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Cutting edge: Derivatives pricing

Quantized calibration in local volatility
Pricing of a derivative should be fast and accurate, otherwise it cannot be calibrated efficiently. Here, Giorgia Callegaro,
Lucio Fiorin and Martino Grasselli apply a fast quantization methodology, in a local volatility context, to the pricing of vanilla
and barrier options that overcomes the numerical problems in existing methods

Q
uantization is a widely used tool in information theory, clus-
ter analysis, pattern and speech recognition, numerical inte-
gration, data mining and, as in our case, numerical proba-
bility. The birth of optimal quantization dates back to the

1950s, when the necessity to optimise signal transmission, by appro-
priate discretisation procedures, arose.

Quantization consists of approximating a signal that admits a con-
tinuum of possible values by a signal that takes values in a discrete set.
Vector quantization deals with signals that are finite dimensional, such
as random variables, while functional quantization extends the con-
cepts to the infinite-dimensional setting, as it is in the case of stochas-
tic processes. Quantization of random vectors can be considered a
discretisation of the probability space, providing in some sense the
best approximation to the original distribution. It is therefore crucial
for a given distribution to optimise the geometric location of these
points and to evaluate the resulting error. Some numerical procedures
have been developed to get optimal quadratic quantization of the Gaus-
sian (and even non-Gaussian) distribution in high dimension, mostly
based on stochastic optimisation algorithms. Over the years, many
other application fields have been discovered, such as, in the 1990s,
numerical integration. This opened the door, especially in France and
Germany, to new research perspectives in numerical probability and
applications to mathematical finance.

For a comprehensive introduction to optimal vector quantization
and its applications, we refer the reader to the recent paper of Pagès
(2014) and the references therein.

While theoretically sound and deeply investigated, optimal quanti-
zation typically suffers from the numerical burden that the algorithms
involve (see, for example, the numerical results in Pagès & Printems
(2005)). The main reason is related to the highly time-consuming pro-
cedure required by the determination of the optimal grid, especially
in the multi-dimensional case, where stochastic algorithms are neces-
sary. Recently, a very promising type of quantization, called recursive
marginal quantization, has been introduced by Pagès & Sagna (2014)
and applied to the Euler scheme of a pseudo-CEV local volatility
model in a pricing context. This new approach provides sub-optimal
quantization grids in a very precise and fast way.

Following the lines of Pagès & Sagna (2014), in our paper we apply
recursive marginal quantization to a special local volatility model,
namely the quadratic normal volatility (QNV) model, that has been
investigated by Blacher (2001), Ingersoll (1997), Lipton (2002), Zühls-
dorff (2002) and lately revisited by Andersen (2011) and Carr, Fischer
& Ruf (2013). We find stationary quantizers via a Newton-Raphson
method, in order to efficiently price vanilla and exotic derivatives.
Indeed, the Newton-Raphson procedure, being deterministic, is very
fast and it allows us to provide the first example of calibration based
on quantization. The recursive marginal quantization is competitive
even when closed-form formulas for vanillas are available (as in the

case of call and put prices for the QNV model). Finally, we show the
flexibility and the efficiency of the recursive marginal quantization in
the pricing of non-vanilla contracts, when compared with the classic
Monte Carlo simulation. Our numerical algorithms have performed
quite well (with regard to Monte Carlo), so that in this paper no speed-
up procedure has been tested. As a consequence, this paper does not
provide the fastest possible numerical method, but a procedure that is
competitive enough if compared with Monte Carlo.

The paper is organised as follows. In the next section we give a quick
application-oriented overview of the vector quantization methodol-
ogy. We then extend the vector quantization method to the class of
Markov diffusion processes, leading to the recursive marginal quan-
tization. Then we introduce the QNV model together with the well-
known results on closed-form formulas for vanilla option prices. More-
over, we apply the recursive marginal quantization approach to the
pricing of barrier options. The next section illustrates our numerical
results, with particular emphasis on the calibration exercise on real
data, and the final section concludes. Some technical details are given
in the appendix of the extended version, available at http://ssrn.com/
abstract=2495829.

Brief overview on vector quantization
We first provide some more technical details on vector quantization
of a random variable (see, for example, Graf & Luschgy 2000; Pagès
& Printems 2005; Pagès, Pham & Printems 2003; Pagès 2014). Con-
sider an R

d -valued random variable X defined on a probability space
.˝;A;P/ with finite r th moment and probability distribution PX . As
already mentioned, quantization can be considered as a discretisation
of the probability space by at mostN values, providing in some sense
the best approximation to the original distribution. In other words,N -
quantizing the random variableX , taking infinitely many values, boils
down to approximating it by a discrete random variable OX valued in a
set of cardinalityN ,� D fx1; : : : ; xN g. As a consequence, in view of
our application to quantitative finance, integrals of the form EŒh.X/�

(for a given Borel function h W Rd ! R) can be approximated by the
finite sum below:

EŒh.X/� Š EŒh. OX/� D

NX
iD1

h.xi /P. OX D xi / (1)

Clearly it still remains to clarify how to get the optimal or at least a
‘good’ grid � and the associated weights P. OX D xi /, i D 1; : : : ; N ,
and to estimate the error.An example of optimal 50-dimensional quan-
tization grid for the bivariate Gaussian distribution is given in figure 1.

More rigorously, quantizing X on a given grid � D fx1; : : : ; xN g
consists of projecting X on the grid � following the closest neigh-
bour rule. An N -quantizer is a Borel function fN W Rd ! � � R

d

projecting X on � . The induced mean Lr -error (for r > 0) is called
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Cutting edge: Derivatives pricing

Lr -mean quantization error and is given by:

kX � fN .X/kr D
��� min
16i6N

jX � xi j
���
r

where kXkr WD ŒE.jX j
r /�1=r is the usual norm inLr . The projection

of X on � , fN .X/, is called the quantization of X (in the sequel, we
will alternatively use fN .X/ or Proj� .X/ to indicate the quantization
of X ). As a function of the grid � , the Lr -mean quantization error is
continuous and reaches a minimum over all the grids with size at most
N . A grid � ? minimising theLr -mean quantization error over all the
grids with size at most N is called an Lr -optimal quantizer.

An optimal quantizer is then associated to an optimal grid of
points � ? and to an optimal Borel partition of the space R

d ,
.Ci .�

?//16i6N , and vice versa, so that the quantizer is defined as
follows:

fN .X/ D

NX
iD1

xi1Ci.� ?/.X/

where the above partition fCi .� ?/giD1;:::;N , with Ci .� ?/ � f� 2
R
d W k��xik D min16j6N k��xj kg, is called theVoronoi partition,

or tessellation induced by � ?. Moreover, the Lr -mean quantization
error vanishes as the grid sizeN !C1 and the convergence rate has
been computed in the celebrated Zador theorem (see Graf & Luschgy
2000):

min
�; j� jDN

kX � Proj� .X/kr D Qr .PX /N
�1=d C o.N�1=d /

where Qr .PX / is a non-negative constant (r D 2 of course will be
of particular interest, with the corresponding quadratic optimal quan-
tizer). From a numerical point of view, finding an optimal quantizer
may be a very challenging task. This motivates the introduction of sub-
optimal criteria, mostly because one is typically interested in quanti-
zations that are close toX in distribution. We then introduce the notion
of stationary quantizers.

Definition 1 An N -quantizer � N D fx1; : : : ; xN g inducing the
quantization fN of X is said to be stationary if:

EŒX j fN .X/� D fN .X/

In particular, if we introduce the distortion function associated with
� N :

D.� N / WD

NX
iD1

Z
Ci.�

N /

jz � xi j
2 dPX .z/ (2)

then it turns out that stationary quantizers are critical points of
the distortion function (that is, a stationary quantizer � N satisfies
rD.� N / D 0). Computing the quadratic optimal quantizers, or Lr -
optimal (or stationary) quantizers in general, together with finding the
associated weights and Lr -mean quantization errors, are important
issues. Several algorithms are used in practice. In the one-dimensional
framework, theLr -optimal quantizers are unique up to the grid size as
soon as the density ofX is strictly log-concave. In this case, the Newton
algorithm is commonly used to carry out the Lr -optimal quantizers
when closed or semi-closed formulas are available for the gradient
(and the Hessian matrix). From a numerical point of view, stationary
quantizers are interesting insofar as they can be found through zero

1 Example of optimal grid for a bivariate (standard) Gaussian
distribution with N D 50
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search recursive procedures such as Newton’s algorithm, which can
be efficiently performed.

This is essential for vector quantization and we need this in order
to proceed. For a thorough treatment of this topic, we refer to Graf &
Luschgy (2000).1

Recursive marginal quantization
In this section, we consider the quantization of a continuous-time diffu-
sive Markov process Y , whose evolution is specified by the following
SDE:

dYt D b.t; Yt / dt C a.t; Yt / dWt ; Y0 D y0 > 0 (3)

whereW is a standard Brownian motion and the functions a and b sat-
isfy the usual conditions ensuring the existence of a strong solution to
the SDE. Following the approach presented in Pagès & Sagna (2014),
we work on the Euler scheme of Y and we discretise the process by
exploiting its Markov property via vector quantization.

Having fixed a time horizon T > 0 and a time discretisation grid
f0 D t0; t1; : : : ; tM D T g, with constant step size �k D tk � tk�1,
k > 1, such that tk D .kT /=M , the Euler scheme for the process Y
is given by:

QYtk D
QYtk�1 C b.tk�1;

QYtk�1/�k C a.tk�1;
QYtk�1/�Wk

QYt0 D
QY0 D y0

where�Wk WD Wtk�Wtk�1 is a centred normal random variable with
variance �k , so that we have the following equality in distribution:

. QYtk j
QYtk�1 D x/

Law
D N .mk�1.x/; �

2
k�1.x// (4)

1 We also mention the optimal quantization website www.quantize.maths
-fi.com, where one can download the optimised quadratic quantization
grids of the d -dimensional Gaussian distributions N .0I Id /, for N D 1

up to 104 and for d D 1; : : : ; 10. Moreover, at the same link one can also
find functional quantization grids of the standard Brownian motion over
the interval Œ0I 1�, of the Brownian bridge, as well as a detailed procedure
to compute grids for the (normalized) Ornstein-Uhlenbeck process and its
bridge.
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Cutting edge: Derivatives pricing

where:
mk�1.x/ D x C b.tk�1; x/�k

�2k�1.x/ D Œa.tk�1; x/�
2�k

Our intention now is to use the vector quantization applied to every
(one-dimensional) random variable QYtk , k > 1, since we know its
marginal distribution conditional on QYtk�1 . This explains the term
‘marginal’ of this quantization method. It can be seen in Pagès, Pham
& Printems (2003) that the error made by quantizing the Euler scheme
can be easily controlled, under some mild regularity assumptions on
the process. The distortion function relative to QYtkC1 , denoted DkC1
(recall (2)), reads:

DkC1.x
kC1/

D

NX
iD1

Z
Ci.xkC1/

.ykC1 � x
kC1

i
/2P. QYtkC1 2 dykC1/ (5)

where xkC1 D fxkC1
1

; xkC1
2

; : : : ; xkC1
N
g is the quantizer at time

tkC1 and N is the (fixed) size of the quantizer at every time step.
The delicate point here is that, in order to quantize QYtkC1 we have to
apply the Newton-Raphson method without knowing its distribution.
However, by using the conditional distribution in (4) we can rewrite the
distortion function (5) in terms of QYtk , thereby obtaining a recursive
formula to compute the stationary quantizer. In fact, the distribution
function of QYtkC1 can be written as follows:

P. QYtkC1 2 dykC1/

D dykC1

Z
R

�mk.yk/;�k.yk/.ykC1/P.
QYtk 2 dyk/

D dykC1EŒ�mk. QYk/;�k. QYk/.ykC1/�

where �m;� denotes the density function associated with a normal
distribution N .m; �2/. With this result, it is possible to compute the
Hessian matrix of the distortion function. Note that we are interested
in the quantization of the Euler scheme QY that we denote by OY tk ,
k > 0, so that we substitute QYtk with OY tk in (5). Due to the discrete
nature of the quantizer, the integral in (5) becomes a finite sum, thus
leading to extremely fast computations. In the sequel, we will apply
the recursive marginal quantization to a special local volatility model,
namely the QNV model. We refer the interested reader to Pagès &
Sagna (2014) for a complete background, including the analysis of the
errors generated by the recursive quantization method.

The quadratic normal volatility model
The class of QNV models has drawn much attention in the financial
industry due to its analytic tractability and flexibility. We will refer
to the works of Blacher (2001), Ingersoll (1997), Lipton (2002) and
Andersen (2011).

A QNV model is associated to an asset Y evolving as follows:

dYt D .e1Y
2
t C e2Yt C e3/ dWt ; Y0 D y0 > 0 (6)

for some e1; e2; e3 2 R, where the Brownian motion W is taken
under the risk-neutral measure. This corresponds to the SDE (3) where
b.t; y/ D 0 (that is, we consider the forward-price process) and
a.t; y/ D e1y

2 C e2y C e3. Note that (6) includes, as special cases,

Brownian motion (for e1 D e2 D 0), geometric Brownian motion (for
e1 D e3 D 0) and the inverse of a three-dimensional Bessel process
(for e2 D e3 D 0), which leads to a strict local martingale (we refer
to Andersen (2011) and Carr, Fischer & Ruf (2013) for other techni-
cal properties of the model). Apart from technicalities, the intuition
underlying (6) is that mimicking a quadratic spot volatility gives some
chances to get an implied volatility curve that is able to reproduce
the smile and skew effects using a parsimonious number of parame-
ters. This is more evident in the following parameterisation (taken by
Andersen (2011)):

dY.t/ D �

�
qY.t/C .1 � q/y0 C

1
2
s
.Y.t/ � y0/

2

y0

�
dW.t/;

Y0 D y0 > 0 (7)

Here � > 0 is a proxy for the at-the-money (ATM) volatility level, q is
related to the implied volatility slope (that is, q is the skew parameter)
and s is a measure of the convexity of the quadratic volatility function
(the vol-of-vol parameter).
� Vanilla options pricing The QNV model allows for closed-
form solutions for the prices of vanilla options (see also the tech-
nical appendix A.2 at http://ssrn.com/abstract=2495829, taken from
Andersen (2011)). The corresponding formulas depend on the roots
of the polynomial in (6). Note that, even if closed-form formulas are
available for vanillas, their implementation is time-consuming and
requires some care, especially in the truncation of the trigonomet-
ric series. Moreover, a calibration procedure based on these formulas
should allow for the possibility of switching from the first (real roots)
to the second case (complex roots) without constraints. We will see in
the calibration exercise that this is a real issue. On the contrary, in the
recursive marginal quantization approach, one never deals with this
problem. Following the steps illustrated in the previous section, one
easily computes the critical points of the distortion function together
with its Hessian. In appendix A.2 of the extended version, we present
the formulas for the gradient, the Hessian matrix and the weights of
the quantized random variable OY T .
� Barrier options pricing We focus now on barrier options. More
precisely, on discrete time barrier options with daily monitoring.
Indeed, although most models in the literature assume continuous
monitoring of the barrier (which can lead to analytic solutions as in
the Black-Scholes model), in practice most barrier options are dis-
cretely monitored. Unfortunately, this realistic setting in general does
not allow for closed-form solutions. We refer the interested reader to
the pricing of discrete barrier options in, for example, Kou (2003) (for
an introduction to the so-called continuity correction) and to Lipton &
McGhee (2002) (for a PDE approach in a universal volatility model,
that leads, in some benchmark cases, to analytic solutions). We also
refer to Lipton, Gal & Lasis (2014) for a survey on pricing of barrier
options in local-stochastic volatility models.

To apply recursive marginal quantization to this setting, we follow
the approach in Sagna (2010), where the author presents an algorithm
based on optimal marginal quantization, to approximate the price of
knock-out barrier options. We consider up-and-out put options. Pricing
formulas in the other cases are just slight modifications of the ones we
are going to present here.

risk.net 3
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Given the Euler scheme QY for the process Y , the price of an up-
and-out put option expiring at time T , with strike K and up-and-out
barrier L can be approximated by:

P LO WD e�rTE..K � QYT /
C1
fsupkD0;:::;M QYtk6Lg

/

D e�rTE

�
.K � QYT /

C

MY
kD1

G QYtk�1 ; QYtk
.L/

�
(8)

where:

Gx;y.u/ D

�
1 � exp

�
� 2M

.x � u/.y � u/

T�2.x/

��
1 fu>max.x;y/g

and where �.�/ is the volatility function of Y . The last equality in
the above equation can be obtained via an application of the so-called
regular Brownian bridge method, which is connected to the knowledge
of the distribution of the minimum (or the maximum) of the continuous
Euler scheme QY relative to a processY over a time interval Œ0; T �, given
its values at the discrete time observation points 0 D t0 < t1 < � � � <
tM D T (see, for example, Glasserman 2003).

The expectation in (8) can be computed recursively, as soon as we
have an approximation of the transition probability of QYtk given QYtk�1 .
The idea now is to approximate this expectation using OYtk instead
of QYtk , k > 1, and the transition matrix of OYtk given OYtk�1 . For
all the detailed formulas we refer to appendix A.3 at http://ssrn.com/
abstract=2495829.

Numerical results
In this section, we provide the first example of competitive and efficient
calibration of a quantization-based method to real data and we then
apply our result to the pricing of vanilla and non-vanilla derivatives.
Note that, once we know the stationary grid for each time step, the
pricing of a generic option becomes immediate. For example, the price
at t D 0 of a European vanilla put option on Y with maturity T and
strike K that we have N -quantized at t D tM D T with an optimal
grid yM D .yM

1
; : : : ; yM

N
/ and associated optimal quantizer OY T is

given by (recall (1)):

EŒ.K � YT /
C� Š

NX
iD1

.K � yMi /CP. OYT D y
M
i /

which can be immediately computed. Note also that:

Ci .y
M / D

�
yM
i�1
C yM

i

2
;
yM
i
C yM

iC1

2

�

since we work in a one-dimensional setting.
The dimension of the quantization grids is taken to be constant over

time, which is obviously not the optimal choice. Nevertheless, it rep-
resents a good trade-off between price precision and implementation
cost. For more details on this aspect, as well as for an analysis on
optimal dispatching, we refer to Pagès & Sagna (2014).
� Calibration on vanillas We first test the goodness of the pricing
via recursive marginal quantization. Here we use nine different strikes,
equally spaced from 80% to 120% of the initial value of the underlying,
and six different maturities, from two months to two years. As an error

2 Quantization grids for the QNV model in the case: � D 0.2,
q D 0.5, s D 0.1 (in the (7) specification)
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A. Comparison between pricing via closed-form formulas and
quantization with N D 30 (CT stands for computational time)

Analytic Quantization Residual
CT CT norm

Real roots 0.03550 s 1.07239 s 1.34891� 10�4

Complex roots 10.25185 s 1.14839 s 1.79906� 10�4

In the case of two real roots, the parameters are taken from Andersen (2011):� D 0.2,
q D 0.5, s D 0.1, y0 D 100 (in the (7) specification). We then perturb the s parameter
to get two complex roots: � D 0.2, q D 0.5, s D 5

B. Calibrated parameters of the quadratic normal volatility model

� q s

Exact formulas/long maturities 0.16019 �0.04380 26.69999
Quantization/long maturities 0.17451 0.00005 7.62015
Quantization/short maturities 0.14536 �4.67521 16.74793

Here y0 D 9837.63

measure for this test we consider the residual norm, that is the sum of
the squared differences between the model implied volatilities and the
ones generated by the closed-form formulas of the previous section.
We use 30-dimensional quantizers and 10 time steps for every maturity.
Figure 2 shows the corresponding quantization grids. Computations
are performed using Matlab on a computer with a 2.4 GHz CPU
and 8 Gb of memory. The inverse of the Hessian matrix, which is
tridiagonal and symmetric, is calculated using the LU-decomposition.

The results in table A confirm the precision of prices generated by
the quantization. Note that in the case of complex roots, the quanti-
zation algorithm is faster than the computation based on closed-form
formulas. This fact is relevant since market data calibration typically
requires complex roots, as we are going to show.

Let us now turn to real market data. Calibration is done via a standard
non-linear least-squares optimiser that minimises the total calibration
error in terms of the difference between model and market-implied
volatilities

P
n.�

imp
n;market��

imp
n;model/

2. Using a major provider, we take
prices of European vanilla call-put options on the Dax index, as of June
19, 2014. Using the closed-form formulas, it turns out that the implied
volatility smile produced by the market is fitted better when the two
roots are complex. As a consequence, quantization will be faster than
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C. Computational times and calibration errors obtained via closed-form
formulas and quantization

Closed-form formulas
Computation time Residual norm

Long maturities 339.15013 s 5.62922� 10�4

Short maturities — —
Quantization

Computation time Residual norm
Long maturities 221.15028 s 4.26904� 10�4

Short maturities 159.02147 s 4.00141� 10�4

For short maturities (from 2 to 5 months) we were not able to obtain meaningful results
using the closed-form formulas

3 Implied volatility squared errors for the calibration via quanti-
zation
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closed-form formulas. What is more, closed-form formulas do not
perform well for short maturities, to the point that we are not able to
present results of the calibration based on closed-form formulas in this
case, while we note that the flexibility of the quantization approach
allows us to overcome these difficulties. We therefore show the joint
results of calibration via closed-form formulas and via quantization
only with long maturities (from 1.5 years up to three years), while
with short maturities (from two months up to five months) we only
display the calibration results for the recursive marginal quantization.
The calibrated parameters are displayed in table B.

With long maturities (respectively short maturities) the residual
norm is given in table C, containing four maturities and seven strikes

4 Example of fit of the implied volatility smile
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For short maturities (here the maturity is four months) we consider five
strikes

D. Results on the pricing of up-and-out put options with strike K D 100%
via quantization and Monte Carlo simulation

Benchmark Q error MC confidence
L price Q price (%) interval

103.75 305.17096 296.70996 2.77 [295.43121,321.15975]
105 320.88575 313.47255 2.29 [311.23967,337.03611]
106.25 327.77641 320.99300 2.00 [317.02684,342.86616]
107.5 330.20446 323.76159 1.89 [319.36426,345.19677]
108.75 330.87364 324.63297 1.83 [319.90923,345.73776]
Comp. 2.11746 s 2.71984 s
time

The barrier L is a percentage of the initial price. Q stands for quantization and MC
stands for Monte Carlo (104 simulations). We consider a similar computational cost
and in the last column we display the confidence interval for the corresponding MC

(respectively four maturities and five strikes). Overall, the quality of
the fit is not excellent (see figures 3 and 4), but this is due to the par-
ticular model, which is very parsimonious (only three parameters).
Nevertheless, we emphasise that despite the simplicity and the limits
of the model, this represents the first successful calibration example
based on quantization. Moreover, it is important to note that the pro-
cedure here illustrated is very robust since it can be easily applied to
any local volatility (diffusive) model for which the Euler scheme is
available.
� Pricing of barrier options In order to test the goodness of this
pure quantization method, we use the same data as in the previous
subsection, focusing on short maturities. We fix the maturity T D 1

3

and the strike K D 100% (ATM).
We compare the prices of an up-and-out put option obtained via

quantization and with Monte Carlo simulation. The aim is to show
that the quantization approach outperforms the Monte Carlo method
in terms of computational cost. We first compute a Monte Carlo price
with 107 simulations. The corresponding confidence interval is very
sharp (about 0:3%), and we consider this price as our benchmark.

On the quantization side, we use 48-dimensional quantizers, which
turn out to be a good tradeoff between precision and computational
cost. Then we look for the number of paths required by the Monte
Carlo that shares the same computation time required by quantiza-
tion (about 2 seconds). It turns out that we need 104 simulations, as

risk.net 5
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illustrated in table D. Note that the quantization price falls within the
confidence interval of the Monte Carlo, which is quite large. What
is more, Monte Carlo is much less precise than quantization when
we fix the computational time for each case. Here, by precision we
mean the distance between the benchmark and the quantization price,
while for the Monte Carlo we mean the maximal distance between the
benchmark price and the endpoints of the confidence interval.

We also perform another exercise, namely, we look for the number
of simulations required by Monte Carlo in order to match the precision
of the quantization method. Table E shows that Monte Carlo requires
8 � 104 simulations, which increases the computational cost of the
quantization by approximately a factor of 10.

In conclusion, the quantization method is a very good alternative to
Monte Carlo.

Conclusion
We have applied recursive marginal quantization to the local volatility
model QNV to provide an alternative way to compute prices, without
the numerical problems due to the real/complex nature of the roots.
The procedure gives a fast way to price vanilla as well as barrier
options, compared with Monte Carlo simulation. A successful cali-
bration of the QNV model on real data shows the flexibility and the
robustness of the quantization method, which can be considered a
model-independent approach. Extensions of this work could include
less parsimonious local volatility models, since the speed of the algo-
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E. Results on the pricing of up-and-out put options with strikeK D 100%
via quantization and Monte Carlo simulation

Benchmark Q error MC confidence
L price Q price (%) interval

103.75 305.17096 296.70996 2.77 [299.38595,308.44100]
105 320.88575 313.47255 2.29 [314.20251,323.31032]
106.25 327.77641 320.99300 2.00 [321.12872,330.24552]
107.5 330.20446 323.76159 1.89 [323.91769,333.03919]
108.75 330.87364 324.63297 1.83 [324.54593,333.66737]
Comp. 2.11746 s 19.12999 s
time

The barrier L is a percentage of the initial price. Q stands for quantization and MC
stands for the Monte Carlo (8 � 104 simulations) that shares the same precision as
the Q¬method. In the last row we display the associated computation times

rithm does not depend on the number of parameters, and pricing of
structured contracts, in the spirit of Bardou, Bouthemy & Pagès (2009),
who investigated the energy market. R
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