40

LRSQ(3,3) Mean 0.25 0.58 0.91 1.53 2.04 2.63
Vol 0.57 1.19 1.92 3.51 5.06 7.21
SR 0.43 0.48 0.47 0.44 0.40 0.36

LRSQ(3,3), δt = 0 Mean -0.03 0.01 0.10 0.34 0.60 0.97
Vol 1.01 1.71 2.35 3.75 5.23 7.31
SR -0.03 0.01 0.04 0.09 0.11 0.13

Table 5: Unconditional excess returns on zero-coupon bonds.
The table reports the annualized means and volatilities of nonoverlapping monthly excess
returns on zero-coupon bonds bootstrapped from swap rates. Also reported are the annual-
ized Sharpe ratios (SR). Excess returns are in percent. The top panel shows results in the
data, where each time series consists of 200 monthly observations from February 1997 to
August 2013. The second, third, and fourth panels show results in simulated data from the
LRSQ(3,1), LRSQ(3,2), and LRSQ(3,3) specifications, respectively. The last panel shows
results in simulated data from the LRSQ(3,3) specification with δt = 0. Each simulated time
series consists of 600,000 monthly observations (50,000 years).
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Conditional expected excess returns

I Regress Re
t+1 = β0 + βSlpSlpt + βVolVolt + εt+1

I Slpt : slope of swap term structure (standardized)

I Volt : 1M swaption IV (standardized)

1 yr 2 yrs 3 yrs 5 yrs 7 yrs 10 yrs

Data β̂Slp −0.025
(−1.548)

−0.009
(−0.215)

0.027
(0.403)

0.092
(0.838)

0.121
(0.845)

0.166
(0.832)

β̂V ol 0.058
(4.459)

∗∗∗ 0.114
(3.409)

∗∗∗ 0.144
(2.506)

∗∗ 0.169
(1.546)

0.206
(1.395)

0.210
(0.963)

R2 0.102 0.051 0.037 0.025 0.020 0.013

LRSQ(3,1) β̂Slp 0.004 0.003 -0.004 -0.032 -0.065 -0.102

β̂V ol 0.012 0.017 0.026 0.058 0.096 0.148
R2 0.007 0.003 0.002 0.002 0.003 0.004

LRSQ(3,2) β̂Slp 0.000 0.002 0.008 0.018 0.021 0.014

β̂V ol 0.016 0.033 0.049 0.072 0.088 0.112
R2 0.011 0.009 0.008 0.005 0.004 0.003

LRSQ(3,3) β̂Slp 0.025 0.038 0.046 0.055 0.059 0.059

β̂V ol 0.031 0.054 0.074 0.112 0.143 0.182
R2 0.082 0.054 0.035 0.020 0.014 0.010

LRSQ(3,3), δt = 0 β̂Slp -0.002 -0.001 0.001 0.006 0.010 0.015

β̂V ol -0.004 -0.002 0.005 0.026 0.049 0.080
R2 0.000 0.000 0.000 0.001 0.001 0.001

Table 6: Conditional excess returns on zero-coupon bonds.
The table reports results from regressing nonoverlapping monthly excess zero-coupon bond
returns on previous month’s term structure slope and implied volatility (including a con-
stant). Consider the results for the 5-year maturity: The excess return is on a 5-year
zero-coupon bond bootstrapped from swap rates. The term structure slope is the difference
between the 5-year swap rate and 1-month LIBOR. The implied volatility is the normal
implied volatility of a swaption with a 1-month option expiry and a 5-year swap maturity.
Excess returns are in percent, and the term structure slopes and implied volatilities are
standardized. The top panel shows results in the data, where each time series consists of
200 monthly observations from February 1997 to August 2013. t-statistics, corrected for
heteroscedasticity and serial correlation up to 12 lags using the method of Newey and West
(1987), are in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% level,
respectively. The second, third, and fourth panels show results in simulated data from the
LRSQ(3,1), LRSQ(3,2), and LRSQ(3,3) specifications, respectively. The last panel shows
results in simulated data from the LRSQ(3,3) specification with δt = 0. Each simulated time
series consists of 600,000 monthly observations (50,000 years).
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Conclusion

I Key features of framework:

I Respects ZLB on interest rates
I Easily accommodates unspanned factors affecting volatility and

risk premia
I Admits semi-analytical solutions to swaptions

I Extensive empirical analysis:

I Parsimonious model specification has very good fit to interest
rate swaps and swaptions since 1997

I Captures many features of term structure, volatility, and risk
premia dynamics.
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