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Backward Stochastic Di↵erential Equations

Settings:
A filtered complete probability space (⌦,F ,F,P)
W := (Wt)0tT is a d-dimensional Brownian motion adapted to F

Forward Backward Stochastic Di↵erential Equation

⇢
dXt = µ(t,Xt)dt + �(t,Xt)dWt , X0

= x

0

,
dYt = �f (t,Xt ,Yt ,Zt)dt + ZtdWt , YT = �(XT ),

µ : ⌦⇥ [0,T ]⇥ Rq ! Rq and � : ⌦⇥ [0,T ]⇥ Rq ! Rq⇥d

f : ⌦⇥ [0,T ]⇥ Rq ⇥ R⇥ Rd ! R
� : ⌦⇥ Rq ! R
Solution: (Yt ,Zt) which satisfies the equation, adapts to F and
satisfies some regularity requirements.
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Discretization

For a given time grid ⇡ = {0 = t

0

< . . . < tN = T}, we define the
backward time discretizations (Y ⇡,Z⇡) based on the theta-scheme from
[Zhao et al., 2012]:
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Discretization (cont.)

Note that:
the globally Lipschitz driver assumption is in force;
we use a Markovian approximation X

⇡
tk , tk 2 ⇡:

X⇡
tk+1

= X⇡
tk + b(tk ,X

⇡
tk )�k + �(tk ,X
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tk )�Wk ;

due to the Markovian setting, there exist functions y (✓
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and other similar quantities along the time grid?
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Stochastic Grid Bundling Method

Non-nested Monte Carlo scheme

It starts with the simulation of M independent samples of (X⇡
tk )0kN ,

denoted by (X⇡,m
tk )

1mM,0kN .
The simulation is only performed once.
The terminal values for each path are:

y
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tN ), m = 1, . . . ,M.
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Recurring steps in time (I)

Non-nested Monte Carlo scheme

Regress-later
The least-squares regression technique for functions is performed on
the random variable X

⇡
tk+1

Then we use the (analytical) expectation of the resulting approximation
in our algorithm.
This will remove the ”statistical” error at the regression step.
To ensure the stability of our algorithm, the regression coe�cients
must be bounded above.
It means that an error notion should be given by the program when the
Euclidean norm of any regression coe�cient vector is greater than a
predetermined constant L.
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Regress now and Regress later

Regress now
0

B@
⌘
1

(X ⇡,1
tk ) ⌘Q(X

⇡,1
tk )

. . .

⌘
1

(X ⇡,#B
tk ) ⌘Q(X

⇡,#B
tk )

1

CA

0

B@
↵
1

...
↵Q

1

CA =

0

B@
g(X ⇡,1

tk+1

)
...

g(X ⇡,#B
tk+1

)

1

CA

E[g(X ⇡
tk+1

)|X ⇡
tk
= x ] ⇡

QX

l=1

↵l⌘l(x)

Regress later
0

B@
⌘
1

(X ⇡,1
tk+1

) ⌘Q(X
⇡,1
tk+1

)
. . .

⌘
1

(X ⇡,#B
tk+1

) ⌘Q(X
⇡,#B
tk+1

)

1

CA

0

B@
↵
1

...
↵Q

1

CA =

0

B@
g(X ⇡,1

tk+1

)
...

g(X ⇡,#B
tk+1

)

1

CA

E[g(X ⇡
tk+1

)|X ⇡
tk
= x ] ⇡

QX

l=1

↵lE[⌘l(X ⇡
tk+1

)|X ⇡
tk
= x ]

K.W. Chau (CWI) SGBM for BSDEs 22 January 2018 7 / 20



Recurring steps in time (II)

Non-nested Monte Carlo scheme

Regress-later

Localization (Bundling)

At each time period, all paths are bundled into Btk (1), . . . ,Btk (B)
(almost) equal-size, non-overlapping partitions based on the result of
(X⇡,m

tk ).
We perform the approximation separately at each bundle.
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Bundling
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Formulation

Specifically, the bundle regression parameters ↵k+1
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Formulation (cont.)

The approximate functions within the bundle at time k are defined by :
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Refined Regression

Theorem 1

Assume that for a real function v that is bounded in a compact set andR
v
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Example 1

We consider the BSDE:
8
<

:

dXt = dWt ,
dYt = �(YtZt � Zt + 2.5Yt � sin(t + Xt) cos(t + Xt)

�2 sin(t + Xt))dt + ZtdWt ,

with the initial and terminal conditions x
0

= 0 and YT = sin(XT + T ).
The exact solution is given by

(Yt ,Zt) = (sin(Xt + t), cos(Xt + t)).

The terminal time is set to be T = 1 and (Y
0

,Z
0

) = (0, 1).
We run the examples with the basis functions ⌘(x) = (1, x , x2) and bundle
based on the value of x .
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Test Case Example ✓
1

✓
2

I M N B L
D 1 0.5 0.5 4 22J 2J 2J 100
E 1 0.5 0.5 4 22J 2J 2J 10000
F 1 0.5 0.5 4 22J 2J 2J �

|Y
0

� y

(✓
1

,✓
2

),R
0

(x
0

)|
J 2 3 4 5
D NA 9.2870⇥ 10�2 1.0114⇥ 10�1 8.1415⇥ 10�2

E 29.2228 7.8601⇥ 10�1 3.9639⇥ 10�1 5.2388⇥ 10�2

F 2.2154⇥ 1015 1.9059⇥ 1056 3.4731⇥ 10�1 5.8511⇥ 10�2

J 6 7 8
D 3.9920⇥ 10�3 1.5486⇥ 10�2 NA
E 1.1931⇥ 10�2 1.2395⇥ 10�2 1.4347⇥ 10�3

F 2.0485⇥ 10�3 6.8277⇥ 10�3 2.6705⇥ 10�3
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Example 2: European option

We consider a market where the assets satisfy:

dSi ,t = µiSi ,tdt + �iSi ,tdBi ,t , 1  i  q

with Bt being a correlated q-dimension Wiener process with

dBi ,tdBj ,t = ⇢i jdt.

The parameters ⇢ij form a symmetric matrix ⇢,

⇢ =

0

BBB@

1 ⇢
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⇢
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· · · ⇢
1q

⇢
21

1 ⇢
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· · · ⇢
2q

...
...

...
...

⇢q1 ⇢q2 ⇢q3 · · · 1

1

CCCA
,

and we assume it is invertible. By performing a Cholesky decomposition
on ⇢ such that LLT = ⇢, we relate Bt to standard Brownian motion

Bt = LWt .
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Example 2: European option (cont.)

For a European option with terminal payo↵ g(St), a replicating portfolio
Yt , containing !i ,t of asset Si ,t and Zt = (!

1,t�1S1,t , . . . ,!q,t�q, Sq,t)L
solve the BSDE,

(
dYt = �

�
�rYt � ZtL

�1

�µ�r
�

��
dt + ZtdWt ;

YT = g(ST ),

where
�µ�r

�

�
=
⇣
µ
1

�r
�
1

, · · · , µq�r
�q

⌘T
.

In this numerical test, we use the 5-dimensional example from
[Reisinger and Wittum, 2007].
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Example 2: European option (cont.)

We would consider a European weighted basket put option for 1 year in
our test, therefore, the payo↵ function g is given by

g(s) =

 
1�

5X

i=1

wi si

!
+

,

where (w
1

,w
2

,w
3

,w
4

,w
5

) = (38.1, 6.5, 5.7, 27.0, 22.7).
The reference price is given as 0.175866.
We use equal-partitioning and sorting the paths according to

P
5

i=1

wiX
m
tp ,i

.

The regression basis is pk(x) =
⇣P

5

i=1

wixi

⌘k�1

for k = 1, . . . ,K .
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Test Case Example ✓
1

✓
2

I M N B L K
AA 2 0.5 0.5 4 212 10 22J - 3
AB 2 0 1 - 211 10 22J - 2

|Y
0

� y

(✓
1

,✓
2

),R
0

(x
0

)|
J 0 1 2
AA 2.0321⇥ 10�3 2.2567⇥ 10�3 1.9883⇥ 10�3

AB 2.9314⇥ 10�3 1.8934⇥ 10�3 2.2151⇥ 10�4
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Thank You

K.W. Chau (CWI) SGBM for BSDEs 22 January 2018 20 / 20


	The Problem
	The Solution
	Current Progress
	Forward Looking

