Stochastic Grid Bundling Method for Backward Stochastic Differential Equations

Ki Wai Chau

Centrum Wiskunde \& Informatica

17th Winter school on Mathematical Finance 22 January 2018

(A joint work with Kees Oosterlee (CWI \& TU Delft))

CWI

Backward Stochastic Differential Equations

- Settings:
- A filtered complete probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$
- $W:=\left(W_{t}\right)_{0 \leq t \leq T}$ is a d-dimensional Brownian motion adapted to \mathbb{F}
- Forward Backward Stochastic Differential Equation

$$
\left\{\begin{array}{l}
d X_{t}=\mu\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t}, X_{0}=x_{0}, \\
d Y_{t}=-f\left(t, X_{t}, Y_{t}, Z_{t}\right) d t+Z_{t} d W_{t}, Y_{T}=\Phi\left(X_{T}\right),
\end{array}\right.
$$

- $\mu: \Omega \times[0, T] \times \mathbb{R}^{q} \rightarrow \mathbb{R}^{q}$ and $\sigma: \Omega \times[0, T] \times \mathbb{R}^{q} \rightarrow \mathbb{R}^{q \times d}$
- $f: \Omega \times[0, T] \times \mathbb{R}^{q} \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$
- $\Phi: \Omega \times \mathbb{R}^{q} \rightarrow \mathbb{R}$
- Solution: $\left(Y_{t}, Z_{t}\right)$ which satisfies the equation, adapts to \mathbb{F} and satisfies some regularity requirements.

Discretization

For a given time grid $\pi=\left\{0=t_{0}<\ldots<t_{N}=T\right\}$, we define the backward time discretizations $\left(Y^{\pi}, Z^{\pi}\right)$ based on the theta-scheme from [Zhao et al., 2012]:

$$
\begin{aligned}
Y_{t_{N}}^{\pi}= & \Phi\left(X_{t_{N}}^{\pi}\right), \quad Z_{t_{N}}^{\pi}=\nabla \Phi\left(X_{t_{N}}^{\pi}\right) \sigma\left(t_{N}, X_{t_{N}}^{\pi}\right) \\
Z_{t_{k}}^{\pi}= & -\theta_{2}^{-1}\left(1-\theta_{2}\right) \mathbb{E}_{t_{k}}\left[Z_{t_{k+1}}^{\pi}\right]+\frac{1}{\Delta_{k}} \theta_{2}^{-1} \mathbb{E}_{t_{k}}\left[Y_{t_{k+1}}^{\pi} \Delta W_{k}^{T}\right] \\
& +\theta_{2}^{-1}\left(1-\theta_{2}\right) \mathbb{E}_{t_{k}}\left[f_{k+1}\left(Y_{t_{k+1}}^{\pi}, Z_{t_{k+1}}^{\pi}\right) \Delta W_{k}^{T}\right], k=N-1, \ldots, 0 \\
Y_{t_{k}}^{\pi}= & \mathbb{E}_{t_{k}}\left[Y_{t_{k+1}}^{\pi}\right]+\Delta_{k} \theta_{1} f_{k}\left(Y_{t_{k}}^{\pi}, Z_{t_{k}}^{\pi}\right) \\
& +\Delta_{k}\left(1-\theta_{1}\right) \mathbb{E}_{t_{k}}\left[f_{k+1}\left(Y_{t_{k+1}}^{\pi}, Z_{t_{k+1}}^{\pi}\right)\right], k=N-1, \ldots, 0
\end{aligned}
$$

where $f_{k}(y, z):=f\left(t_{k}, X_{t_{k}}^{\pi}, y, z\right), 0 \leq \theta_{1} \leq 1$ and $0<\theta_{2} \leq 1$.

Discretization (cont.)

- Note that:
- the globally Lipschitz driver assumption is in force;
- we use a Markovian approximation $X_{t_{k}}^{\pi}, t_{k} \in \pi$:
- $X_{t_{k+1}}^{\pi}=X_{t_{k}}^{\pi}+b\left(t_{k}, X_{t_{k}}^{\pi}\right) \Delta_{k}+\sigma\left(t_{k}, X_{t_{k}}^{\pi}\right) \Delta W_{k} ;$
- due to the Markovian setting, there exist functions $y_{k}^{\left(\theta_{1}, \theta_{2}\right)}(x)$ and $z_{k}^{\left(\theta_{1}, \theta_{2}\right)}(x)$ such that

$$
Y_{t_{k}}^{\pi}=y_{k}^{\left(\theta_{1}, \theta_{2}\right)}\left(X_{t_{k}}^{\pi}\right), Z_{t_{k}}^{\pi}=z_{k}^{\left(\theta_{1}, \theta_{2}\right)}\left(X_{t_{k}}^{\pi}\right)
$$

- Question:

How to approximate $\mathbb{E}_{t_{k}}^{x}\left[y_{k+1}^{\left(\theta_{1}, \theta_{2}\right)}\left(X_{t_{k}+1}^{\pi}\right)\right], \mathbb{E}_{t_{k}}^{x}\left[y_{k+1}^{\left(\theta_{1}, \theta_{2}\right)}\left(X_{t_{k}+1}^{\pi}\right) \Delta W_{k}^{T}\right]$, and other similar quantities along the time grid?

Stochastic Grid Bundling Method

- Non-nested Monte Carlo scheme
- It starts with the simulation of M independent samples of $\left(X_{t_{k}}^{\pi}\right)_{0 \leq k \leq N}$, denoted by $\left(X_{t_{k}}^{\pi, m}\right)_{1 \leq m \leq M, 0 \leq k \leq N}$.
- The simulation is only performed once.
- The terminal values for each path are:

$$
\begin{aligned}
& y_{N}^{\left(\theta_{1}, \theta_{2}\right), R, I}\left(X_{t_{N}}^{\pi, m}\right)=\Phi\left(X_{t_{N}}^{\pi, m}\right) \\
& z_{N}^{\left(\theta_{1}, \theta_{2}\right), R}\left(X_{t_{N}}^{\pi, m}\right)=\nabla \Phi\left(X_{t_{N}}^{\pi, m}\right) \sigma\left(t_{N}, X_{t_{N}}^{\pi, m}\right), m=1, \ldots, M
\end{aligned}
$$

Recurring steps in time (I)

- Non-nested Monte Carlo scheme
- Regress-later
- The least-squares regression technique for functions is performed on the random variable $X_{t_{k+1}}^{\pi}$
- Then we use the (analytical) expectation of the resulting approximation in our algorithm.
- This will remove the "statistical" error at the regression step.
- To ensure the stability of our algorithm, the regression coefficients must be bounded above.
- It means that an error notion should be given by the program when the Euclidean norm of any regression coefficient vector is greater than a predetermined constant L.

Regress now and Regress later

- Regress now

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\eta_{1}\left(X_{t_{k}}^{\pi, 1}\right) & & \eta_{Q}\left(X_{t_{k}}^{\pi, 1}\right) \\
& \ddots & \\
\eta_{1}\left(X_{t_{k}}^{\pi, \# B}\right) & & \eta_{Q}\left(X_{t_{k}}^{\pi, \# B}\right)
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{Q}
\end{array}\right)=\left(\begin{array}{c}
g\left(X_{t_{k+1}}^{\pi, 1}\right) \\
\vdots \\
g\left(X_{t_{k+1}}^{\pi, \# B}\right)
\end{array}\right) \\
& \mathbb{E}\left[g\left(X_{t_{k+1}}^{\pi}\right) \mid X_{t_{k}}^{\pi}=x\right] \approx \sum_{l=1}^{Q} \alpha_{l} \eta_{l}(x)
\end{aligned}
$$

- Regress later

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\eta_{1}\left(X_{t_{k+1}}^{\pi, 1}\right) & & \eta_{Q}\left(X_{t_{k+1}}^{\pi, 1}\right) \\
& \ddots & \\
\eta_{1}\left(X_{t_{k+1}}^{\pi, \# B}\right) & & \eta_{Q}\left(X_{t_{k+1}}^{\pi, \# B}\right)
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{Q}
\end{array}\right)=\left(\begin{array}{c}
g\left(X_{t_{k+1}}^{\pi, 1}\right) \\
\vdots \\
g\left(X_{t_{k+1}}^{\pi, \# B}\right)
\end{array}\right) \\
& \mathbb{E}\left[g\left(X_{t_{k+1}}^{\pi}\right) \mid X_{t_{k}}^{\pi}=x\right] \approx \sum_{l=1}^{Q} \alpha_{l} \mathbb{E}\left[\eta_{l}\left(X_{t_{k+1}}^{\pi}| | X_{t_{k}}^{\pi}=x\right]\right.
\end{aligned}
$$

Recurring steps in time (II)

- Non-nested Monte Carlo scheme
- Regress-later
- Localization (Bundling)
- At each time period, all paths are bundled into $\mathcal{B}_{t_{k}}(1), \ldots, \mathcal{B}_{t_{k}}(B)$ (almost) equal-size, non-overlapping partitions based on the result of $\left(X_{t_{k}}^{\pi, m}\right)$.
- We perform the approximation separately at each bundle.

Bundling

Formulation

Specifically, the bundle regression parameters $\alpha_{k+1}(b), \beta_{k+1}(b), \gamma_{k+1}(b)$ are defined as

$$
\begin{aligned}
& \alpha_{k+1}(b)=\arg \min _{\alpha \in \mathbb{R}^{Q}} \frac{\sum_{m=1}^{M}\left(p\left(X_{t_{k+1}}^{\pi, m}\right) \alpha-y_{k+1}^{\left(\theta_{1}, \theta_{2}\right), R, I}\left(X_{t_{k+1}}^{\pi, m}\right)\right)^{2} \mathbf{1}_{\mathcal{B}_{t_{k}}(b)}\left(X_{t_{k}}^{\pi, m}\right)}{\sum_{m=1}^{M} \mathbf{1}_{\mathcal{B}_{t_{k}(b)}}\left(X_{t_{k}}^{\pi, m}\right)} \\
& \beta_{i, k+1}(b)=\arg \min _{\beta \in \mathbb{R}^{Q}} \frac{\sum_{m=1}^{M}\left(p\left(X_{t_{k+1}}^{\pi, m}\right) \beta-z_{i, k+1}^{\left(\theta_{1}, \theta_{2}\right), R}\left(X_{t_{k+1}}^{\pi, m}\right)\right)^{2} \mathbf{1}_{\mathcal{B}_{t_{k}}(b)}\left(X_{t_{k}}^{\pi, m}\right)}{\sum_{m=1}^{M} \mathbf{1}_{\mathcal{B}_{t_{k}(b)}}\left(X_{t_{k}}^{\pi, m}\right)}
\end{aligned}
$$

$$
\gamma_{k+1}(b)=
$$

$$
\arg \min _{\gamma \in \mathbb{R}^{Q}} \frac{\sum_{m=1}^{M}\left(p\left(X_{t_{k+1}}^{\pi, m}\right) \gamma-f_{k+1}\left(y_{k+1}^{\left(\theta_{1}, \theta_{2}\right), R, I}, z_{k+1}^{\left(\theta_{1}, \theta_{2}\right), R}\right)\right)^{2} \mathbf{1}_{\mathcal{B}_{t_{k}}(b)}\left(X_{t_{k}}^{\pi, m}\right)}{\sum_{m=1}^{M} \mathbf{1}_{\mathcal{B}_{t_{k}(b)}}\left(X_{t_{k}}^{\pi \cdot m}\right)}
$$

Formulation (cont.)

The approximate functions within the bundle at time k are defined by:

$$
\begin{aligned}
& z_{r, k}^{\left(\theta_{1}, \theta_{2}\right), R}(b, x)=-\theta_{2}^{-1}\left(1-\theta_{2}\right) \mathbb{E}_{t_{k}}^{x}\left[p\left(X_{t_{k+1}}^{\pi}\right)\right] \beta_{k+1}(b) \\
& \quad+\theta_{2}^{-1} \mathbb{E}_{t_{k}}^{x}\left[\frac{\Delta W_{r, k}}{\Delta_{k}} p\left(X_{t_{k+1}}^{\pi}\right)\right]\left(\alpha_{k+1}(b)+\left(1-\theta_{2}\right) \Delta_{k} \gamma_{k+1}(b)\right), \\
& y_{k}^{\left(\theta_{1}, \theta_{2}\right), R, 0}(b, x)=\mathbb{E}_{t_{k}}^{x}\left[p\left(X_{t_{k+1}}^{\pi}\right)\right] \alpha_{k+1}(b), \\
& y_{k}^{\left(\theta_{1}, \theta_{2}\right), R, i}(b, x)=\Delta_{k} \theta_{1} f_{k}\left(y_{k}^{\pi, R, i-1}(x), z_{k}^{\pi, R}(x)\right)+h_{k}(x), \\
& h_{k}(b, x)=\mathbb{E}_{t_{k}}^{x}\left[p\left(X_{t_{k+1}}^{\pi}\right)\right]\left(\alpha_{k+1}(b)+\Delta_{k}\left(1-\theta_{1}\right) \gamma_{k+1}(b)\right), \quad i=1, \ldots, l,
\end{aligned}
$$

with

$$
y_{k}^{\left(\theta_{1}, \theta_{2}\right), R, I}(x)=\sum_{b=1}^{B} \mathbf{1}_{x \in \mathcal{B}_{t_{k}}(b)} y_{k}^{\left(\theta_{1}, \theta_{2}\right), R, I}(b, x)
$$

and similarly for z.

Refined Regression

Theorem 1

Assume that for a real function v that is bounded in a compact set and $\int v^{2}(x) \nu(d x) \leq \infty$, then

$$
\begin{aligned}
& \hat{\mathbb{E}}_{S}\left[\iint|v(y)-\tilde{v}(x, y)|^{2} \nu(d x, d y)\right] \\
\leq & \frac{\vartheta\left(L^{\prime}\right)}{\hat{\mathbb{E}}\left[\mathbf{1}_{S}\right]} \hat{\mathbb{E}}\left[\sum_{B \in \mathbb{B}} \int_{B} \int \nu(d x, d y) \frac{\left(\log \left(\sum_{m=1}^{M} \mathbf{1}_{\mathcal{B}}\left(X^{m}\right)\right)+1\right) Q}{\sum_{m=1}^{M} \mathbf{1}_{\mathcal{B}}\left(X^{m}\right)}\right] \\
+ & \frac{8}{\hat{\mathbb{E}}\left[\mathbf{1}_{S}\right]} \hat{\mathbb{E}}\left[\sum_{B \in \mathbb{B}} \int_{B} \int \nu(d x, d y)\left(\inf _{\phi \in H} \sup _{x \in B} \mathbb{E}\left[|v(Y)-\phi(Y)|^{2} \mid X=x\right] \wedge L^{\prime}\right)\right] \\
+ & \hat{\mathbb{E}}_{S}\left[\iint|v(y)-\tilde{v}(x, y)|^{2}\left(1-\mathbf{1}_{\mathcal{A}}(y)\right) \nu(d x, d y)\right]
\end{aligned}
$$

Example 1

We consider the BSDE:

$$
\left\{\begin{aligned}
d X_{t}= & d W_{t} \\
d Y_{t}= & -\left(Y_{t} Z_{t}-Z_{t}+2.5 Y_{t}-\sin \left(t+X_{t}\right) \cos \left(t+X_{t}\right)\right. \\
& \left.-2 \sin \left(t+X_{t}\right)\right) d t+Z_{t} d W_{t}
\end{aligned}\right.
$$

with the initial and terminal conditions $x_{0}=0$ and $Y_{T}=\sin \left(X_{T}+T\right)$.
The exact solution is given by

$$
\left(Y_{t}, Z_{t}\right)=\left(\sin \left(X_{t}+t\right), \cos \left(X_{t}+t\right)\right)
$$

The terminal time is set to be $T=1$ and $\left(Y_{0}, Z_{0}\right)=(0,1)$.
We run the examples with the basis functions $\eta(x)=\left(1, x, x^{2}\right)$ and bundle based on the value of x.

Test Case	Example	θ_{1}	θ_{2}	I	M	N	B	L
D	1	0.5	0.5	4	$2^{2 J}$	2^{J}	2^{J}	100
E	1	0.5	0.5	4	$2^{2 J}$	2^{J}	2^{J}	10000
F	1	0.5	0.5	4	$2^{2 J}$	2^{J}	2^{J}	-

$\left\|Y_{0}-y_{0}^{\left(\theta_{1}, \theta_{2}\right), R}\left(x_{0}\right)\right\|$				
J	2	3	4	5
D	NA	9.2870×10^{-2}	1.0114×10^{-1}	8.1415×10^{-2}
E	29.2228	7.8601×10^{-1}	3.9639×10^{-1}	5.2388×10^{-2}
F	2.2154×10^{15}	1.9059×10^{56}	3.4731×10^{-1}	5.8511×10^{-2}
J	6	7	8	
D	3.9920×10^{-3}	1.5486×10^{-2}	NA	
E	1.1931×10^{-2}	1.2395×10^{-2}	1.4347×10^{-3}	
F	2.0485×10^{-3}	6.8277×10^{-3}	2.6705×10^{-3}	

Example 2: European option

We consider a market where the assets satisfy:

$$
d S_{i, t}=\mu_{i} S_{i, t} d t+\sigma_{i} S_{i, t} d B_{i, t}, 1 \leq i \leq q
$$

with B_{t} being a correlated q-dimension Wiener process with

$$
d B_{i, t} d B_{j, t}=\rho_{i j} d t .
$$

The parameters $\rho_{i j}$ form a symmetric matrix ρ,

$$
\rho=\left(\begin{array}{ccccc}
1 & \rho_{12} & \rho_{13} & \cdots & \rho_{1 q} \\
\rho_{21} & 1 & \rho_{23} & \cdots & \rho_{2 q} \\
\vdots & \vdots & \vdots & & \vdots \\
\rho_{q 1} & \rho_{q 2} & \rho_{q 3} & \cdots & 1
\end{array}\right)
$$

and we assume it is invertible. By performing a Cholesky decomposition on ρ such that $L L^{T}=\rho$, we relate B_{t} to standard Brownian motion

$$
B_{t}=L W_{t}
$$

Example 2: European option (cont.)

For a European option with terminal payoff $g\left(S_{t}\right)$, a replicating portfolio Y_{t}, containing $\omega_{i, t}$ of asset $S_{i, t}$ and $Z_{t}=\left(\omega_{1, t} \sigma_{1} S_{1, t}, \ldots, \omega_{q, t} \sigma_{q}, S_{q, t}\right) L$ solve the BSDE,

$$
\left\{\begin{array}{l}
d Y_{t}=-\left(-r Y_{t}-Z_{t} L^{-1}\left(\frac{\mu-r}{\sigma}\right)\right) d t+Z_{t} d W_{t} \\
Y_{T}=g\left(S_{T}\right)
\end{array}\right.
$$

where $\left(\frac{\mu-r}{\sigma}\right)=\left(\frac{\mu_{1}-r}{\sigma_{1}}, \cdots, \frac{\mu_{q}-r}{\sigma_{q}}\right)^{T}$.
In this numerical test, we use the 5-dimensional example from
[Reisinger and Wittum, 2007].

Example 2: European option (cont.)

We would consider a European weighted basket put option for 1 year in our test, therefore, the payoff function g is given by

$$
g(s)=\left(1-\sum_{i=1}^{5} w_{i} s_{i}\right)^{+}
$$

where $\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)=(38.1,6.5,5.7,27.0,22.7)$.
The reference price is given as 0.175866 .
We use equal-partitioning and sorting the paths according to $\sum_{i=1}^{5} w_{i} X_{t_{p}, i}^{m}$.
The regression basis is $p_{k}(x)=\left(\sum_{i=1}^{5} w_{i} x_{i}\right)^{k-1}$ for $k=1, \ldots, K$.

Test Case	Example	θ_{1}	θ_{2}	I	M	N	B	L	K
AA	2	0.5	0.5	4	2^{12}	10	$2^{2 J}$	-	3
AB	2	0	1	-	2^{11}	10	$2^{2 J}$	-	2

$\left\|Y_{0}-y_{0}^{\left(\theta_{1}, \theta_{2}\right), R}\left(x_{0}\right)\right\|$			
J	0	1	2
AA	2.0321×10^{-3}	2.2567×10^{-3}	1.9883×10^{-3}
AB	2.9314×10^{-3}	1.8934×10^{-3}	2.2151×10^{-4}

References

Reisinger, C. and Wittum, G. (2007).
Efficient hierarchical approximation of highdimensional option pricing problems.
SIAM Journal on Scientific Computing, 29(1):440-458.
Zhao, W., Li, Y., and Zhang, G. (2012).
A generalized θ-scheme for solving backward stochastic differential equations.
Discrete and Continuous Dynamical Systems - Series B, 17(5):1585-1603.

Thank You

