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Abstract

We apply the recursive marginal quantization methodology to the pricing of vanillas
and American style options, extending the results of Callegaro et al. (2015) to stochastic
volatility models. The methodology is fast and accurate to the point that calibration can be
efficiently performed. As a motivating example, we calibrate the Heston model on a book
on Google stock that includes American style options.

1 Introduction

This paper constitutes the sequel of Callegaro et al. (2015). In that paper we calibrated a local
volatility model using a quantization approach that had been introduced by Pagès and Sagna
(2015). This technique has been further developed to be applied to pricing in financial markets
in Callegaro et al. (2016), Fiorin et al. (2017) and McWalter et al. (2017). Here we extend the
methodology to stochastic volatility models, in order to price vanillas and American style options.
The challenge in our framework is represented by the presence of the volatility process, which
increases the dimension of the problem. Starting from the Euler scheme of the stochastic volatility
model, we propose a fast and accurate discretization of the asset price that improves the ones
proposed in Callegaro et al. (2016) and Fiorin et al. (2017) (see Remark 3.1 below). We first
focus on the pricing of vanillas and we show that pricing can be efficiently performed. Then,
we exploit the idea in Bally et al. (2005), where it is shown that pricing of American options
can also be performed through a backward procedure, like in a multinomial lattice. As a result,
we provide the first calibration example of the Heston (1993) model using a book of real data
that includes American style options. Of course, for this affine model one could also calibrate on
vanillas using the Fourier methodology of Carr and Madan (1999). What is more, we emphasize
that our methodology is very flexible insofar it applies to any stochastic volatility model (well
beyond the family of affine models), including the SABR model and many others.
The paper is organized as follows: in Section 2 we give a quick application-oriented overview of
the vector quantization methodology that can be also found in Callegaro et al. (2015). Section
3 extends the marginal quantization method to the class of stochastic volatility models and
illustrates the idea of the algorithm. Further details can be found in Callegaro et al. (2016)
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Universitaire Léonard de Vinci, Paris La Défense (France) Acknowledgments: we are especially indebted to Abass
Sagna for comments and suggestions.

1



2 WHAT YOU NEED TO KNOW ON QUANTIZATION 2

with a slightly different method. Section 4 illustrates our numerical results on the Heston (1993)
model, with particular emphasis on the calibration exercise on real data including American style
options. Section 5 concludes.

2 What you need to know on quantization

In this section we provide a brief overview of optimal quadratic quantization and of recursive
marginal quantization (henceforth RMQ). We focus here on vector quantization: we will only
deal with discretization of random vectors, thus avoiding functional quantization (discretization
of stochastic processes in the space of trajectories). This will be sufficient to discretize a stochastic
process via RMQ. We refer to Graf and Luschgy (2000) and Pagès (2015) for vector quantization
and to Pagès and Sagna (2015) for the first paper on RMQ 1.
Optimal quadratic vector quantization answers to the following question:

how is it possible to optimally (in an L2-sense) approximate a continuous random vector X

by a discrete one, X̂, taking a finite number of values?

The interest in such a discretization X̂ is obvious, since integrals of the form E[h(X)], for

sufficiently regular functions h, would be approximated by finite sums E[h(X̂)].
Let us be more precise. We consider a real valued random variable X defined on a probability
space (Ω,F ,P) and having probability distribution PX . We suppose that it has finite second
order moment.
A quantization grid of level N,N ≥ 1, is a subset of R, ΓN = {x1, . . . , xN}, of size at most N
having pairwise distinct components. A quantization function, or quantizer, is a Γ-valued (we
drop N in the notation ΓN since we will consider N as fixed) Borel function q : R → Γ and
N -quantizing X means projecting X on the grid Γ following the closest neighbor rule

q(X) = ProjΓ(X) :=
N∑
i=1

xi11Ci(Γ)(X) (1)

where (Ci(Γ))1≤i≤N is a Borel partition of (R,B(R)), also known as Voronoi partition, satisfying
Ci(Γ) ⊂ {ξ ∈ R : |ξ − xi| = mini≤j≤N |ξ − xj|} , i = 1 . . . , N . In what follows we use the

notation X̂Γ or X̂ (when no ambiguity is possible with respect to the grid) to denote the

Voronoi Γ-quantization of X: X̂Γ = X̂ = q(X).
The L2-error induced by quantization is given by

eN(X,Γ) := ‖X − q(X)‖2 = ‖ min
1≤i≤N

|X − xi|‖2

where ||X||2 :=
[
E(|X|2)

]1/2
is the usual L2-norm. Optimally quadratic quantizing X boils down

to looking for a grid Γ with size at most N which minimizes the distortion function defined here
below (see (Graf and Luschgy, 2000, Equation (3.4))).

Definition 2.1. Let X be a real valued random vector belonging to L2(P). The L2-distortion
function is a positive valued function defined on RN by

D : (x1, x2, . . . , xN) 7−→ E
[

min
1≤i≤N

|X − xi|2
]

= eN(X,Γ)2 (2)

for Γ = (x1, x2, . . . , xN).

1A further reference to be mentioned is the quantization website: http://www.quantize.maths-fi.com, where
grids of the d-dimensional Gaussian distributions N (0; Id), for N = 1 up to 104 and for d = 1, . . . , 10 are available.
At the same link one also finds functional quantization grids (ie, trajectories) for the standard Brownian motion
over [0; 1] and for the Brownian bridge.

http://www.quantize.maths-fi.com
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What about existence and uniqueness of an optimal grid? It is possible to show (see eg (Pagès,
2015, Prop. 1.1)) that if X belongs to L2(P), then the distortion function D attains (at least)
one minimum Γ?. The grid Γ? and ProjΓ? are called optimal quadratic quantizers, respectively.
In the case when card(supp(µ)) ≥ N , then Γ? has pairwise distinct components. Moreover
limN→+∞ eN(X) = 0 and the convergence rate is given by the Zador theorem (see Graf and
Luschgy (2000))

min
Γ, |Γ|=N

‖X − q(X)‖2 = min
Γ, |Γ|=N

eN(X,Γ) = Q2(PX)N−1 + o
(
N−1

)
where Q2(PX) is a nonnegative constant. Note that, when computing E [f(X)], where X is

the value at maturity of the underlying, f a Lipschitz (payoff) function, and we denote by X̂Γ

the quantization of X on the grid Γ, then, by Jensen’s inequality,
∣∣E[f(X)] − E[f(X̂Γ)]

∣∣ ≤
[f ]LipeN(X,Γ). In particular, the error of the quantized price decays at rate of 1

N
, in contrast to

the Monte Carlo method, which has an error, ruled by the Central Limit Theorem, of order 1√
N

.

Remark 2.2. As soon as PX is absolutely continuous with respect to a log-concave density,
then there exists exactly one optimal quantization grid of level N (see (Graf and Luschgy, 2000,
Theorem. 5.1)).

The last crucial question is how to obtain an optimal quantizer. It is known (see (Graf and
Luschgy, 2000, Lemma 4.10) or (Pagès, 2015, Prop. 1.1)) that the distortion function D is
differentiable at any N -tuple having pairwise distinct components Γ = {x1, . . . , xN} and the
gradient is given by

∇D(x1, . . . , xN) = 2

(∫
Ci(Γ)

(xi − ξ)dPX(ξ)

)
1≤i≤N

= 2
(
E
[
11X∈Ci(Γ)(xi −X)

])
1≤i≤N (3)

Based on the existence of the gradient of the distortion function, many stochastic algorithms, like
the gradient descent and fixed point procedures, have been developed (see (Pagès, 2015, Section
3)). Moreover, when the gradient itself is differentiable, it is possible to apply the classical
Newton-Raphson procedure as it turns out that the determination of optimal quantizers boils
down to the solution of

E
[
11X∈Ci(Γ)X

]
− xiP (X ∈ Ci(Γ)) = 0 ∀i ∈ {1, . . . , N}

known as Master Equation. If we know the density of the random variable X, then it is possible
to write all the components of the system in closed form, and its solution is trivial. Of course,
this is no more the case when we consider X as the price of an asset at maturity, since the
density of the process is typically unknown (except in trivial cases).

In order to exploit the information of the asset distribution, Pagès and Sagna (2015) introduced
the recursive marginal quantization to discretize a stochastic process Y , in dimension one, using
a Euler-Maruyama scheme. The essence of RMQ lies on the knowledge of the conditional law of
(Ytk |Ytk−1

), k = 1, . . . ,M , which allows to recursively obtain (via a Newton-Raphson procedure)
the quantizers for the marginals {(Ytk)}k=0,...,M based on an explicit derivation of the gradient
and of the Hessian of the distortion function. In the following section we provide some details on
RMQ applied to our multi dimensional setting, namely for stochastic volatility models.
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3 Recursive quantization of stochastic volatility models

Let us consider a continuous time Markov process Y = (S, V ) corresponding to the pair (price,
volatility), whose evolution is specified by(

dSt
dVt

)
=

(
µS(t, St, Vt)
µV (t, Vt)

)
dt+

(
ΣSS(t, St, Vt) ΣSV (t, St, Vt)

ΣV S(t, Vt) ΣV V (t, Vt)

)
dWt,

(
S0 = s0

V0 = v0

)
(4)

where W is a 2 dimensional Brownian motion and µS, µV ,ΣSS,ΣSV ,ΣV S,ΣV V are such that the
SDE (4) is well defined. In this section we only introduce our novel methodology, so that we do
not focus on the technical conditions which would ensure existence of a strong solution to the
very general SDE (4). Nevertheless, in the following Section 4 we will provide more details on
existence of a strong solution in the case of the model in use, ie, in Heston model.
Fix a time horizon T and a time grid with constant step size ∆ and length M , ie tk = k

M
T for

k = 0, . . . ,M , so that the Euler scheme for the pair (S, V ) reads(
S̃k+1

Ṽk+1

)
=

(
S̃k
Ṽk

)
+

(
µS(tk, S̃k, Ṽk)

µV (tk, Ṽk)

)
∆+

(
ΣSS(tk, S̃k, Ṽk) ΣSV (tk, S̃k, Ṽk)

ΣV S(tk, Ṽk) ΣV V (tk, Ṽk)

)
√

∆ W̃k,

(
S̃0 = s0

Ṽ0 = v0

)
(5)

where W̃k :=
Wtk+1

−Wtk√
∆

is a bivariate standard Gaussian random variable having mean (0, 0) and

variance the identity matrix 2 × 2. Similarly to the one dimensional case (see Callegaro et al.
(2015)), we have that((

S̃k+1

Ṽk+1

)∣∣∣∣∣
(
S̃k
Ṽk

)
=

(
s
v

))
Law
= N (µ(tk, s, v),Σ(tk, s, v)) (6)

where µ(tk, s, v) =

(
s+ µS(tk, s, v)∆
v + µV (tk, v)∆

)
and

Σ(tk, s, v) = ∆

(
(Σ2

SS + Σ2
SV ) (tk, s, v) (ΣSSΣV S + ΣSV ΣV V ) (tk, s, v)

(ΣSSΣV S + ΣSV ΣV V ) (tk, s, v) (Σ2
V V + Σ2

V S) (tk, v)

)
As the dynamics of the volatility factor can be written independently of the price process, one can
use Callegaro et al. (2016) in order to quantize the volatility. The difficult point is the construction

of the distortion function relative to S̃k+1, that we denote by Dk+1, which depends also on the
volatility process V . Let us fix a grid xk+1 = {xk+1

1 , . . . , xk+1
N }. The distortion function for S̃k+1

reads

Dk+1

(
xk+1

)
=

N∑
i=1

∫
Ci(xk+1)

(
sk+1 − xk+1

i

)2 P
(
S̃k+1 ∈ dsk+1

)
(7)

Having quantized the pair
(
S̃`, Ṽ`

)
, ` = 0, . . . , k, we can write the distribution of S̃k+1, using (6).

This gives the recursive formula to compute the quantizers

P
(
S̃k+1 ∈ dsk+1

)
= dsk+1

∫
R

∫
R
φ
µS(tk,sk,vk),(Σ2

SS+Σ2
SV )

1
2 (tk,sk,vk)

(sk+1) P(S̃k ∈ dsk, Ṽk ∈ dvk) (8)

where φ is the density function of a scalar Normal distribution with mean µS(tk, sk, vk) and
variance (Σ2

SS + Σ2
SV ) (tk, sk, vk). It is then possible to compute the gradient and the Hessian

matrix of the distortion Dk+1, in order to find (numerically) its minima. Note that, once we

have quantized
(
S̃`, Ṽ`

)
, ` = 0, . . . , k, the integrals in (8) become a finite sum, thus leading to

extremely fast computations. In the sequel, we will apply this methodology to the celebrated
Heston (1993) stochastic volatility model.
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Remark 3.1. Note that this result is different from the one in Callegaro et al. (2016), where we
considered the Euler scheme separately for S and V . Indeed, using here the Euler scheme for the
pair (Price, Volatility), it is possible to write the density of the price process more accurately, by
taking into account properly the correlation between the price and the volatility. This allows us to
price efficiently vanillas and American style options and then to calibrate the model.

Remark 3.2. Our technique can be applied to any stochastic volatility model for which an Euler
discretization scheme is available, as also shown in Callegaro et al. (2016). Moreover, since
recursive marginal quantization has been applied on top of a Milstein discretization scheme in
McWalter et al. (2017) to discretize a geometric Brownian motion and a constant elasticity of
variance process, we deem that an interesting research direction could be the extension of our
methodology using a higher order discretization scheme.

4 Numerical results for the Heston model

4.1 Pricing of vanillas

The Heston (1993) model assumes the following risk-neutral dynamics for the pair (S, V )

dSt
St

= rdt+
√
Vt
(
ρ dW 1

t +
√

1− ρ2dW 2
t

)
dVt = κ(θ − Vt)dt+ ξ

√
VtdW

1
t

where W 1 and W 2 are two independent standard Brownian motions and where r is the risk free
interest rate, θ is the long run average price variance, κ is the rate at which the variance V reverts
to θ, ρ is the correlation between the asset and the instantaneous variance and ξ is the vol of vol
parameter, which determines the volatility of the variance process. We assume that r, κ, θ and
ξ are strictly positive. In this case, the above system of SDEs admits a strong solution (see eg
(Andersen and Piterbarg, 2007, Section 2)). The components of the Euler scheme here read

µ(tk, s, v) =

(
s+ rs∆

v + κ (θ − v) ∆

)
Σ(tk, s, v) = ∆

(
s2v ρξsv
ρξsv ξ2v

)
We first compare the pricing of European calls obtained with our quantization methods with the
ones provided by the Fourier based methodology as in Carr and Madan (1999), that we take as
our benchmark. In Table 1 we display the prices together with the errors (relative error and
absolute difference of implied volatilities) for European call options with maturity T = 1 year.
The strike K is in percentage of the initial price S0 = 100. “Q” stands for quantization, where
we considered N = 20 points for the underlying, N = 10 points for the volatility process and
M = 12 time steps. This choice for N,M represents a good compromise between precision and
computational time.
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Bench. price Q price Rel error (%) IV difference (×10−3)
K = 80 24.91 24.99 0.32 3.87
K = 85 20.75 20.81 0.29 2.38
K = 90 16.75 16.79 0.24 1.33
K = 95 12.96 13.00 0.31 1.16
K = 100 9.43 9.45 0.21 0.92
K = 105 6.24 6.25 0.16 0.75
K = 110 3.50 3.52 0.57 0.72
K = 115 1.45 1.46 0.69 0.84
K = 120 0.40 0.40 0.75 0.89

Table 1: Results on the pricing of European call options via quantization and via the FFT
approach of Carr and Madan (1999). The strike K is in percentage of the initial price S0 = 100.
The maturity is T = 1 year and r = 0.04. The parameters are those of the calibration exercise in
Table 3. “Q” stands for quantization, where we considered grids of 20 points for the underlying,
10 points for the volatility process and 12 time steps. For the quantization, the computational
times is less than 2 seconds for the whole book.

Results were obtained with MATLAB, on a laptop with a 2.7 GHz CPU and 8 Gb of memory.
The computational time to get all the prices is less than two seconds. The results in Table 1 show
the efficiency of our methodology, which is fast and accurate.

4.2 Pricing of American options

Many numerical methods computing prices of such options in the Heston model have been
developed. They typically approximate the solution to the partial differential equation under
early exercise constraints by ad hoc finite difference discretization grids (see eg Ikonen and
Toivanen (2008)) or by exploiting recombining two dimensional lattices (see eg Beliaeva and
Nawalkha (2010) or Vellekoop and Nieuwenhuis (2009)) or by means of Fourier based methods,
such as the Wiener-Hopf factorization (see eg Boyarchenko and Levendorskiy (2013)) or the
Cosine method (see eg Fang and Oosterlee (2011)).
An interesting feature of our quantization approach is that from the Euler-Maruyama
discretization scheme one can directly deduce some information on the transition probability of
the asset price, so that the pricing of American options can be performed through a backward
procedure on a multinomial lattice, as illustrated in Bally et al. (2005). Let us assume that the
set of possible exercise times of an American put option of maturity T is finite, meaning that we
are approximating the American option value with the price of a Bermudan option, where the
exercise times are tk = kT

M
, with k = 1, . . . ,M . The parameters for the Heston model are the

same as in the case of European options of the previous subsection. We show in Table 2 the
comparison of the quantization price with a benchmark for the Heston model provided by the
method of Vellekoop and Nieuwenhuis (2009) (this latter method is implemented, for example,
in PREMIA, for more details see https://www.rocq.inria.fr/mathfi/Premia/). For the
benchmark price we consider 20 points for the discretization of V , 200 points for the
discretization of S and 12 time steps.
Let us also point out that, in our numerical examples, the early exercise premium is always
positive at any node of the discretization tree. In general, indeed, any approximation of an
American option price might not be arbitrage free, in that the approximated American price
may be lower than the price of the corresponding European option. Therefore, testing positivity
of the early exercise premium is the most important check to be done.

https://www.rocq.inria.fr/mathfi/Premia/
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The quantization approach leads to accurate prices and takes 1.9676 seconds to compute all the
put prices. This opens the door to the possibility of calibrating a book including both European
and American options, as we are going to do in the next subsection.

Bench. price Q price Rel error (%)
K = 80 1.81 1.78 1.75
K = 85 2.48 2.50 0.69
K = 90 3.33 3.27 1.65
K = 95 4.42 4.47 1.13
K = 100 5.80 5.75 0.84
K = 105 7.61 7.62 0.10
K = 110 10.13 10.17 0.39
K = 115 14.79 14.87 0.53
K = 120 19.76 19.85 0.46

Table 2: Results on the pricing of American Put options via quantization and the method of
Vellekoop and Nieuwenhuis (2009). The strike K is in percentage of the initial price S0 = 100.
The maturity is T = 1 year, r = 0.04. Q stands for quantization. The parameters of the Heston
model are those of the calibration exercise in Table 3. The quantization grids are those used for
the pricing in Table 1.

4.3 Calibration of American options to real data

In order to show the effectiveness of our pricing technique, we calibrate the Heston model to a
book of American option prices on the GOOG Google stock as of date April, 26th 2017. The book
includes 4 maturities (from 3 months to 14 months) with 12 strikes, ranging from 85% to 115%
of the spot price, for a total of 96 options. Table 3 shows that the parameters calibrated with the
quantization are in line with the ones found by the FFT methodology of Carr and Madan (1999).
Res Norm indicates the average square error on implied volatilities (IV), defined as

Res Norm :=
1

#strikes #maturities

#strikes∑
`=1

#maturities∑
k=1

(
IV market

`,k − IV model
`,k

)2

The implied volatility in the European case is the vol parameter one plugs into the Black
Scholes formula to obtain the market price. The situation is different in the case of American
options, as there is no industry-standard model for pricing these options, even under
Black-Scholes assumptions. The available pricing models include binomial and trinomial trees of
various sorts, the Barone-Adesi and Whaley approximation and its variants, the Longstaff and
Schwartz algorithm, and many others. Here we follow the Bloomberg convention that adopts a
binomial tree pricer. For an implementation of the method, see for example
http://westclintech.com/SQL-Server-Options-Functions/

SQL-Server-Binomial-American-Implied-Volatility-function.
The numerical results presented in this subsection show that our procedure is also robust from
the calibration point of view.

http://westclintech.com/SQL-Server-Options-Functions/SQL-Server-Binomial-American-Implied-Volatility-function
http://westclintech.com/SQL-Server-Options-Functions/SQL-Server-Binomial-American-Implied-Volatility-function
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Quantization
ρ −0.9250
κ 0.1269
ξ 0.4058
θ 0.1922
V0 0.0319

Res Norm 5.2255× 10−5

Table 3: Heston (1993) model calibrated on a book of American Call and Put options on the
GOOG Google stock as of date April, 26th 2017. The book includes 4 maturities (from 3 months
to 14 months) with 12 strikes, ranging from 85% to 115% of the spot price S0 = 871.71, for both
Call and Put options, for a total of 96 options. Res Norm indicates the average square error on
implied volatilities. In analogy with the calibration on vanilla options for the Heston model, see
eg Da Fonseca and Grasselli (2011), note that also here the calibrated parameters do not satisfy
the Feller’s condition 2κθ ≥ ξ2.

Figure 1 displays the implied volatility squared errors for the calibration on American Call options
(resp. left hand side) and Put options (resp. right hand side). Overall, the error is in line with
the performance of the Heston (1993) model, namely with a resnorm around 10−5.
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Figure 1: Implied volatility squared errors for the calibration on a book of American Call and Put
options on the GOOG Google stock as of date April, 26th 2017 using the quantization method.
American Call options on the left, American Put options on the right.

Finally, Figure 2 shows the quantization grids for the asset price in the Heston (1993) model for
the parameters’ set found in the calibration.
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Figure 2: Quantization grids for the asset price in the Heston (1993) model for the parameter
set found in the calibration exercise on the GOOG Google stock as of date April, 26th 2017, with
N = 20 points at every time step and maturity 9 months.

5 Conclusion

In this paper we introduced a new efficient methodology to price options in a stochastic
volatility environment through a quantization approach, which only assumes that a
(Euler-Maruyama or more sophisticated) discretization scheme for the pair (price, volatility) is
available. We have applied the methodology to the Heston (1993) model, for which an efficient
benchmark is represented by the Fourier approach. However, we emphasize that our approach is
flexible enough to consider also the pricing of American-style options, for which the Fourier
technology is almost useless. As a motivating example, we have produced a calibration exercise
on real data of the Heston model using a book of options that includes American style
contracts. This can be useful, for example, in view of reconstructing the volatility of the index
starting from the implied volatility of its constituents, for which only American style options are
typically available.
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