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Abstract

We propose an adaptive rare event simulation method based on reversible shaking transformations on
path space to estimate rare event statistics arising in different financial risk settings which are embedded
within a unified framework of isonormal Gaussian process. We provide convergence results for sampling
algorithms and our adaptive scheme which are based on Markov chain created using shaking transforma-
tions. We also tackle the important problem of calculating sensitivities of rare event statistics with respect
to the model parameters by providing general analytical formulas. We demonstrate the strength of our
method and application of our results in various numerical examples which cover usual semi-martingale
stochastic models (not necessarily Markovian) driven by Brownian motion and, also, models driven by
fractional Brownian motion (non semi-martingale) to address various financial risks.
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1 Introduction

During the last thirty years, financial crises and shocks have repeatedly occurred, ranging from the Black
Monday in 1987 to the recent Chinese stock market crash in 2015, passing through the financial crisis of
2007-2008 triggered by over-valuated subprime mortgages. As a consequence, banks, insurance companies
and regulators are paying more and more attention to the quantification of risk in all its forms - market
risk, credit risk, operational risk - and to its management, in particular in the tails and extremes. Since
financial institutions often use estimated model parameters, which may include errors due to an inaccurate
estimation process, the sensitivities of financial risks with respect to model parameters also provide valuable
information to help with the risk management. In this paper, we propose a new adaptive rare event simulation
method based on the reversible shaking transformations to estimate rare event statistics associated with
various financial risks. For these reversible shaking transformations, we provide error estimates and speed
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of convergence result in finite dimensions which also allow us to prove the consistency of estimator based
on our adaptive scheme. In addition, we provide analytical formulas for the sensitivities of these rare event
statistics in a generalized setting. Recently, the reversible shaking transformations have also been combined
with Monte Carlo simulation to estimate nested risk statistics in general settings [FGM17].

1.1 Rare Events in Finance

Rare event analysis comes into play when we consider all forms of financial risks related to events in the
extreme tails. In the most recent regulation texts, this is sometimes referred to as stress-testing [Bas17]. To
fix the convention, hereby, we refer to rare events as the events which have probabilities smaller than 10−3 or
10−4. In the following, we list several examples in the literature that cover a wide range of possible financial
risk situations where two of them – model risk and credit risk – are linked to the latest Basel regulations
[Bas11].

• The impact of using a misspecified model for hedging financial positions is commonly known as model
risk [Con06]. It is related to the issue of model robustness as addressed in [EJS98, CM01]. We consider
one such problem in Section 3.1 to estimate the model risk.

• A typical problem which arises in managing credit risk is to estimate certain default probabilities
required for pricing Credit Default Swaps. Such an example inspired from [CFV09, CC10] is considered
in Section 3.2.

• Models based on fractional fields are now popular in physics, natural sciences, economics (see [CI13])
and are also used in financial modeling (see [CR98]). In the recent work [GJR14], the authors modeled
the volatility of S&P 500 index by fractional Brownian motion (fBM). In Section 3.3, we consider the
problem of estimating far-from-the-money implied volatilities (IV) of an underlying process following
fSABR model [GJ14].

• Another example of market risk comes from the evaluation of deep out-of-the-money options (see
[GT16, FGG+15]). In Section 3.4, we consider options written on a portfolio of assets and estimate
their sensitivities with respect to different portfolio and model parameters.

1.2 Numerical Methods in Literature

In all the above examples, crude Monte-Carlo simulations naturally fail to be efficient since the events
of interest have small probabilities. Several numerical methods have been therefore developed to sample
extreme scenarios. Among them, the Importance Sampling (IS) technique [RK08] transforms the distribution
of random variables to be simulated in order to make the event not rare anymore (or less rare). However, it
is known that the method relies heavily on the particularity of the model to obtain a feasible transformation.
For example, an IS technique has been designed in [GHS00] for computing the 10 days-VaR of a portfolio
of options using small-time linearization in the context of lognormal models and in [GT16] to price deep
out-of-the-money basket options in lognormal models.

Another approach is based on Interacting Particle System (IPS) (see for example [Del04, DG05, CDLL06]).
Usually, it is designed when the rare event is related to the terminal value of a discrete-time Markov chain in
Rd. In this approach, a large number of particles representing the underlying state evolve with interactions
at every time step until the terminal time where the rare event statistics are evaluated using Feynman-Kac
formulas and are computed on the empirical measure associated to these particles. This approach requires
to embed the rare event problem into a Markovian setting which causes some difficulties when the model
is not Markovian. The method becomes less efficient as the number of time steps gets larger due to the
increasing statistical error. For related numerical experiments, see [CFV09, CC10].
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Lastly, the splitting techniques initiated in [VV91] decompose the problem of rare event in a sequence of
n increasingly rare events (n is of the order of the log-probability of the rare event, thus it is often smaller
than 10). Usually, a particle-based approach (similar to IPS) is used to implement the method. Recently in
[GL15], the authors have used splitting approach to express rare event statistics as a product of conditional
expectations and used tools from ergodic theory to compute these conditional expectations using reversible
transformations (also called shakers). It leads to Parallel One-Path (POP) method since each conditional
statistic is computed in parallel using a single particle evolving over a long path. The authors also combined
shakers in path space with the IPS method to provide a new version of the IPS method. Unlike the original
IPS method, this approach does not suffer from increasing variance with finer time discretization and turns
out to be more suitable for problems involving stochastic processes (without any Markov assumptions).

1.3 Our Contributions

Observe that most of the financial models are often built on Gaussian noise to account for market risk
and other financial risks. Some examples include models based on finite dimensional Gaussian variables, or
infinite dimensional ones like for standard or fractional Brownian motion and multi-dimensional Brownian
Stochastic Differential Equations (SDE). In order to provide a unified treatment, we embed our study in the
framework of a general isonormal Gaussian process where the random process is X := (X(h) : h ∈ H) in
association to a real separable Hilbert space H. This setting is also referred as Gaussian Hilbert space. In
this work, we design rare-event sampling algorithms, adapted to this Gaussian framework, using reversible
Gaussian transformations (called shaker) with splitting and rejection (POP approach). Hereafter, we refer to
these algorithms as POP methods. This general setting facilitates to show the convergence of the reversible
Gaussian transformations in infinite dimension using generalized Gebelein inequality [Geb41] for the maximal
correlation between Gaussian subspaces [Jan97, Chapter 10]. We also make use of the existing results on
the convergence of Metropolis-Hastings sampler to conclude the same in finite dimensions for Gaussian
transformations with rejection which form the basis of our sampling algorithms. In addition, we provide
error estimates and prove the geometric ergodicity of Gaussian transformations with rejection which allows
us to verify the conditions required to prove the consistency of our adaptive estimator (discussed below). The
extension of such theoretical results in infinite dimension is out of reach so far; however, finite-dimensional
convergence results are usually sufficient in practice since algorithms are implemented on a computer in finite
dimension. The impact of increasing the dimension (by refining the time-monitoring of the processes for
instance) is investigated numerically in [ADGL18], where the experiments show that the convergence does
not deteriorate as the dimension gets larger.

The rare events statistics are known to be strongly sensitive to the model parameters (see the limit (2.8)).
To the best of our knowledge, there are very few contributions on rare event sensitivities, although Basel
regulations emphasize more and more the importance of model risks. We refer to [AR99] where such study
is handled in the case of compound Poisson process using the score function method coupled with the IS
method. Our Gaussian Hilbert framework allows us to elegantly handle the sensitivity analysis of rare event
statistics using the tools of Malliavin calculus. We note that in order to derive these results, we do not need
any semimartingale models and Itô calculus framework. We will notice (Remark 2.1) that the representation
formulas for quantifying the sensitivities in the extremes (see Section 2.1) can be performed at the same
time (without extra effort) than the computation of rare events statistics, this is especially attracting.

In POP method, for good numerical performance, it is advantageous to have the conditional probabilities
at intermediate levels to be of the same order (for example, in [Lag06] it is argued that the equiprobability
choice minimizes the variance of splitting algorithms). However, the appropriate choice of intermediate levels
to ensure this condition requires apriori knowledge about the nature of the rare event under consideration.
In the absence of such knowledge, choosing appropriate intermediate levels is challenging and requires several
pilot algorithm runs to ensure the conditional probabilities requirement. In this work, we propose an adaptive
rare event simulation method (complementary to the previous POP methods) where at each intermediate
level, except for the last, the conditional probability is fixed to a pre-decided value p ∈ (0, 1) (typically 10%).
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Thus, the intermediate levels are chosen adaptively without making any assumptions on the order of the
rare event probability under consideration. We provide the convergence proof for this adaptive POP method
which requires careful arguments to handle the empirical nature of the intermediate levels. In particular, we
use the probabilistic error bounds for the Markov chain based quantile estimators to derive our convergence
result.

1.4 Organization

The paper is organized as follows. We define the generic isonormal Gaussian model under study in Section 2.
Then we present the splitting principle in Section 2.1: this reduces the rare-event evaluation to computing
conditional expectations/probabilities w.r.t. rarer and rarer events. The accounting for sensitivity analysis
is performed as well, and we show it fits naturally the splitting principle (Proposition 1). Then, in order
to compute the aforementioned conditional expectations, we define the shakers in Subsection 2.2 leading
to the POP method. In Section 2.3, we introduce the adaptive rare event simulation method on the path
space (adaptive POP method). Section 3 is devoted to applications and experiments in various financial risk
problems, namely: model misspecification risk, default probabilities in credit portfolios, estimation of small
strike asymptotics in fractional Brownian motion models and parameter sensitivity estimation for deep out-
of-the money options. We conclude by summarizing our contributions in Section 4. The proofs are presented
in Appendix A.

2 Main Results

We adopt the framework in [Nua06] of an isonormal Gaussian process associated with a general Hilbert
space H (in other words, the framework of Gaussian Hilbert spaces, see [Jan97]). Namely, we assume that
H is a real separable Hilbert space with scalar product 〈., .〉H and we consider a probability space (Ω,F ,P)
supporting a centered Gaussian family of scalar random variables X = (X(h) : h ∈ H) such that

E [X(h)X(g)] = 〈h, g〉H for any h, g ∈ H.

We may refer to X as a path indexed by h ∈ H. The norm of an element h ∈ H is denoted by ‖h‖H. The
mapping h 7→ X(h) is linear. Some important examples are as following:
Example 1 (Finite dimensional Gaussian space). Let d ∈ N∗, set H := Rd and 〈h, g〉H :=

∑d
j=1 hjgj for

any h, g ∈ Rd, denote by ei = (1{j=i} : 1 ≤ j ≤ d) the ith element of the canonical basis of Rd. Then
(X(e1), . . . , X(ed)) is a vector with independent standard Gaussian components.
Example 2 (Multidimensional Brownian motion (BM)). Let d ∈ N∗, denote by H the L2-space H :=
L2(R+×{1, . . . , d}, µ), where measure µ is the product of Lebesgue measure and the uniform measure which
gives mass one to each point 1, . . . , d, and set

〈h, g〉H :=

∫
R+×{1,...,d}

h(x)g(x)µ(dx) for any h, g ∈ H.

Define
Xi
t := X(1[0,t]×{i}) for any t ≥ 0, 1 ≤ i ≤ d.

Then the process (X1
t , . . . , X

d
t : t ≥ 0) is a standard d-dimensional Brownian motion.

Example 3 (Fractional Brownian motion (fBM)). The fBM with Hurst exponent H ∈ (0, 1) is a R-valued
Gaussian process, centered with covariance function

E(X
(H)
t X(H)

s ) =
1

2

(
t2H + s2H − |t− s|2H

)
:= RH(t, s), for any s, t ≥ 0.
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For any fixed T > 0, (X
(H)
t : 0 ≤ t ≤ T ) can also be defined within our framework (see [Nua06, Chapter

V]). Denote by H0 the set of step functions on [0, T ], and let H be the Hilbert space defined as the closure
of H0 w.r.t. the scalar product 〈1[0,t],1[0,s]〉H = RH(t, s). Denote by X the Gaussian process on H and
(X(1[0,t]) : 0 ≤ t ≤ T ) defines a fBm (X

(H)
t : 0 ≤ t ≤ T ) with Hurst exponent H.

We can also combine these examples by simultaneously defining, for example, standard BM and fBM.
On top of this Gaussian model on H, we can define more sophisticated models frequently used in finance for
modeling risk. For the sake of convenience of the reader, here we mention two of them and refer to Section
3 for further developments.

• Local volatility models [Dup94]:

dSt = b(t, St)dt+ σ(t, St)dXt

where X is a standard q-dimensional BM and S stands for the price process of d tradable assets.

• Fractional Brownian Motion (fBM) volatility models [CR98, GJR14]:

dSt = µtStdt+ σtStdXt

where S stands for the asset price and the random volatility σt is defined through a fractional Brownian
motion. To have mean-reverting volatility, we may model σ as a fractional Ornstein-Uhlenbeck process
(see, for example, [CKM03, GVZ15]). In Subsection 3.3, we rather consider the fractional SABR model
of [GJ14] where the volatility takes the form

σt = σ̄ exp

(
−1

2
α2t2H + αX

(H)
t

)
, t ∈ [0, T ]

where σ̄ and α are positive parameters, and X(H) is as in Example 3.

2.1 Splitting Method for Rare Event Statistics and Their Sensitivities

In the following, we assume that the probability space at hand (Ω,F ,P) is such that the σ-field F is
generated by {X(h) : h ∈ H}. For notational simplification, we often identity H with its orthonormal
basis bH = (h̄1, h̄2, . . . ). To allow great generality, we assume that the rare event is defined through two
components, some Rare-event Explanatory Variables (REV) and a level-set function, which are parametrized
as follows:

a) We consider random variables taking values in a general metric space (Z,Z), i.e.

Z : ω ∈ (Ω,F) 7→ Z(ω) := ΨZ(X(ω)) ∈ (Z,Z) (2.1)

where ΨZ is a measurable mapping from RH to Z. The random variable Z stands for REV whose aim is
to model the stochasticity of the rare-event.

b) The above REV will be evaluated along a level-set function ϕ, which completes the definition of the rare
event:

ϕ : (z, a) ∈ Z× (−∞,∞] 7→ ϕ(z, a) ∈ [−∞,∞).

As we will see, non-positive values of ϕ(z, a) correspond to rare-event scenarios whose probabilities we aim
to compute. Furthermore, we assume that for any a, ϕ(., a) is a measurable map in the first component
and that ϕ is non-increasing w.r.t. the second variable, i.e.

ϕ(z, a) ≥ ϕ(z, a′) for any −∞ < a ≤ a′ ≤ ∞ and any z ∈ Z. (2.2)

We take the convention ϕ(z,∞) = −∞ for any z ∈ Z. The property (2.2) is crucial for the splitting
approach in order to define nested subsets of increasingly rare scenarios (see Equation (2.5) later).
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c) The rare event under study is described by the critical paths of Z in set A of the form

A := {z ∈ Z : ϕ(z, ā) ≤ 0}

for a given level parameter ā ∈ R such that the probability P (Z ∈ A) is small. To avoid a degenerate
problem, we assume from now on that P (Z ∈ A) > 0. To fix ideas, suppose that Z models the capital
reserve of a firm which otherwise defaults if its reserve falls below level ā. Then, for ϕ(z, a) = z − a,
P (Z ∈ A) = P (Z ≤ ā) is the default probability for the firm.

d) There is an integrable random variable Φ : Ω 7→ R modeling the output, for which we wish to evaluate
the statistics restricted to the event {Z ∈ A}, i.e., to compute

E [Φ1Z∈A] .

We write
Φ : ω ∈ (Ω,F) 7→ Φ(ω) := ΨΦ(X(ω)) ∈ (R,B(R)) (2.3)

where ΨΦ is a measurable mapping from RH to R.

Our approach is based on the principle of splitting A in a sequence of n ≥ 2 nested subsets (Ak)
n
k=1. Consider

the level parameters ā := an < · · · < ak < · · · < a0 :=∞ and set

Ak := {z ∈ Z : ϕ(z, ak) ≤ 0}, (2.4)

so that, owing to (2.2) we have
A := An ⊂ · · · ⊂ Ak ⊂ . . . A0 := Z. (2.5)

Note that for describing a given rare-event A, there are many possible couples (level set function ϕ, level
set parameter ā). The choice made by the user has an impact on the performance of the methods (see the
example on credit-risk in Subsection 3.2) and it is made according to the knowledge of the model at hand.
Later, we will often refer to (ak)

n
k=1 as acceptance level parameters. The choice of acceptance levels can be

done adaptively which we discuss in Section 2.3. It is clear that the above splitting approach justifies the
following decompositions:

E [Φ1Z∈A] = E [Φ1Z∈A | Z ∈ An−1]

n−1∏
k=1

P (Z ∈ Ak | Z ∈ Ak−1) (2.6)

= E [Φ | Z ∈ An]

n∏
k=1

P (Z ∈ Ak | Z ∈ Ak−1) . (2.7)

Next, we assume that the model at hand depends on a real-valued parameter θ, through the definition of Z
and Φ so that E [Φ1Z∈A] should now be written as E

[
Φθ1Zθ∈A

]
. The sensitivity of the above quantity w.r.t.

θ is an important issue to account for because the errors in model calibration and estimation procedures
could have a significant impact. This concerns the evaluation of model risk (see, for example, [Con06]). This
question is even more delicate when combined with rare-event analysis since it is known that the distribution
tails are very sensitive to parameter shocks [AS12]. For example, if Gσ

d
= N (0, σ2) then

lim
x→∞

P (Gσ ≥ x)

P (Gσ′ ≥ x)
=

{
0 if 0 < σ < σ′

∞ if σ > σ′ > 0
, (2.8)

that is a small change of parameters may cause a large change of tail-probabilities.

To quantify the impact of θ on E
[
Φθ1Zθ∈A

]
, we may evaluate the derivative w.r.t. θ whenever it exists.

However, in the rare event setting, as the above expectation is small, most likely its derivative will also be
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small. Thus, it makes more sense to evaluate the relative sensitivity defined by

∂θE
[
Φθ1Zθ∈A

]
E [Φθ1Zθ∈A]

provided that E
[
Φθ1Zθ∈A

]
is differentiable in θ and non zero.

Regarding the computational aspects, the derivative ∂θE
[
Φθ1Zθ∈A

]
can be estimated by the resimulation

method as follows: Take two values of θ which are close to each other, approximate expectation for each
value of θ by Monte-Carlo simulations and form the finite difference as an estimator of the derivative. This
is known to be not well suited to the case where the functional inside the expectation is irregular in θ which
is typically our case because of the indicator function. A better strategy is to represent the derivative as an
expectation (known as the likelihood method in the case of explicit distributions, or based on Integration-
By-Parts formula in the Malliavin calculus setting [FLL+99]) and then evaluate it by simulations. This is
our approach which we formulate as an assumption.

(IBP) There exists an open set Θ ⊂ R such that θ 7→ E
[
Φθ1Zθ∈A

]
is differentiable on Θ and for any θ ∈ Θ,

there is an integrable random variable I(Zθ,Φθ) such that

∂θE
[
Φθ1Zθ∈A

]
= E

[
I(Zθ,Φθ)1Zθ∈A

]
.

Combining this with the splitting approach of Equation (2.7) gives a simple representation of the relative
sensitivity.
Proposition 1. Assume (IBP). For any θ ∈ Θ such that E

[
Φθ1Zθ∈A

]
6= 0, we have

∂θE
[
Φθ1Zθ∈A

]
E [Φθ1Zθ∈A]

=
E
[
I(Zθ,Φθ) | Zθ ∈ A

]
E [Φθ | Zθ ∈ A]

.

When we are concerned by the sensitivity of the rare-event probability, it takes the simple form

∂θ

[
log
(
P
(
Zθ ∈ A

))]
:=

∂θP
(
Zθ ∈ A

)
P (Zθ ∈ A)

= E
[
I(Zθ, 1) | Zθ ∈ A

]
.

Remark 2.1. Observe (for computational perspectives) that the above relative sensitivities take the same form
as the first term in (2.7), i.e. a ratio of expectations conditionally to the last level A. Therefore, evaluating
E [Φ1Z∈A] or its relative sensitivity w.r.t. a parameter θ will be achieved with the same computational cost
(provided that I(Zθ,Φθ) is known).

In full generality on the probabilistic setting, the determination of I(Zθ,Φθ) is difficult but in our Gaussian
noise setting, it can be achieved using the Integration by Parts formula of Malliavin calculus. There are
numerous situations where one can obtain such a representation for sensitivities (see [FLL+99, Gob04, GM05,
KY09] among others, and [Nua06, Section 6.2] for more references). We establish such a result in the case Zθ

takes values in Rd, and Zθ,Φθ are smooth in θ. Hereafter, we adopt and follow the notation of [Nua06] for the
derivative operator D, for the space D1,2 of random variables that are one time Malliavin differentiable with
L2-integrability, and for the divergence operator δ. We say that a family of random variables (U θ : θ ∈ Θ) is
in Llocp (p ≥ 1) if for any θ ∈ Θ, there is a open set Vθ ⊂ Θ containing θ such that supθ′∈Vθ |U

θ′ | is bounded
by a random variable in Lp.

Theorem 2. Consider Z = Rd and let q > d. Assume the following conditions:

(a) (Φθ, θ ∈ Θ) is in Lloc2 and Zθ has a Lq-norm bounded locally uniformly in θ;

(b) Φθ and Zθ are continuous and differentiable on Θ and their derivatives (Φ̇θ, Żθ : θ ∈ Θ) are respectively
in Lloc1 and Lloc2 ;

(c) for any θ ∈ Θ, Zθ ∈ D1,2 and the Malliavin covariance matrix γZθ := (〈D.Zθi , D.Zθj 〉H)1≤i,j≤d is
invertible a.s.;
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(d) for any θ ∈ Θ, Φθ
∑d

j=1(γ−1
Zθ
Żθ)jD.Z

θ
j is in the domain of δ and Φ̇θ + δ(Φθ

∑d
j=1(γ−1

Zθ
Żθ)jD.Z

θ
j ) has a

L2-norm bounded locally uniformly in θ;

(e) for any θ ∈ Θ and any i ∈ {1, . . . , d},
∑d

j=1(γ−1
Zθ

)j,iD.Z
θ
j is in the domain of δ and δ(

∑d
j=1(γ−1

Zθ
)j,iD.Z

θ
j )

has a Lq-norm bounded locally uniformly in θ.

Then (IBP) is satisfied on Θ and

I(Zθ,Φθ) := Φ̇θ + δ

Φθ
d∑
j=1

(γ−1
Zθ
Żθ)jD.Z

θ
j

 .

The above theorem together with Proposition 1 and Remark 2.1 provides an important contribution in
the literature as the issue of rare event sensitivity has received little attention. Using the result in Theorem
2, analytical sensitivity formulas can be derived in several model settings driven by Gaussian noise. We
provide an example in Section 3.4. The proof of Theorem 2 is presented in Appendix A.1.

2.2 Reversible Gaussian Transformations and Parallel-One-Path (POP) Method

In this section, we recall the idea of reversible transformations proposed in [GL15]. We suppose that the
state values of X that serve to model the REV Z in (2.1) lie in the path space RH. Let ρ := (ρh : h ∈ bH) ∈
[−1, 1]bH. Then, the reversible transformations on the Gaussian path X are defined as below:

K :

{
RH × RH 7→ RH

(x, x′) := (xh : h ∈ bH, x′h : h ∈ bH) → (ρhxh +
√

1− ρ2
hx
′
h : h ∈ bH).

(2.9)

Whenever useful, we will write Kρ to insist on the dependence on the so-called shaking parameter ρ. If
X ′ = (X ′(h) : h ∈ H) is an independent copy of X, we simply denote by K the random transformation from
RH 7→ RH as

K(x) = K(x,X ′).

In the stochastic analysis literature, the above parametrized transformation for a constant parameter ρh =
constant ∈ (0, 1) is associated to the Ornstein-Uhlenbeck (or Mehler) semigroup (see [Nua06, Section 1.4])
and simply writes

K(x, x′) = ρx+
√

1− ρ2x′, (2.10)

independently of the choice of the basis bH. We call the transformation (2.9) shaker and it satisfies the
following reversibility property.
Proposition 3 (Reversible shaker). The following identity holds in distribution:

(X,K(X,X ′))
d
= (K(X,X ′), X).

This type of reversibility property is well-known in the Markov Chain Monte Carlo literature when
studying the convergence of Markov chains in large time. Thus, the shaker (2.9) preserves the distribution
of X (seen now as a stationary measure) and by iterating the transformations and averaging out the outputs
in time, we may obtain a numerical evaluation of related expectations (Birkhoff Law of Large Numbers)
which is justified by the following result.
Theorem 4. Let f : Z 7→ R be a measurable function and assume that f(Z) ∈ L2 where Z = ΨZ(X) as in
(2.1). Define X0 = X,Xk+1 = Kρ(Xk, X

′
k) and Zk = ΨZ(Xk) where the X ′k are independent copies of X.

Then, for |ρ|∞ := suph∈bH |ρh| < 1,∣∣∣∣∣ 1

N

N∑
k=1

f(Zk)− E [f(Z)]

∣∣∣∣∣
2

L2

≤ Var (f(Z))

N

(
1 + |ρ|∞
1− |ρ|∞

)
, ∀N ≥ 1. (2.11)
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The proof for the above L2 convergence result of the Gaussian shaker is given in Appendix A.2.

Our adaptive method is based on shaking with rejection transformations on the path space which also form
the basis of Parallel-One-Path (POP) method [GL15]. We define the shaking with rejection transformation
as follows:

MK
k :

{
RH × RH → RH,
(x, x′) 7→ K(x, x′)1ΨZ(K(x,x′))∈Ak + x1ΨZ(K(x,x′))/∈Ak ,

(2.12)

where (ΨΦ,ΨZ) are measurable mappings which transform the pathX to the rare-event model (Φ, Z) (defined
in (2.1) and (2.3)). Recall the definitions of Ak in Equation (2.4). Intuitively, the above transformation states
that for starting state x ∈ RH and innovation x′ ∈ RH, we apply the transformation and keep it as the next
state if ΨZ

(
K(x, x′)

)
∈ Ak for x′ ∈ RH. Otherwise, we restart from the current state x. Furthermore,

we define MKk (.) := MK
k (., X ′) where X ′ is the generic isonormal Gaussian path. Due to the reversibility

property (Proposition 3), it immediately follows that the conditional distribution X | ΨZ(X) ∈ Ak is
invariant with respect to the shaking with rejectionMKk (·).

Proposition 5. Let k ∈ {0, 1, · · · , n−1}. The distribution of X conditionally on {ΨZ(X) ∈ Ak} is invariant
w.r.t. the random transformationMKk , i.e. for any bounded measurable ϕ : RH → R we have

E
[
ϕ(MKk (X)) | ΨZ(X) ∈ Ak

]
= E [ϕ(X) | ΨZ(X) ∈ Ak] .

Next, we define a Markov chain based on the transformation MKk which has the above conditional
distribution as invariant measure.
Definition 1. For each k = 0, . . . , n− 1, given a starting point Xk,0∈ Ψ−1

Z (Ak), define

Xk,i :=MKk (Xk,i−1) = MK
k (Xk,i−1, X

′
k,i−1) for i ≥ 1 (2.13)

where (X ′k,i)i≥0 is a sequence of independent copies of X ′ and independent of Xk,0.

If the above defined Markov chain is ergodic, we have the following approximation which is justified by
Theorems 4 and 8:

E [ϕ(X)|ΨZ(X) ∈ Ak] ≈
1

N

N−1∑
i=0

ϕ(Xk,i), as N →∞.

Taking ϕ(x) = 1Ak+1
(ΨZ(x)) and ϕ(x) = ΨΦ(x) yields an approximation of P (ΨZ(X) ∈ Ak+1 | ΨZ(X) ∈ Ak)

and E [ΨΦ(X) | ΨZ(X) ∈ Ak]; therefore owing to (2.6), the product of all the estimators gives an estimation
of the rare event probability P (ΨZ(X) ∈ A) and the rare event statistics E

[
ΨΦ(X)1ΨZ(X)∈A

]
.

Furthermore, POP method gives a way to automatically initialize each Markov chain and compute the
estimator using shaking with rejection transformation:

Step 1. Take X0,0 as a copy of X.

Step 2. For k = 0, simulate the Markov chain Xk,i = MK
k (Xk,i−1, X

′
k,i−1), 0 ≤ i ≤ N − 1 and calculate

p
(N)
k =

1

N

N−1∑
k=0

1Ak+1
(ΨZ(Xk,i)).

Step 3. Set ik = arg min {j : ΨZ(Xk,j) ∈ Ak+1} and Xk+1,0 = Xk,ik . Repeat Step 2 for k = 1, . . . , n− 1.

Output. Compute the probability estimate as

p(N) =

n−1∏
k=0

p
(N)
k . (2.14)
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The convergence of POP method has been proved in [GL15] under the assumptions which are not easily
verified. Here, we provide the proof of convergence in finite dimensions without any assumption. The proof is
given using a classical result that the occupation measure of an irreducible and stationary Markov chain will
converge to its invariant measure. A short proof for such result using the ergodic theorem and martingale
techniques can be found in [AG11]. The proof of our result is relegated to Appendix A.3.

Proposition 6. POP method with |ρ|∞ < 1 converges almost surely in the finite dimensional case H = Rd.

In addition, the marginal distribution of each Markov chain converges to its limit, see Appendix A.3 for
the proof.

Proposition 7. Assume the finite dimensional case for H and |ρ|∞ < 1. For any fixed k ∈ {0, . . . , n− 1},
denote by L(X

xk,0
k,N ) the law of Xxk,0

k,N with initialization at a given point Xk,0 = xk,0 ∈ Ψ−1
Z (Ak), and denote

the distribution of X conditionally on {ΨZ(X) ∈ Ak} by πk. Then, for any xk,0 ∈ Ψ−1
Z (Ak) we have

‖L(X
xk,0
k,N )− πk‖TV → 0

as N →∞, where ‖ · ‖TV denotes the total variation norm.

Remark 2.2. The convergence of marginal distributions may have an interesting practical use for stress-
testing financial systems. For example, let X denote the financial random environment that a banking system
faces, and Z denote the related risk exposure. In order to test the system resilience, regulators usually design
some stress test scenario which means imposing a presumably rare event in A on the banking system and
then see how the system reacts to this event. Some references on the design of stress test can be found in
[Bas17]. In most stress testing designs, regulators artificially construct one or a few elements in A. Using
the POP method and Proposition 7, one can sample approximately according to the conditional distributions
X|Z ∈ A and/or Z|Z ∈ A, which gives a more relevant choice of stress test scenarios. Such application of
POP method has been explored in [ADGL18].

Apart from the convergence of POP method stated in Propositions 6 and 7, we are also interested in
its error estimates and its speed of convergence. For this purpose, in finite dimensional case, we derive the
required results. We will see later that the speed of convergence result will aid us to prove the consistency
of adaptive estimator based on shaking with rejection transformations used in POP method.

Theorem 8. Let the level index k ≥ 0 be given. Consider the kth Markov chain (Xk,i : i ≥ 0) with shaking
and rejection in Ψ−1

Z (Ak) defined in (2.13), and restricted to the finite d-dimensional case (see Example 1).
Assume that |ρ|∞ < 1 and

sup
x:ΨZ(x)∈Ak

P
(
K(x,X ′) /∈ Ak

)
= δ1 < 1. (2.15)

Let s > 0, q ≥ 2 and set V (x) := exp(s
∑d

j=1 |xj |). Then, there exist a constant C > 0 and a geometric rate
r ∈ (0, 1) such that for any measurable function g : Rd → R bounded in V 1/q-norm (i.e. supx∈Rd

|g(x)|
V 1/q(x)

<

+∞) and any initial condition Xk,0 independent from the future evolution of the chain with E [V (Xk,0)] <
+∞, we have

E

[∣∣∣∣∣ 1n
n∑
i=1

g(Xk,i)− E [g(X) | ΨZ(X) ∈ Ak]

∣∣∣∣∣
q]
≤ Cn−q/2, (2.16)

|E [g(Xk,n)]− E [g(X) | ΨZ(X) ∈ Ak]| ≤ Crn, (2.17)

for any n ≥ 1.

See Appendix A.4 for the proof. To get convergence rates (of geometric type as shown in (2.17)), the
acceptance rate in the POP algorithm is required to be bounded from below, uniformly in the current point
in Ψ−1

Z (Ak), this is the condition (2.15). This condition is related to the geometry of the rare sets, it is
application-dependent and it may be difficult to check in practice.
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From Theorem 8, it is easy to deduce that p(N) (defined in (2.14)) converges to P (Z ∈ A) at rate
√
N ,

in Lp-norms, details are left to the reader.

2.3 Adaptive Rare Event Simulation Method on Path Space

As mentioned earlier, in the absence of apriori knowledge about the order of the rare event probability,
choosing the number of intermediate levels is challenging. To overcome this difficulty, we propose an adaptive
algorithm based on the reversible shaking transformation with rejection. For the ease of exposition, let us
suppose that Z takes values in Z = Rd and that the rare event set is of the form A = {z ∈ Rd : ϕ(z) ≤ ā}
where ϕ : Rd → R is a measurable function and ā is a given finite threshold. The principle of the adapted
algorithm is to set

Ak := {z ∈ Rd : ϕ(z) ≤ ak} (2.18)

with online computations of the acceptance level ak. Notice that this choice of Ak corresponds to the
notations (2.4)-(2.5), when defining ϕ(z, a) := ϕ(z) − a. To have constant conditional probabilities (as
suggested by the optimality results of [Lag06]), we take ak as the quantile of V := ϕ(ΨZ(X)) = ϕ(Z) at
level pk for some fixed 0 < p < 1. This heuristics guides the following notation and definition.

We denote the p-quantile of the distribution of V as

Q1
p = F−1

V (p) := inf
{
v ∈ R : FV (v) ≥ p

}
where FV (·) is the cumulative distribution function of V . We define the conditional quantile function gp(·)
of V in the following way:

gp(s) := inf{v ∈ R : P (V ≤ v | V ≤ s) ≥ p}

and also recursively define
Ql+1
p := gp(Q

l
p), l ≥ 1.

The above formula remains valid for l = 0 by setting Q0
p := ∞. Here, Qkp is synonymous with ak. This is

our convention from now on. Moreover, we define

r(s) := P (V ≤ ā | V ≤ s) ,

then the true rare event probability α = P (V ∈ A) can be written in a unique way as

α = r(QL
∗

p )pL
∗

(2.19)

where L∗ ∈ N and r(QL∗p ) ∈ (p, 1]. We are now in a position to define our algorithm with adaptive number
of intermediate levels (approximation of L∗):

Initialization. We are given a common initialization point x0 such that ϕ(ΨZ(x0)) ≤ ā. Note that such x0

can always be obtained by repeatedly using shaking with rejection transformation.

1st Markov chain. Simulate the first N iterations of the Markov chain based on Equation (2.13) with
starting state x0. Then, sort the sample (V 1

N,1, . . . , V
1
N,N ) in ascending order as V 1

N,(1) ≤ . . . ≤ V
1
N,(k) ≤

. . . ≤ V 1
N,(N) and take k1

p ∈ {1, . . . , N} such that k1
p − 1 < Np ≤ k1

p. Denote by Q̂1
N,p = V 1

N,(k1p), the
estimate for Q1

p based on N samples.

2nd Markov chain. Start the Markov chain in Equation (2.13) with initial state x0 and with cascade event
set A1 corresponding to level â1 := Q̂1

N,p (see (2.18)). Again, simulate the first N steps and sort the
sample (V 2

N,1, . . . , V
2
N,N ) in ascending order as V 2

N,(1) ≤ . . . ≤ V
2
N,(k) ≤ . . . ≤ V

2
N,(N). Take k

2
p such that

k2
p − 1 < Np ≤ k2

p and denote by â2 := Q̂2
N,p = V 2

N,(k2p), the estimate for Q2
p based on N samples.
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Iteration and stopping. Next, repeat the procedure until the (LN + 1)th step where we have Q̂LN+1
N,p ≤ ā

for the first time. The intermediate sets Ak in (2.18) are defined by the acceptance levels âk = Q̂kN,p.
Calculate r̂N (Q̂LNN,p), defined as the proportion of values (V LN+1

N,1 , . . . , V LN+1
N,N ) which are smaller than

ā with the cascade event set corresponding to acceptance level Q̂LNN,p.

In the case LN = 0, we set by convention Q̂0
N,p =∞ (similarly to Q0

p).

Output. Compute the probability estimate as

α̂N := r̂N (Q̂LNN,p)p
LN

as an approximation of the probability α written in (2.19).

Remark 2.3. In the following Theorem 9, we assume that the initial points of the above Markov chains
are fixed (actually all equal to x0). The deterministic initialization of Markov chain at each level, indeed,
helps to simplify the convergence analysis. However in practice, we could advantageously start the l-th level
Markov chain from a point close to the acceptance level, i.e. Xl,0 equal to the x-configuration of one of the
V l
N,(1), . . . , V

l
N,(klp)

. The choice of V l
N,(1) is the simplest from algorithmic viewpoint, since we only need to

update the smallest V l
N,i (with the corresponding X) during the algorithm run. Besides, we observe only a

very small impact of initialization on the numerical results.
Remark 2.4. Unlike standard POP method, adaptive algorithm computes each conditional expectation se-
quentially and thus, it is not amenable to parallelization. In [ADGL18], we propose another variant which
combines the adaptive algorithm with POP method to give a partially parallelizable method.

In order to prove the consistency of estimator α̂N , we make the following assumptions and provide their
justification later.
Assumption 1. The distribution of V admits a density s 7→ f(s), which is continuous and strictly positive
at s = Qlp for all l ∈ {1, . . . , L∗}.
Assumption 2. For any q ∈ (−∞,∞], let ĝN,p(s) denote the quantile estimator for gp(s) based on N
iterations of the Markov chain based on the rejection set {x : ϕ(ΨZ(x)) > s}. For any l ∈ {0, . . . , L∗ + 1},
there exists an open interval Il containing Qlp (with the convention Q0

p =∞ and I0 = {∞}) and a function
b : Il × N∗ × (0,∞)→ [0,∞) such that for all ε > 0 and q ∈ Il

P (|ĝN,p(s)− gp(s)| > ε) ≤ b(s,N, ε), and, sup
s∈Il

b(s,N, ε)→ 0 as N →∞.

Assumption 3. For any s ∈ (−∞,∞], let r̂N (s) denote the mean estimator for r(s) based on N iterations of
the Markov chain based on the rejection set {x : ϕ(ΨZ(x)) > s}. For any l ∈ {L∗−1, L∗}∩N, there exists an
open interval Jl containing Qlp (with the convention J0 = {∞}) and a function c : Jl × N∗× (0,∞)→ [0,∞)
such that for all ε > 0 and s ∈ Jl

P (|r̂N (s)− r(s)| > ε) ≤ c(s,N, ε), and, sup
s∈Jl

c(s,N, ε)→ 0 as N →∞.

Theorem 9. Suppose that Assumptions 1, 2 and 3 hold. Then, α̂N converges in probability to α = P(Z ∈ A)
as N →∞.

See Appendix A.5 for the proof. Assumption 1 is required for the continuity of gp(·) and r(·) at quantile
levels Qlp and is typically assumed to prove convergence of quantile estimators. For example, in [DFJN14],
such a condition is required to exhibit probabilistic error bounds for MCMC based quantile estimators.
Assumptions 2 and 3 are related to decaying probabilistic error bounds for MCMC based quantile estimators.
Such inequalities have been shown to hold in the case of uniformly (see, for example, [GO02, Theorem 2],
[DFJN14, Theorem 3], [KLM05, Theorem 1]), geometrically or high order polynomially (see for example,
[DFJN14, Theorem 2]) ergodic Markov chains when the starting point of the underlying Markov chain is
distributed with the stationary distribution. In Theorem 8, we show that the Markov chain based on shaking
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with rejection transformation is geometrically ergodic and thus Assumptions 2 and 3 can be justified. Further
note that the above mentioned error bounds decay uniformly to zero as N → ∞ whereas we only require
them to decay uniformly over an interval. Even though, we always initialize the Markov chain at hand at
a fixed point x0, we believe that these assumptions are still reasonable because the marginal distribution of
Markov chain converges to the stationary distribution (see Proposition 7 and Theorem 8).

3 Applications

In this section, we discuss the application of adaptive rare event algorithm and POP method to various
important problems in mathematical finance. The adaptive implementation of classical IPS method has also
been presented in [CMFG12, Section 3]) which we generalize by using shaking with rejection transformations
to provide an analogue to our adaptive method. The modified version of IPS method has been presented in
[GL15]. In order to avoid different terminology, we simply refer to the two adaptive schemes as adaptive POP
and adaptive IPS in this section. In all the following examples, to simplify the exposure and experiments,
we assume that the shaking parameter ρh is constant w.r.t. h (see (2.9) and (2.10)). We denote this common
value1 by ρ ∈ (−1, 1).

3.1 Model Misspecification and Robustness

To address the issue of model risk, we consider the Profit&Loss (PL) when the trader uses a Black-Scholes
(BS) model to hedge a European call option while the true dynamics of the underlying S is given by a
path-dependent volatility model. Let us suppose that there are two volatility levels σ−, σ+ ∈ R+\{0} such
that σ− < σ+.We propose a discrete-time path-dependent volatility model based on a monitoring period ∆t

(say 1 week) and monitoring dates ti = i∆t, wherein, if the underlying spot price drops below the average
of previous four monitored prices, the level of volatility becomes σ+, otherwise it remains constant at σ−.
The asset price is given as

St = S0 exp
(
−1

2
σ2
−t+ σ−Wt

)
, t < t4, (3.1)

St =


Sti exp

(
−1

2σ
2
−(t− ti) + σ−(Wt −Wti)

)
if Sti ≥ 1

4

∑4
k=1 Sti−k and ti ≤ t < ti+1,

Sti exp
(
−1

2σ
2
+(t− ti) + σ+(Wt −Wti)

)
if Sti <

1
4

∑4
k=1 Sti−k and ti ≤ t < ti+1,

when t ≥ t4.

This model corresponds to the usual empirical observation that the underlying volatility is higher when
price falls. This is a discrete version of the continuous time model proposed by [Guy14]. Furthermore, we
assume the risk-free interest rate to be zero. The resulting model is complete in the sense that any square
integrable payoff written on S can be replicated by a self-financing strategy (see [HR98] for complete models
with stochastic volatility). The above model is directly written under the risk-neutral measure P.

Meanwhile, we assume that the trader uses a BS model in which the volatility is constant and equal to
σ−. The call option maturity is T > 0, and [0, T ] is the trading period under consideration. As the trader
assumes a BS model, she uses the BS formula to perform delta hedging. For our numerical study, we take
T = 1, n = 50 ∆t is s.t. n∆t = T ) and assume that the trader makes a rebalancing after every period of

1The choice of non-constant ρh may be guided by the apriori knowledge that some Gaussian components of X may have
more or less importance on the rare event occurrence. We do not elaborate further in this direction and leave it for future
research.
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5∆t. At times tj5∆t , 0 ≤ j < 10, the trader holds δj assets, so at the maturity her PL is given by

PLtrader := Etrader
[
(ST −Kstrk)+

]
+

9∑
j=0

δj(S5∆t(j+1) − S5∆tj)− (ST −Kstrk)+

where δj is given from the BS-Delta formula with volatility σ− and spot S5∆tj .

Since the realized volatility is higher than the one used for hedging, the trader may underhedge the
option (in continuous time hedging, see [EJS98] for precise results) and may incur large losses due to the
model risk. Thus, we wish to estimate the probability P (PLtrader ≤ L). In the model of (3.1), we set
S0 = Kstrk = 10, σ− = 0.2, σ+ = 0.27 and take L = −2.4. In IPS and POP methods, we deliberately choose
5 intermediate levels as Lk := kL/5, k = 1, 2, 3, 4, 5. This choice is made after a set of preliminary runs to
ascertain the order of the rare event probability under consideration. As we will see, this choice provides
numerical estimates which are close to the estimates from the adaptive algorithms.

The crude Monte Carlo method with 5 × 108 simulations provides a 99% confidence interval for this
probability as [2.93, 3.34] × 10−6 with run time of approximately 4000 minutes on a machine with Intel i5-
4670 3.40 GHz CPU processor and 16GB memory. The mean estimates and empirical standard deviations
of IPS and POP methods and their respective adaptive algorithms using 100 macro-runs are given in Tables
3.1.1-3.1.2. The run time of a single iteration of both IPS and POP methods with fixed shaking parameter
is approximately 470 seconds. The adaptive algorithms are performed with parameter p = 10% for the
intermediate conditional probability. From Table 3.1.1, it is clear that POP based estimators provide accurate
estimates with a lower standard deviation than IPS based estimators, both schemes being in their non-
adaptive versions. In Table 3.1.2, results with adaptive algorithms are compared, here again, the adaptive
version corresponding to the POP method yields smaller variances in the estimation.

When comparing standard deviations of Table 3.1.1 and Table 3.1.2, we observe that they are similar
(for a given shaker parameter ρ). The reader may think that seemingly adaptive versions do not provide any
benefit. One should recall that, the non-adaptive versions require a priori choices of levels (here we choose
them by preliminary experiments to have roughly equal conditional probabilities) while with the adaptive
version we do not need this kind of a priori knowledge and still we obtain efficient estimators. Actually the
advantage really stems from the fully adaptive tuning of levels, which is made possible without deteriorating
the variances.

In Figure 3.1.1 (top), we investigate the dependence of the standard deviation (of each conditional
probability computed with POP method) w.r.t. the shaking parameter ρ and the level l. We do not report
results for l = 1 (no rejection) since independent sampling (ρ = 0) is obviously the best. We observe that
the impact of ρ on the variance is significant: the optimal parameter ρ∗l minimizing the variance changes
from one level to another and ρ∗l increases with l (the shaking has to become slighter with increasing rarity
of the event). These features are easily explained heuristically. Complementary to this, we plot in Figure
3.1.1 (bottom) the rejection rate, which also depends on ρ and l. It appears that ρ∗l depends very much on
l whereas the associated rejection rate remains rather stable and ranges from 60% to 80%. Since we observe
a quick explosion of standard deviation when ρ is too close to 1, we recommend to take ρ such that the
rejection rate is above 60% rather than below 60%, to be on the safe side when a finer optimization of ρ is
not possible. We shall take it as a rule of thumb for further experiments.

Lastly, in Figure 3.1.2 we report statistics on standard deviation and rejection rate for the adaptive
algorithm corresponding to POP method. We observe similar features as in Figure 3.1.1. Since different
intermediate levels in the adaptive algorithm are correlated, we first run the beginning level to get corre-
sponding value of ρ minimizing the standard deviation. Then, we use this fixed value for the corresponding
level in the search of optimal ρ of the next level and so on. We can see in Figure 3.1.2 that with all the
values of ρ chosen in this way, the best standard deviation among the final estimators is around 1.5× 10−7,
which is about 62.5% of standard deviation of the estimator with a constant ρ = 0.9 for all the levels.
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IPS POP
mean std. std./mean mean std. std./mean

(×10−6) (×10−7) (×10−6) (×10−7)

ρ = 0.9 3.10 5.29 0.17 3.13 2.07 0.07
ρ = 0.7 3.23 13.3 0.41 3.11 3.98 0.13
ρ = 0.5 2.79 25.9 0.93 3.18 8.44 0.27

Table 3.1.1: Estimators of P (PLtrader ≤ L) (mean) for L = −2.4 with empirical standard deviation (std.) for non-
adaptive IPS and POP methods based on 100 algorithm macro-runs. Each intermediate level estimator in both methods
is based on M = N = 105 simulations.
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Figure 3.1.1: POP method, standard deviation (std. dev.) of each conditional probability estimator and corresponding
rejection rate (rej. rate), based on 100 macro-runs, for different values of ρ.

3.2 Measuring Default Probabilities in Credit Portfolios

In this subsection, we consider a credit portfolio based on asset values of N0 different firms. Let us
suppose

(
Ω,F ,P) is a probability space where {W1,W2, . . . ,WN0 ,W} are P-standard Brownian motions

with constant correlations. We denote by {Ft, t ≥ 0} the P-augmentation of the filtration generated by
{W1,W2, . . . ,WN0 ,W}. As in [CFV09], we assume that the dynamics of asset values is given by the follow-
ing system of stochastic differential equations

dSi(t) = rSi(t)dt+ σ(t)Si(t)dWi(t), i = 1, . . . , N0, (3.2)

where r is the risk-free interest rate, the common stochastic volatility factor σ(t) is modeled by a Cox-
Ingersoll-Ross model satisfying

dσ(t) = κ
(
σ̄ − σ(t)

)
dt+ γ

√
σ(t)dWt, (3.3)

where κ, σ̄ and γ are positive constants. Brownian motions are correlated as follows:

d〈Wi,Wj〉t = ρWdt, i 6= j, d〈Wi,W 〉t = ρσdt, i = 1, . . . , N0.

Next, we consider the default boundary for each firm i to be a fixed value Bi ∈ R+. The time of default for
firm i in the portfolio is defined as

τi(Bi) := inf
{
t ≥ 0 : Si(t) ≤ Bi

}
.

The current methods would directly adapt to the case where the default level Bi is replaced by a time-
dependent deterministic function.
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Adaptive IPS Adaptive POP
mean std. std./mean mean std. std./mean

(×10−6) (×10−7) (×10−6) (×10−7)

ρ = 0.9 3.06 4.95 0.16 3.18 2.42 0.08
ρ = 0.7 2.98 11.1 0.37 3.10 3.71 0.12
ρ = 0.5 2.45 23.6 0.96 3.06 7.27 0.24

Table 3.1.2: Estimators of P (PLtrader ≤ L) (mean) for L = −2.4 with empirical standard deviation (std.) for
adaptive IPS and POP methods (p = 10%) based on 100 algorithm macro-runs. Each intermediate level estimator in
both methods is based on M = N = 105 simulations.
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Figure 3.1.2: Adaptive POP method (p = 10%). Standard deviation (std dev.) and corresponding rejection rate
(rej. rate), based on 100 macro-runs, of each quantile estimator (Q̂lN,p)1≤l≤L∗−1 and last level occupation measure
estimator r̂N (Q̂LN

N,p), for different values of ρ.

In order to evaluate different tranches in a credit portfolio, we are interested to calculate the probability
that at least L defaults occur before T , i.e.

P(L) = P

(
N0∑
i=1

1{τi(Bi)≤T} > L

)
= P

(
N0∑
i=1

1{mint Si(t)≤Bi} > L

)
, 0 < L < N0.

Due to the path dependency of the default scheme and of the stochastic volatility model, it is not clear how
to find the optimal change of measure to perform importance sampling to estimate P(L), which motivates
the use of alternative simulation techniques.

A different IPS-based method has been proposed by Carmona et al. [CFV09] in order to compute P(L)
(see also [CC10] for application of this method in other models). We would like to emphasize the main
difference between the former IPS approach and our work. The underlying Markov chain for their IPS
method is simply the time-discretization of the (2N0 + 1)-dimensional process (Si,minSi, σ, 1 ≤ i ≤ N0).
This poses several difficulties for the authors. Firstly, one needs to exhibit a good potential function for the
selection of particles which is very delicate because of the high-dimensionality of the problem. Secondly, one
needs to choose an appropriate discretization time step ∆t. This is also intricate, since on the one hand a
large number of time steps may help in better selection of the particles in rarer and rarer regions, but on the
other hand it slows down the statistical convergence of IPS (the resampling adds noise in the estimation).
In our case, we directly consider Markov chains valued on path space, thus avoiding the delicate problem of
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choosing the time step ∆t and the high-dimensional potential function (in our numerical experiments, we
have observed that ∆t has no significant impact on the convergence of our versions of IPS-POP methods
when it is small enough. This feature of our algorithms has been investigated in more details in [ADGL18,
Section 3.1]). Thus, our approach and results are rather different from those of Carmona et al. [CFV09].
These differences are mainly due to the fact that our method does not require any Markovian assumption
on (Si,minSi, σ, 1 ≤ i ≤ N0) and could be directly applied to path-dependent models (whenever useful).

In order to express P(L) in the form of (2.6), we need to create a cascade of decreasing sets {Ak}1≤k≤n.
We define Z ∈ RN0 whose i-th component is the minimum of (Si(t)/Si(0))t and we set

Ak :=

{
z ∈ RN0 :

N0∑
i=1

1{zi×(Bi+
k
n

(Si(0)−Bi)≤Bi} > L

}
, 1 ≤ k ≤ n,

which consists in progressively decreasing the default trigger levels. The nested set condition (2.5) is then ful-
filled. Then, we apply POP and IPS methods to compute all the conditional probabilities P (Z ∈ Ak+1 | Z ∈ Ak).
Remark 3.1. Another natural way to create the nested sequence of sets is to progressively increase the
number of defaults:

Ãk :=

{
z ∈ RN0 :

N0∑
i=1

1{ziSi(0)≤Bi} >
k

n
L

}
, 1 ≤ k ≤ n.

We empirically observe that this choice is in general less accurate. Although we have proven that POP method
will eventually converge in all the finite-dimensional cases, how to construct intermediate sets to achieve the
best convergence rate remains to be explored.

To perform numerical experiments in the considered model of (3.2)-(3.3), we fix the parameter values as
in Table 3.2.1. Further, we fix the total number of firms N0 = 125 and threshold level Bi = B for some

Si(0) r ρW σ(0) κ σ̄ γ ρσ

90 0.06 0.10 0.4 3.5 0.4 0.7 -0.06

Table 3.2.1: Parameters for credit portfolio model

B > 0. Next, we estimate the default probability P(L) for different values of L over T = 1 with 50 time
steps per year in the Euler discretization scheme of Deelstra and Delbaen [DD98]. For L = 100 and B = 36,
the crude Monte Carlo estimator of default probability with 3 × 109 sample paths has a 99% confidence
interval as [4.92, 5.13]× 10−6 with run time of approximately 15000 minutes. In Table 3.2.2, we report the
results for IPS and POP based estimators for fixed n = 5 levels where both the algorithms have run time of
approximately 45 seconds for a fixed value of ρ. For different values of the shaking parameter ρ, it is clear
that POP based estimator provides more accurate results than IPS method. In Figure 3.2.3, using POP
based estimator with fixed number of levels n = 20 and 104 simulations at each level, we also report P(L)
for different levels of default threshold B based on different values of L. Remarkably, it allows to compute
very low probabilities (up to 10−24).

Next, we implement adaptive version corresponding to POP and IPS methods. To estimate P(L), we
fix the conditional probability P (Z ∈ Ak+1 | Z ∈ Ak) of each, except the last, intermediate level (to be
estimated) to p = 10−1. In Table 3.2.3, we can see that both IPS and POP based estimates are within the
reported confidence interval of the true value for ρ = 0.9. However, the corresponding POP based estimator
has a lower standard deviation. When comparing with Table 3.2.2, variances are roughly unchanged by using
the adaptive scheme, but the advantage of this version is to have a fully simulation-based scheme where we
do not need to pre-specify the acceptance threshold levels.

In Figures 3.2.1 and 3.2.2, we report different detailed statistics w.r.t. the level and the shaking param-
eter (non-adaptive POP method: standard deviation and rejection rate; adaptive POP method: standard
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deviation of quantile and occupation measure along with rejection rate). We observe similar behaviors as
in the first example of Subsection 3.1. For rare regions (levels l = 3, 4, 5), the parameter ρ∗l minimizing
the standard deviation of the l-th conditional probability seems to be associated to rejection rate of 70%.
We believe that this (so far empirical) invariance relation between best shaking parameters (for minimal
variances) and rejection rate of about 70% − 80% should give a way to adaptively choose ρ. This will be
further investigated in the future. Again we see that for the adaptive POP method, with different values
of ρ minimizing standard deviation in each intermediate level, the standard deviation of the final adaptive
estimator of the rare event probability is about 60% of that with a constant ρ = 0.9.

The above methodology can also be applied directly to better account for the systemic risk and the
illiquidity issues, for example, in the settings of [FI14] where inter-bank lending is modeled by a system of
coupled diffusion processes in a mean-field regime.

IPS POP
mean std. std./mean mean std. std./mean

(×10−6) (×10−6) (×10−6) (×10−6)

ρ = 0.9 5.82 4.37 0.75 5.01 0.80 0.16
ρ = 0.7 4.92 1.56 0.32 4.99 1.02 0.20
ρ = 0.5 4.79 3.80 0.79 5.02 1.94 0.39

Table 3.2.2: Estimators of default probability (mean) for L = 100 and B = 36 with empirical standard deviation
(std.) for non-adaptive IPS and POP methods based on 100 algorithm macro-runs. Each intermediate level estimator
in both methods is based on M = N = 104 simulations.
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Figure 3.2.1: POP method, standard deviation (std. dev.) of each conditional probability estimator and corresponding
rejection rate (rej. rate), based on 100 macro-runs, for different values of ρ.

Adaptive IPS Adaptive POP
mean std. std./mean mean std. std./mean

(×10−6) (×10−6) (×10−6) (×10−6)

ρ = 0.9 4.93 1.91 0.39 5.16 0.85 0.16
ρ = 0.7 5.42 1.58 0.29 4.98 1.02 0.20
ρ = 0.5 6.40 5.00 0.78 5.35 2.05 0.38

Table 3.2.3: Estimators of default probability (mean) for L = 100 and B = 36 with empirical standard deviation
(std.) for adaptive IPS and POP methods (p = 10%) based on 100 algorithm macro-runs. Each intermediate level
estimator in both methods is based on M = N = 104 simulations.
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Figure 3.2.2: Adaptive POP method (p = 10%). Standard deviation (std. dev.) and corresponding rejection rate
(rej. rate), based on 100 macro-runs, of each quantile estimator (Q̂lN,p)1≤l≤L∗−1 and last level occupation measure
estimator r̂N (Q̂LN

N,p), for different values of ρ. The std. dev. of occupation measure estimator has been scaled by 10
for easier comparison.
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Figure 3.2.3: Plot (a) and log-plot (b) of default probabilities for varying B/S0.

3.3 Fractional Brownian Motion for Modelling Volatility

The fractional Brownian motion (fBM) (B
(H)
t )t∈Rwith Hurst exponent H ∈ (0, 1) was defined in Example 3.

For H 6= 1/2, it is well known that B(H) is not a semimartingale. In order to represent fBM, we make use of
the Mandelbrot and van Ness representation of B(H) as an integral w.r.t. a standard Brownian motion B:

B
(H)
t = CH

[ ∫ t

−∞

[
(t− s)H−

1
2 − (−s)H−

1
2

+

]
dBs with CH =

√
2HΓ(3/2−H)

Γ(H + 1/2)Γ(2− 2H)
.

Recently, Gatheral and co-authors [GJR14] have successfully employed fBM to model the market observed
volatility of stock indexes. In addition, classical Heston model [Hes93] has also been redefined with fBM in
order to evaluate derivative prices more accurately (see, for example, [ER16, ER17]). In order to demonstrate
the application of POP method for models which are not necessarily based on semimartingales, we consider
the fractional SABR (fSABR) model proposed by Gatheral et al. [GJ14]. In fSABR, the underlying asset
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α = 0.5 α = 1.0
ρBZ H = 0.15 H = 0.25 H = 0.75 H = 0.9 H = 0.15 H = 0.25 H = 0.75 H = 0.9

-0.3 2.6133 2.5515 2.8058 2.9753 0.8251 0.8267 0.9211 0.9632
-0.5 2.4222 2.3823 2.6733 2.8715 0.7905 0.7913 0.8950 0.9449
-0.7 2.2593 2.2042 2.5465 2.7918 0.7597 0.7591 0.8686 0.9277
-0.9 2.1235 2.0653 2.4339 2.6919 0.7325 0.7297 0.8449 0.9113

Table 3.3.1: Estimates of critical negative moment q̃ in fSABR model (3.4) using POP method.

dynamics are given by

dSt
St

= σtdZt, σt = σ̄ exp

(
−1

2
α2t2H + αB

(H)
t

)
, (3.4)

where Zt is a standard Brownian motions with instantaneous correlation ρBZ with Bt (i.e. d〈B,Z〉t =
ρBZdt). Under the model (3.4), we use POP method to estimate the small-strike tail asymptotic slope of
implied variance

βL := lim sup
x→−∞

I2(x)T

|x|
(3.5)

where I(x) is the BS implied volatility of a Vanilla option on S with log-moneyness x = logK/S0 and
maturity T . The estimate of the slope can be, in turn, used to obtain estimate of the critical negative
moment q̃ := sup{q : E[S−qT ] <∞} from the well-known moment formula [Lee04, Theorem 3.4]

q̃ = 1/2βL + βL/8− 1/2. (3.6)

We work with the following parameter values: S0 = 40, σ̄ = 0.235, r = 0, T = 1.0 and α = 0.5, 1.0. We
use intermediate levels at [32.5, 25, 19.5, 14, 10.5, 7, 5, 3, 2, 1] in the POP method (shaking parameter value
= 0.9) with 105 simulations2 at each level in order to estimate the implied volatility at different values of
the log-moneyness. The output values are based on 100 independent algorithm macro-runs. We observe on
Figure 3.3.1 that the squared implied volatilities seemingly behave linearly for large negative values of the
log-moneyness, which suggests that the limit superior in (3.5) is presumably a limit (see Remark 3.2 below
for a related discussion).

In light of (3.5), we could use the most extreme value of the implied variance I2(xmin) (corresponding
to xmin = −3.75 in Figure 3.3.1) in order to evaluate βL. Instead of doing so, we compute the slope βL
by linear interpolation of the two most extreme implied variances I2(xmin) and I2(xmin + ∆x). We observe
that following one or the other procedure has no significant impact on the results. This yields the estimates
of q̃ in Table 3.3.1. From our numerical results, we can observe that q̃ increases with the value of the
correlation ρBZ in the model. Conversely, q̃ decreases with the value of the parameter α. There is no global
monotonicity appearing from the relationship between q̃ and value of H ∈ (0, 1). On the other hand, one
does see (as expected) the emergence of two different regimes for H < 1/2 and H > 1/2. These observations
suggest that it is possible - at least in theory - to calibrate the value of one of these model parameters
from extreme implied volatility estimates, for example by using POP method. Moreover, the plots in 3.3.1
indicate a ‘tilting’ effect of the correlation parameter ρBZ on the whole smile curve, analogous to that in
standard stochastic volatility models based on Brownian motion. This indicates that under the fractional
model (3.4), too, the appropriate value of the correlation parameter can be reasonably inferred from market
implied volatilities by observing the slopes of the left- and right hand sides of the smile.
Remark 3.2. While the formulas (3.5)-(3.6) always hold when βL is defined via a limit superior, it is
interesting to notice that there is a (large) class of models for which the limit superior can actually be
updated to a true limit, thus providing the full asymptotic equivalence I2(x)T ∼ |x| as x → −∞. This

2We exactly simulate the skeleton of Z,B and BH (with a step length of T/100) as a correlated Gaussian vector since the
covariance matrix of this vector can be computed explicitly.
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Figure 3.3.1: Squared implied volatility as a function of log-strike in the fSABR model (3.4).

class is fully characterized in Gulisashvili [Gul12, Theorem 3.5]. Recall that a positive measurable function f
defined on some neighborhood of infinity is said to be regularly varying with index α ∈ R if for every λ > 0,
f(λx)
f(x) → λα as x → ∞. Furthermore, the class of Pareto-type functions is introduced in [Gul12]. Let g be
positive measurable functions defined on (0, c) for some c > 0: if there exist two functions g1 and g2 that are
regularly varying with index α and such that g1(x−1) ≤ g(x) ≤ g2(x−1) for all 0 < x < c, then we say that
the function g is of weak Pareto-type near zero with index α.
Gulisashvili [Gul12] proves the following: under the assumption 0 < q̃ <∞, the asymptotic formula

lim
x→−∞

I2(x)T

|x|
= βL (3.7)

holds if and only if the following condition is satisfied:

i) The put price function P (K) = E[(K − ST )+], K > 0, is of weak Pareto type near zero with index
α1 = −q̃ − 1.

It is possible to relate the property i) in a more direct way to the distribution of the stock price: condition i)
holds for the put price if one of the following two conditions is satisfied:

ii) The cdf of the stock price F (K) = P(ST ≤ K) is of weak Pareto type near zero with index α2 = −q̃.

iii) The density pT (·) of the stock price ST (if it exists) is of weak Pareto type near zero with index
α3 = −q̃ + 1.

The implication iii) ⇒ i) is proven in [Gul12], Theorem 3.11. The implication ii) ⇒ i) can be proven
following the lines of the proofs of Theorems 3.11 and 3.7 in [Gul12].
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Figure 3.3.1 suggests that squared implied volatilities behave asymptotically linearly with log-moneyness,
and we can therefore conjecture that equation (3.7) holds for the fSABR model (3.4). An analysis of the cdf
or the density function of the stock price, as performed in [GVZ15] for a class of models with Gaussian self-
similar stochastic volatility, would allow to show that properties ii) and iii) hold true in the fSABR model.
We leave such kind of investigation for future research.

3.4 Estimating Sensitivities for Out-of-the-Money Options

In this example, we consider a d-dimensional Black-Scholes model in which the asset price vector S =
(S1, S2, . . . , Sd) is given as

dSit
Sit

= µidt+ σid(LWt)
i (3.8)

where σi > 0 for all i = 1, . . . , d, W is an d-dimensional standard Brownian motion, and L is the symmetric
square root of a d-dimensional correlation matrix C, so that LL∗ = C (here L = L∗). Hereafter we assume
that the matrix C (therefore L) is invertible. Denoting by Zi the log of Si, one has

ZiT = Zi0 +

(
µi − 1

2
(σi)2

)
T + σi(LWT )i (3.9)

with Zi0 = log(Si0). Equation (3.8) allows to model separately the individual volatility σi of each asset and
the correlation between the driving Brownian factors. The introduction of a volatility smile on each asset can
be achieved simply by switching from constant to local volatility functions σi(t, ·) (which can be separately
calibrated to option data on each asset).

We consider a digital-style payoff written on a generalized basket, whose financial evaluation is defined
by

P := P (ϕ(ZT , ā) ≥ 0)

where

ϕ(z, ā) :=
d∑
i=1

εipie
zi − ā (3.10)

with pi > 0, εi ∈ {−1, 1} and ā ∈ R. This setting can cover the situation of risk management of an insurance
contract (when each asset evolves with its own drift coefficient µi), and of course the pricing of a digital
option on the basket, which corresponds to set µi = r, where r is a risk-free interest rate. We are interested
in computing the sensitivities of P with respect to different model parameters, such as

• pi in order to assess the influence of the individual weights, possibly in order to reweight the portfolio
and lower the risk,

• σi in order to quantify the impact of individual volatilities on the tails of the basket,

• Ci,j = (LL∗)i,j for i < j, in order to study the effect of pair-wise correlations on the product.

In order to obtain explicit sensitivity formulas, we apply Theorem 2 with Φθ = 1, Zθ = ZT in the context
of multidimensional Brownian motion (Example 2), where θ plays the role of one the model parameters or
payoff parameters above. A direct computation shows

(DtZT )i,j = σiLi,j1t≤T = Σi,j1t≤T γZT = T ΣΣ∗,

where we denote Σ the matrix Σ = diag(σ)L, where diag(σ)i,j = σiδi,j . Under our assumption, the matrices
Σ and γZT are invertible.

In what follows, we denote Ai,. (respectively A.,i) the i-th row (respectively i-th column) of the matrix
A.

22



Sensitivity w.r.t. pi. In view of (3.10) we have ∂piP = ∂Zi0
P 1
pi

and it suffices to compute sensitivity
w.r.t. θ = Zi0. Clearly ∂Zi0ZT = ei where ei is the i-th element of the canonical basis of Rd, therefore the
weight I(Zθ, 1) in Theorem 2 becomes

I(Zθ, 1) = δ

 d∑
j=1

(
γ−1
ZT
∂Zi0

ZT

)
j
D·Z

j
T


= δ

 d∑
j=1

(γ−1
ZT

)j,i(Σ1[0,T ])j,.

 = δ

 d∑
j=1

(γ−1
ZT

)i,j(Σ1[0,T ])j,.


=

1

T
δ
(
(ΣΣ∗)−1Σ1[0,T ])i,.

)
=

1

T
δ
(
((Σ∗)−1)i,.1[0,T ]

)
=

1

T
Σ−1ei ·WT .

The computation of the sensitivities with respect to σi and Ci,j involves quantities of the form δ((AWT )i

×u∗1[0,T ](·)), where A is a d× d matrix and u a (constant) vector in Rd. We will therefore make use of the
following formula

δ((AWT )iu∗1[0,T ](·)) = (AWT )iu ·WT − T (Au)i . (3.11)

Equation (3.11) can be proven using the identity δ(F U·) = Fδ(U·)− 〈DF,U〉 which holds for U ∈ dom(δ)

and F ∈ D1,2, where we denote 〈V,U〉 =
∑d

j=1

∫ T
0 V j

t U
j
t dt.

Sensitivity w.r.t. θ = σi. We have ∂σiZT = (−σiT + (LWT )i)ei. Since ∂σiZT and ei are collinear, the
computations are very similar to the previous ones, and we obtain

I(Zθ, 1) = δ

( d∑
j=1

(
γ−1
ZT
∂σiZT

)
j
D·Z

j
T

)
=

1

T
δ
(
(−σiT + (LWT )i)((Σ∗)−1)i,.1[0,T ]

)
= −σiδ

(
((Σ∗)−1)i,.1[0,T ]

)
+

1

T
δ
(
(LWT )i((Σ∗)−1)i,.1[0,T ]

)
= Σ−1ei ·WT

(
−σi +

1

T
(LWT )i

)
− (LΣ−1)i,i

where we have applied the identity (3.11) with A = L and u∗ = ((Σ∗)−1)i,. in the last step.

Sensitivity w.r.t. θ = Ci,j, i < j. We wish to take partial derivatives of functions defined on the set of
correlation matrices C =

{
(Ci,j)i,j : C ∈ Sd≥0, Ci,i = 1, C invertible

}
with respect to each of the entries Ci,j ,

i < j, where Sd≥0 denotes the set of symmetric and positive matrices. This is possible under the invertibility
assumption because, given a matrix C ∈ C and fixed i < j, the whole set {Cε := C + εei,j + εej,i, ε ∈ R} is
contained in C for ε small enough, where ei,j denotes the matrix such that (ei,j)i,j = 1 and with zero entries
elsewhere.3 We set Ċ := ∂εCε|ε=0 = ei,j + ej,i.
In particular, for the symmetric square root L =

√
C, the partial derivative L̇ := ∂Ci,jL solves the Sylvester

equation [Hig08, p.58]
L̇ L+ L L̇ = Ċ = ei,j + ej,i.

3The matrices Cε are clearly symmetric and satisfy (Cε)i,i = 1. The invertibility of Cε for ε small enough follows from the
continuity of the smallest eigenvalue λmin from Sd≥0 into R, A 7→ λmin(A) (with respect to, say, the topology induced by the
Hilbert-Schmidt norm), see [HJ90, Hoffman and Wielandt’s theorem, p.368].
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From (3.9), we derive ∂Ci,jZT = ∂Ci,j [diag(σ)LWT ] = diag(σ)L̇WT . This yields

I(Zθ, 1) = δ

( d∑
l=1

(
γ−1
ZT
∂Ci,jZT

)
l
D·Z

l
T

)

=
1

T
δ

( d∑
l=1

(
(ΣΣ∗)−1diag(σ)L̇WT

)
l
Σl,·1[0,T ]

)

=
1

T

d∑
l=1

((ΣΣ∗)−1diag(σ)L̇WT )l Σ∗·,l ·WT −
d∑
l=1

((ΣΣ∗)−1diag(σ)L̇Σ∗·,l)l

(using (3.11) with A = (ΣΣ∗)−1diag(σ)L̇ and u∗ = Σl,·)

=
1

T
WT · (Σ∗(ΣΣ∗)−1diag(σ)L̇WT )− Tr((ΣΣ∗)−1diag(σ)L̇Σ∗)

=
1

T
WT · L−1L̇WT − Tr(L−1L̇).

Since WT · L−1L̇WT is a scalar, it is equal to its transpose WT · L̇L−1WT , and thus to its average 1
2WT ·

(L−1L̇+ L̇L−1)WT . Similarly, Tr(L−1L̇) = 1
2Tr(L−1L̇+ L̇L−1). We claim that

L−1L̇+ L̇L−1 = L−1ĊL−1, (3.12)

which gives the final representation

I(Zθ, 1) =
1

2T
WT · (L−1(ei,j + ej,i)L−1)WT −

1

2
Tr(L−1(ei,j + ej,i)L−1)

=
1

T
(L−1WT )i(L−1WT )j − (C−1)i,j

where the final step follows after a few standard manipulations.
In order to prove (3.12), proceed as follows: starting from the derivative of C−1, we obtain

−C−1ĊC−1 = ∂εC
−1
ε |ε=0 = ∂εL

−2
ε |ε=0 = ∂εL

−1
ε |ε=0L

−1 + L−1∂εL
−1
ε |ε=0 = −L−1L̇L−2 − L−2L̇L−1.

Now multiplying by L on the left and right we obtain (3.12).

We estimate relative model sensitivity using POP method in the setting of (3.8). It is important to
observe that the relative sensitivity can be directly evaluated by the POP method using the ratio of two
time-average approximations of I(Zθ,Φθ) and Φθ respectively, along only one Markov chain defined by
applying shaking with rejection with respect to Zθ ∈ A, see Remark 2.1. The computations at intermediate
levels are unnecessary which very much simplifies the numerical evaluation. We consider a two-dimensional
example which is similar to the example discussed in [GT16]. We take interest rate r = µi = 0.01 and for
the other parameters K = 100, T = 1, σ1 = 0.25, σ2 = 0.225, correlation parameter C1,2 = 0.9, p1 = 10,
S1

0 = 10, p2 = 5, S2
0 = 20 and estimate the sensitivities of the rare event statistics E(K − p1S

1
T − p2S

2
T )+

with respect to p1, σ1 and C1,2. Observe that we choose σ2 = C1,2σ
1, which corresponds to the critical case

described in [GT16, Theorem 1] where the asymptotics of the density of the basket undergoes a change of
regime. It is thus arguably delicate to obtain a tractable analytical approximation via the derivation of the
density.

In Table 3.4.1, we compare the results of finite difference method using simple Monte Carlo with common
random numbers [GRZ84] to those of the POP method with the number of simulations as indicated. Here,
the rare event probability P(p1S

1
T +p2S

2
T ≤ K) is around 1.7×10−3. We deliberately choose such an example

in order to show the application of POP method in “not-so-rare” situations. Actually, when the rare event
probability becomes smaller, the performance of POP method is considerably improved with respect to the
simple Monte Carlo. For 106 paths, the run time of MC method is 64 seconds and for POP method with
shaking parameter ρ = 0.85 is 80 seconds.
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Relative sensitivity w.r.t.
p1 σ1 C1,2

POP method (106) (mean/std) −0.7155 (0.0046) 24.0078 (0.1760) 3.1058 (0.0253)
Finite difference (106) (mean/std) −0.7120 (0.0157) 23.9252 (0.4838) 3.0866 (0.1128)

Finite difference (109) (99% conf. interval) (−0.7155,−0.7129) (23.9285, 24.0108) (3.0801, 3.0990)

Table 3.4.1: Estimates of relative sensitivity w.r.t. different model parameters.

4 Conclusion

In this work, we introduced an adaptive algorithm to efficiently compute statistics of rare events using
reversible shaking transformations. We established various convergence results which provides theoretical
foundation for consistency of our algorithm. We embedded the underlying model in a setting of Hilbert
Gaussian spaces which allows to easily analyze the sensitivities with respect to the model parameters which
is an important concern in risk management. With the help of various examples, we demonstrated that this
Gaussian space viewpoint is sufficiently large to encompass

• many important models in financial engineering and stochastic finance, ranging from Markovian to
path-dependent models passing through fractional Brownian motion models,

• many risk management issues, such as model risk, credit risk, market risk.

Finally, our numerical experiments show better performance of the POP method and the adaptive algorithm
compared to the modified IPS method and its adaptive implementation.
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A Proofs

A.1 Proof of Theorem 2

The proof follows a standard routine inspired by [FLL+99, Gob04, GM05, KY09] but it requires a specific
careful analysis because of the indicator function. Firstly, properly mollify the indicator function z →
1ϕ(z,ā)≤0. Secondly, compute the derivative of the expectation for the mollified function, then, integrate by
parts and take the limit w.r.t. the mollified parameter. Mollifying and passing to the limit is the critical
part. In [KY09, Section 6], it has been done for functions which are almost everywhere continuous. Here we
do not impose such restrictions.

Step 1. Let us define the measure µ̄(dz) = (1 + |z|)−qdz on Rd with q as in the statement and as q > d,
this is a finite measure. Since 1A is in L4(µ), there is a sequence (ξk)k∈N of smooth functions with compact
support, such that ∫

Rd
|1z∈A − ξk(z)|4(1 + |z|)−qdz −→

k→∞
0. (A.1)

W.l.o.g. we assume that 0 ≤ ξk ≤ 1. Now, define

uk(θ) := E
[
Φθξk(Z

θ)
]
, u(θ) := E

[
Φθ1Zθ∈A

]
,

vk(θ) := E
[
I(Zθ,Φθ)ξk(Z

θ)
]
, v(θ) := E

[
I(Zθ,Φθ)1Zθ∈A

]
.

Going forward, we shall establish three results. Firstly, uk(θ) −→
k→∞

u(θ) for any θ ∈ Θ, then, u′k(θ) = vk(θ)

for any θ ∈ Θ, and finally, vk converges to v locally uniformly on Θ. By [Die90, Statement (8.6.4) Chap.
VIII], this proves that u is differentiable on Θ and its derivative is v.
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Step 2: Proof of u′k(θ) = vk(θ). We can show

u′k(θ) = ∂θE
[
Φθξk(Z

θ)
]

= E
[
Φ̇θξk(Z

θ)
]

+ E

[
Φθ

d∑
i=1

∂ziξk(Z
θ)Żθi

]
,

from the dominated convergence theorem using the boundedness of ξk,∇ξk and the uniform controls in the as-
sumptions (a)-(b). Further, by the chain rule property, ξk(Zθ) ∈ D1,2 withD.[ξk(Zθ)] =

∑d
i=1 ∂ziξk(Z

θ)D.Zθi .
Moreover by definition of δ as the adjoint operator of D, we have

vk(θ) = E

Φ̇θξk(Z
θ) + 〈

d∑
i=1

∂ziξk(Z
θ)D.Zθi ,Φ

θ
d∑
j=1

(γ−1
Zθ
Żθ)jD.Z

θ
j 〉H


= E

Φ̇θξk(Z
θ) + Φθ

d∑
i=1

∂ziξk(Z
θ)

d∑
j=1

(γZθ)i,j(γ
−1
Zθ
Żθ)j


= E

[
Φ̇θξk(Z

θ) + Φθ
d∑
i=1

∂ziξk(Z
θ)Żθi

]
= u′k(θ).

Step 3: Proof of (uk, vk) −→
k→∞

(u, v) locally uniformly on Θ. Assume for a while the L2-convergence

E
[
|ξk(Zθ)− 1Zθ∈A|2

]
−→
k→∞

0 locally uniformly in θ ∈ Θ. (A.2)

Then from above and (d), we deduce that for any θ ∈ Θ, there is an open set V ⊂ θ such that

|vk(θ)− v(θ)| ≤ sup
θ∈V

∣∣∣∣∣∣Φ̇θ + δ(Φθ
d∑
j=1

(γ−1
Zθ
Żθ)jD.Z

θ
j )

∣∣∣∣∣∣
L2

sup
θ∈V

∣∣∣ξk(Zθ)− 1Zθ∈A

∣∣∣
L2

−→
k→∞

0.

The same arguments apply for uk − u. Consequently, it remains to justify (A.2).

Under the assumption (e), we have the integration by parts formula at order 1 (derived as in the proof
of Step 2), i.e. for any smooth function ζ with compact support and any i ∈ {1, . . . , d},

E
[
∂ziζ(Zθ)

]
= E

ζ(Zθ)δ

 d∑
j=1

(γ−1
Zθ

)j,iD.Z
θ
j

 .
Therefore, from [Shi04, Theorem 5.4] the distribution of Zθ has a continuous density pZθ(.) w.r.t. the
Lebesgue measure, which is uniformly bounded by a function depending only on the Lq-norms of δ

(∑d
j=1

(γ−1
Zθ

)j,iD.Z
θ
j

)
, 1 ≤ i ≤ d. In view of (a)-(e), we deduce that for any θ ∈ Θ, there is a neighborhood V ⊂ Θ

of θ such that supθ′∈V |pZθ′ |∞ := CV <∞, and

E
[
|ξk(Zθ

′
)− 1Zθ′∈A|

2
]
≤
(
E
[
|ξk(Zθ

′
)− 1Zθ′∈A|

4(1 + |Zθ′ |)−q
])1/2 (

E
[
(1 + |Zθ′ |)q

])1/2

≤
(∫

Rd
|ξk(z)− 1z∈A|4(1 + |z|)−qCV dz

)1/2

sup
θ′∈V

(
E
[
(1 + |Zθ′ |)q

])1/2
.

Owing to (A.1), the above converges to 0 as k →∞, uniformly w.r.t. θ′ ∈ V , and (A.2) is proved.
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A.2 Proof of Theorem 4

Denote by eN the l.h.s. of the above inequality. We have

eN =
1

N2

 ∑
1≤k≤N

Var (f(Zk)) + 2
∑

1≤k<l≤N
Cov (f(Zk), f(Zl))

 .
By the reversible shaker property, Zk and Z have the same law, thus

∑N
k=1 Var (f(Zk)) = NVar (f(Z)). On

the other hand, for l > k, we have

|Cov (f(Zk), f(Zl)) | ≤ ρXk,Xl
√

Var (f(Zk))
√

Var (f(Zl)) = ρXk,XlVar (f(Z))

where ρXk,Xl is the so-called Renyi maximal correlation coefficient between Xk and Xl, i.e. the supremum
of the correlation between a function gk of Xk and a function gl of Xl, the supremum being taken over all
functions (gk, gl) with squared integrability properties. We claim that

ρXk,Xl ≤ |ρ|
l−k
∞ . (A.3)

The proof is provided at the end. With (A.3) at hand, we deduce∣∣∣ ∑
1≤k<l≤N

Cov (f(Zk), f(Zl))
∣∣∣ ≤ N |ρ|∞

1− |ρ|∞
Var (f(Z)) .

Finally, we get

eN ≤
Var (f(Z))

N

[
1 + 2

|ρ|∞
1− |ρ|∞

]
,

which finishes the proof of (2.11).

It remains to justify (A.3). This is a consequence of [Jan97, Theorem 10.11]. Indeed, assume without
loss of generality that k = 1 (for notational convenience). Now define a Gaussian Hilbert space G for all the
variables from shaker iteration k = 1 to l > 1. For this, set H := {h = (h1, . . . , hl) ∈ Hl}: endowed with
the scalar product 〈h, g〉H =

∑l
i=1〈hi, gi〉H, H is a Hilbert space to which we associate the Gaussian process

X = {X(h) : h ∈ H}. Let G denote the Gaussian Hilbert space spanned by {X(h) : h ∈ H}.

In view of (2.9) we observe that (X1, Xl) can be realized jointly as follows:

X1 =
{
X(h) : h = (h, 0, . . . , 0), h ∈ bH

}
,

Xl =
{
X(h) : h = (ρl−1

h h, ρl−2
h

√
1− ρ2

hh, · · · ,
√

1− ρ2
hh), h ∈ bH

}
.

Let G1 denote the Gaussian subspace spanned by {X(h) : h = (h, 0, . . . , 0), h ∈ H} and similarly for Gl.
Then, [Jan97, Theorem 10.11] states that ρX1,Xl is equal to the norm of the operator PGl,G1 which is defined
as the orthogonal projection of G onto Gl and then restricted to G1. Thus, from [Jan97, Definition 10.6], we
get ρXk,Xl = ‖PGl,G1‖ = supX∈G1,Y ∈Gl |Corr(X,Y )| ≤ |ρ|l−1

∞ . The proof of (A.3) is complete.

Remark A.1. The above result is of standalone interest and provides an important first step towards proving
the L2 convergence of shaking transformation with rejection in infinite dimension.

A.3 Proof of Propositions 6 and 7

A.3.1 Proof of Propositions 6

The following theorem provides an important result for our proof.
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Theorem 10 ([AG11]). Let S be a measurable space. Assume that X is an S-valued Markov chain, starting
at a given x, which is η-irreducible for some measure η and has a stationary distribution π. Then, for
f : S → R+

1

N

N−1∑
j=0

f(Xj)→
∫
S
f(y)π(dy) Px − a.s. (A.4)

as N →∞ for π-a.a. x ∈ S. If in addition, the one step transition kernel can be written either as

Px(X1 ∈ dy) = q(x, y)η(dy)

or as
Px(X1 ∈ dy) = (1− a(x))δx(dy) + a(x, y)q(x, y)η(dy) (A.5)

with a(x), a(x, y) > 0 for each x, y ∈ S, then X is a positive recurrent Harris chain and the convergence
(A.4) holds for all x ∈ S.

Using the above results, we can show that the POP method with |ρ|∞ < 1 converges almost surely in all
the finite dimensional cases (i.e. S = H = Rd of Example 1). Firstly, we explain how the transformation with
shaking and rejection at level k (defined in (2.12)) can be interpreted in the form (A.5), which is well-known
as Metropolis-Hastings sampler. Unlike usual Metropolis-Hastings sampler where explicit transition densities
and acceptance functions are used, we use implicit transition densities and acceptance functions. Namely,
in the case of shaking for standard d-dimensional normal variable, i.e. K(x,X ′) = (ρixi +

√
1− ρ2

iX
′
i)1≤i≤d

with i.i.d. standard Gaussian variables (X ′i)1≤i≤d, the measure η can be taken as the Lebesgue measure on
Rd and the transition density is given by

q(x, y) = exp

(
−

d∑
i=1

|yi − ρixi|2

2(1− ρ2
i )

)
(2π)−q/2

d∏
i=1

(1− ρ2
i )
−1/2

(here we use sup1≤i≤d |ρi| = |ρ|∞ < 1). Then the acceptance function corresponds to a(x, y) = 1ΨZ(y)∈Ak
and the local mean acceptance rate to a(x) =

∫
Rd a(x, y)q(x, y)dy.

Secondly, the assumption a(x) > 0 writes in our rare event setting as P (ΨZ(K(x,X ′)) ∈ Ak) > 0 for
any x s.t. ΨZ(x) ∈ Ak. This inequality holds true since we assume 0 < P (Z ∈ A) ≤ P (ΨZ(X) ∈ Ak), i.e.
Ψ−1
Z (Ak) has a strictly positive Lebesgue measure.

Thirdly, notice that the existence of a stationary distribution has been shown previously (Proposition 5)
and we can easily see that the Markov chain in POP method is η-irreducible, due to the strictly positive
transition density p. Therefore, from Theorem 10 we easily deduce the almost sure convergence at each level,
using the random initialization described in algorithm of POP method.

A.3.2 Proof of Proposition 7

This follows from the well-known result for positive Harris recurrent Markov chain which states that if the
chain is in addition aperiodic, then its marginal distribution converges to its stationary distribution (see for
example [MT09, Theorem 13.0.1]). The existence of an implicit positive transition density in finite dimension
ensures that our Markov chain is aperiodic and the result of Proposition 7 holds.
Note that in Theorem 8, under stronger conditions (i.e. the acceptance rate is bounded away from 0, see
(2.15)), the convergence is geometric.

A.4 Proof of Theorem 8

To alleviate notation, we set Ak = Ψ−1
Z (Ak), we write πk for the conditional distribution of X | X ∈ Ak

and last, we remove all the indices k from the mathematical objects under study. The transition kernel of
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the Markov chain (Xi : i ≥ 0) is denoted by QPOP, in view of the definition of the algorithm it is defined as
follows: for any measurable positive function f and any x ∈ A, we have

QPOPf(x) :=

∫
A
q(x, z)f(z)dz + f(x)

∫
Ac
q(x, z)dz, (A.6)

with q(x, z) = exp

− d∑
j=1

|zj − ρjxj |2

2(1− ρ2
j )

 (2π)−q/2
d∏
j=1

(1− ρ2
j )
−1/2.

The density q is the density of the proposal distribution.

The proof of (2.16) goes through an application of [FM03, Proposition 2], restated below in our context.
Proposition 11. Let QPOP be a phi-irreducible aperiodic transition kernel on A and let C ⊂ A be an accessible
petite set. Assume there exist δ ∈ (0, 1), b ∈ R and a measurable V : A → [1,+∞), bounded on C, such that

QPOPV (x) ≤ δV (x) + b1x∈C , x ∈ A. (A.7)

Let p ≥ 2 and assume that E [V (X0)] < +∞. Then there exists a finite positive constant C such that for any
g bounded in V 1/p-norm, we have

E

[∣∣∣∣∣
n∑
i=1

g(Xi)− π(g)

∣∣∣∣∣
p]
≤ C

(
sup
A

|g|p

V

)
np/2, ∀n ≥ 1.

Observe that if the assumptions of the above proposition hold, one can also apply [MT09, Theorem
15.0.1], which leads to the inequality (2.17).

Proof of the drift condition (A.7). In view of (A.6), we start to bound the first term on the RHS. Using the
exponential form for V and simple inequalities, we get∫

A
q(x, z)V (z)dz ≤ V (x)

∫
Rq
q(x, z)

V (z)

V (x)
dz

= V (x)

d∏
j=1

∫
R

1√
2π(1− ρ2

j )
exp

(
−(zj − ρjxj)2

2(1− ρ2
j )

)
es|zj |−s|xj |dzj

≤ V (x)
d∏
j=1

∫
R

1√
2π(1− ρ2

j )
exp

(
−

z̃2
j

2(1− ρ2
j )

+ s|z̃j |

)
e−s(1−|ρj |)|xj |dz̃j

:= V (x)C(ρ1, . . . , ρd)e
−s

∑d
j=1(1−|ρj |)|xj |.

Since |ρ|∞ < 1, for any |x| > R with R large enough, we get∫
A
q(x, z)V (z)dz ≤ V (x)

(1− δ1)

2
, ∀|x| > R. (A.8)

On the other hand, for |x| ≤ R, the above left hand side is bounded (since continuous on a compact set),
therefore

sup
x:|x|≤R

∫
A
q(x, z)V (z)dz = C(A.9) < +∞. (A.9)

To complete (A.7), we set

C = {x ∈ A : V (x) ≤ L}, with L ≥
4C(A.9)

1− δ1
∨ R̃
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with R̃ large enough so that C ∩ A 6= ∅. Then, plugging (2.15), (A.8) and (A.9) into (A.6), we get

QPOPV (x) ≤ (1 + δ1)

2
V (x) + C(A.9), ∀x ∈ A. (A.10)

Now, for x ∈ A ∩ Cc, by definition of C with the threshold L, we have

QPOPV (x) ≤ (3 + δ1)

4
V (x) +

(δ1 − 1)

4
V (x) + C(A.9) ≤

(3 + δ1)

4
V (x).

This, together with (A.10) and V ≥ 1 proves

QPOPV (x) ≤ (3 + δ1)

4
V (x) + C(A.9)1x∈C ,

i.e. the announced inequality (A.7) with δ := (3+δ1)
4 and b := C(A.9).

Verification of the other assumptions of Proposition 11.

• QPOP is Lebesgue-irreducible [MT09, Proposition 4.2.1 (ii)], since for any measurable set A ⊂ A with
strictly positive Lebesgue measure, we have

QPOP(x,A) ≥
∫
A
q(x, z)dz > 0, ∀x ∈ A.

• The set C is a ν1-small set (see [MT09, Section 5.2]), hence a petite set [MT09, Proposition 5.5.3]:
indeed, for any x ∈ C and any measurable set A ⊂ A, we have

QPOP(x,A) ≥
∫
A

inf
x∈C

q(x, z)dz := ν(A),

and the measure ν is non-zero since q continuous and C is compact.

• QPOP is aperiodic: in fact, it is strongly aperiodic as a consequence of the existence of the ν1-small set
C with ν(C) > 0 and irreducibility, see [MT09, p. 114].

• The set C is accessible (see [MT09, p. 86]) since from any starting point x ∈ A, the probability of
hitting C in finite time is strictly positive: indeed, it bounded from below as

Px (τC < +∞) ≥ QPOP(x, C) ≥
∫
A∩C

q(x, z)dz > 0.

A.5 Proof of Theorem 9

To begin, we first recall the following classical equivalence result which will be used in our proof.
Theorem 12 (Theorem 20.5 [Bil95]). A necessary and sufficient condition for sequence of random variables
Xn

P→ X is that each subsequence {Xnk} contains a further subsequence {Xnk(i)} such that Xnk(i) → X
almost surely as i→∞.

We split the proof in several steps.
Lemma 1. There exists a subsequence {Nk(i)}i≥1 such that for any l ∈ {1, . . . , L∗ + 1} and any ε > 0, we
have ∑

i≥1

P
(
|Q̂lNk(i),p −Q

l
p| > ε

)
<∞. (A.11)

Thus, Q̂lNk(i),p converges to Qlp almost surely as i→∞.

33



Proof. We proceed by induction on l. Indeed, for l = 1 with empty rejection (Q0
p =∞), we have

P
(
|Q̂1

N,p −Q1
p| > ε

)
≤ b(N, ε),

where b(N, ε) = lims→∞ b(s,N, ε). As b(N, ε) → 0 due to Assumption 2, we can find a subsequence Nk1(i)

such that
∑

i≥1 b(Nk1(i), ε) < ∞. This ensures that (A.11) holds for l = 1. Now suppose that there exists
a subsequence {Nk′(i)}i≥1 such that (A.11) is true for {1, . . . , l} and let us prove it for l + 1. We have on
{Q̂lNk′(i),p ∈ Il} by Assumption 2

P
(
|Q̂l+1

Nk′(i),p
− gp(Q̂lNk(i),p)| > ε|Q̂lNk′(i),p

)
≤ b(Q̂lNk′(i),p, Nk′(i), ε).

The term on the right hand side above is bounded by sups∈Il b(s,Nk′(i), ε) and we can find a further subse-
quence {Nk(i)}i≥1 such that on {Q̂lNk(i),p ∈ Il}, we have

∑
i≥1

P
(
|Q̂l+1

Nk(i),p
− gp(Q̂lNk(i),p)| > ε | Q̂lNk(i),p

)
≤
∑
i≥1

sup
s∈Il

b(s,Nk(i), ε) <∞. (A.12)

Then, on the subsequence {Nk(i)}i≥1 chosen as above, we consider

P
(
|Q̂l+1

Nk(i),p
−Ql+1

p | > ε
)
≤ P

(
|Q̂l+1

Nk(i),p
− gp(Q̂lNk(i),p)| > ε/2

)
+ P

(
|gp(Q̂lNk(i),p)− gp(Q

l
p)| > ε/2

)
≤ P

(
|Q̂l+1

Nk(i),p
− gp(Q̂lNk(i),p)| > ε/2, Q̂lNk(i),p ∈ Il

)
+ P

(
Q̂lNk(i),p /∈ Il

)
+ P

(
|gp(Q̂lNk(i),p)− gp(Q

l
p)| > ε/2

)
:= I + II + III. (A.13)

The term I in the right hand side of (A.13) is handled by the result (A.12) such that we have∑
i≥1

P
(
|Q̂l+1

Nk(i),p
− gp(Q̂lNk(i),p)| > ε/2, Q̂lNk(i),p ∈ Il

)
<∞. (A.14)

Furthermore, Assumption 1 implies that the function gp(s) is continuous at s = Qlp. This combined with
the induction hypothesis at level l implies that the series with general terms given by II and III converge
similarly to (A.14). Therefore, (A.11) is proved for l + 1 and the result follows.

Corollary 1. When logα
log p is not an integer, i.e. QL∗+1

p < ā < QL
∗

p , there exists a subsequence {Nk(i)}i≥1

such that
P
(
LNk(i) = L∗ for i large enough

)
= 1.

Proof. This is a direct consequence from Lemma 1.

Lemma 2. Assume L∗ 6= 0. When logα
log p is not an integer, there exists a subsequence {Nk(i)}i≥1 such that

for any ε > 0, we have ∑
i≥1

P
(
|Q̂

LNk(i)
Nk(i),p

−QL∗p | > ε

)
<∞.

Proof. We work with the subsequence {Nk(i)}i≥1 given by Lemma 1 and make a trivial decomposition:

P
(
|Q̂

LNk(i)
Nk(i),p

−QL∗p | > ε

)
= P

(
Q̂
LNk(i)
Nk(i),p

−QL∗p > ε

)
+ P

(
QL
∗

p − Q̂
LNk(i)
Nk(i),p

> ε

)
. (A.15)
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Recall, that Q̂
LNk(i)+1

Nk(i),p
is the first quantile estimation which lies below ā. In the first term in r.h.s of

Equation (A.15), if Q̂
LNk(i)
Nk(i),p

> QL
∗

p + ε and Q̂
LNk(i)+1

Nk(i),p
≤ ā, then there is no Q̂lNk(i),p which lies in the interval

]QL
∗

p − δ,QL
∗

p + δ[ with δ = min{ε,QL∗p − ā}> 0. So {Q̂
LNk(i)
Nk(i),p

−QL∗p > ε} implies {|Q̂L∗Nk(i),p−Q
L∗
p | > δ} and

we have

P
(
Q̂
LNk(i)
Nk(i),p

−QL∗p > ε

)
≤ P

(
|Q̂L∗Nk(i),p −Q

L∗
p | > δ

)
.

Next, we make another decomposition:

P
(
QL
∗

p − Q̂
LNk(i)
Nk(i),p

> ε

)
≤ P

(
QL
∗

p − Q̂
LNk(i)
Nk(i),p

> ε, |Q̂L∗Nk(i),p −Q
L∗
p |≤ε

)
+ P

(
|Q̂L∗Nk(i),p −Q

L∗
p |>ε

)
.

On the joint event in the first probability in the above r.h.s. inequality, we must have Q̂
LNk(i)
Nk(i),p

< Q̂L
∗

Nk(i),p
,

and consequently Q̂L
∗+1

Nk(i),p
> ā (by definition of Q̂

LNk(i)
Nk(i),p

as the last quantile estimation above ā). Thus, it
follows that

P
(
QL
∗

p − Q̂
LNk(i)
Nk(i),p

> ε, |Q̂L∗Nk(i),p −Q
L∗
p |≤ε

)
≤ P

(
|Q̂L∗+1

Nk(i),p
−QL∗+1

p | > ā−QL∗+1
p

)
.

We are able to conclude the proof by collecting the above results and using Lemma 1 with l = L∗, l = L∗+1
and various ε > 0.

Lemma 3. When logα
log p is not an integer, there exists a subsequence {Nk(i)}i≥1 such that for any ε > 0 we

have ∑
i≥1

P
(
|r̂Nk(i)(Q̂

LNk(i)
Nk(i),p

)− r(QL∗p )| > ε

)
<∞.

Consequently, r̂Nk(i)(Q̂
LNk(i)
Nk(i),p

) converges to r(QL∗p ) almost surely as i→∞.

Proof. Assume first that L∗ ≥ 1. Then, we have the existence of a subsequence {Nk(i)}i≥1 such that the

result in Lemma 2 holds. For this subsequence on {Q̂
LNk(i)
Nk(i),p

∈ JL∗}, due to Assumption 3, we have

P
(∣∣∣r̂Nk(i)(Q̂LNk(i)Nk(i),p

)− r(Q̂
LNk(i)
Nk(i),p

)
∣∣∣ > ε|Q̂

LNk(i)
Nk(i),p

)
≤ c(Q̂

LNk(i)
Nk(i),p

, Nk(i), ε).

The term in the above r.h.s. is bounded by sups∈JL∗ c(s,Nk(i), ε) and we can find a further subsequence

{Nk̃(i)}i≥1 such that on {Q̂
LN

k̃(i)

Nk̃(i),p
∈ JL∗}, we have

∑
i≥1

P
(∣∣∣r̂Nk̃(i)(Q̂LNk̃(i)Nk̃(i),p

)− r(Q̂
LN

k̃(i)

Nk̃(i),p
)
∣∣∣ > ε|Q̂

LN
k̃(i)

Nk̃(i),p

)
≤
∑
i≥1

sup
s∈JL∗

c(s,Nk̃(i), ε) <∞. (A.16)

Thus, we use the subsequence {Nk̃(i)}i≥1 and make the following decomposition

P
(∣∣∣r̂Nk̃(i)(Q̂LNk̃(i)Nk̃(i),p

)− r(QL∗p )
∣∣∣ > ε

)
≤ P

(∣∣∣r̂Nk̃(i)(Q̂LNk̃(i)Nk̃(i),p
)− r(Q̂

LN
k̃(i)

Nk̃(i),p
)
∣∣∣ > ε/2

)
+ P

(∣∣r(Q̂LNk̃(i)Nk̃(i),p
)− r(QL∗p )

∣∣ > ε/2

)
≤ P

(∣∣∣r̂Nk̃(i)(Q̂LNk̃(i)Nk̃(i),p
)− r(Q̂

LN
k̃(i)

Nk̃(i),p
)
∣∣∣ > ε/2, Q̂

LN
k̃(i)

Nk̃(i),p
∈ JL∗

)
+ P

(
Q̂
LN

k̃(i)

Nk̃(i),p
/∈ JL∗

)
+ P

(∣∣r(Q̂LNk̃(i)Nk̃(i),p
)− r(QL∗p )

∣∣ > ε/2

)
. (A.17)
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The first term in the right hand side of (A.17) is handled by the result (A.16) such that we have∑
i≥1

P
(∣∣∣r̂Nk̃(i)(Q̂LNk̃(i)Nk̃(i),p

)− r(Q̂
LN

k̃(i)

Nk̃(i),p
)
∣∣∣ > ε/2, Q̂

LN
k̃(i)

Nk̃(i),p
∈ JL∗

)
<∞.

The second term in the r.h.s. of (A.17) also gives a convergent series in view of Lemma 2 and the last term
is handled like the second term by noting that r(s) is continuous at s = QL

∗
p (Assumption 1). Now consider

the case L∗ = 0 and write

P
(∣∣∣r̂N (Q̂LNN,p)− r(Q

L∗
p )
∣∣∣ > ε

)
≤ P

(∣∣∣r̂N (Q̂0
N,p)− r(Q0

p)
∣∣∣ > ε,LN = 0

)
+ P (LN 6= 0) .

The existence of a subsequence such that the series formed by the first probability term in the above r.h.s.
converges over this subsequence directly follows from Assumption 3. Moreover, by definition of LN and since
L∗ = 0, {LN 6= 0} ⊂ {Q̂1

N,p > ā} ⊂ {|Q̂1
N,p −Q1

p| > ā−Q1
p > 0}: we conclude by Lemma 1 with l = 1.

Proof of Theorem 9, when logα/ log p is not an integer. We use the results from Corollary 1 and
Lemma 3 to conclude from Theorem 12 that estimator α̂N is consistent.

Next, we prove the convergence when logα/ log p is an integer. This case needs to be dealt with separately
as we no longer have convergence of LN to L∗. When α = pL

∗ , the estimator can be expressed as

α̂N = 1{LN=L∗−1}r̂N (Q̂L
∗−1

N,p )pL
∗−1 + 1{LN=L∗}r̂N (Q̂L

∗
N,p)p

L∗ + 1{LN 6∈{L∗−1,L∗}}r̂N (Q̂LNN,p)p
LN .

Then, the error of our estimator is given as:

α̂N − pL
∗

=1{LN=L∗−1}

(
r̂N (Q̂L

∗−1
N,p )− p

)
pL
∗−1

+1{LN=L∗}

(
r̂N (Q̂L

∗
N,p)− 1

)
pL
∗

+1{LN 6∈{L∗−1,L∗}}

(
r̂N (Q̂LNN,p)p

LN − pL∗
)
. (A.18)

Lemma 4. If α = pL
∗, there exists a subsequence {Nk(i)}i≥1 such that

P
(
LNk(i) ∈ {L

∗ − 1, L∗}, for i large enough
)

= 1.

Proof. Note that QL∗+1
p < ā always holds. From Lemma 1, we have a subsequence {Nk(i)}i≥1 such that

Q̂L
∗+1

Nk(i),p
converges almost surely to QL∗+1

p . By the definition of LN we have LNk(i) + 1 ≤ L∗ + 1 as i → ∞.

Similarly, provided that L∗ > 1, Q̂L
∗−1

Nk(i),p
converges almost surely to QL∗−1

p > ā, thus LNk(i) ≥ L∗ − 1 as
i→∞.

Lemma 5. For l ∈ {L∗ − 1, L∗} ∩N, there exists a subsequence {Nk(i)}i≥1 such that for any ε > 0, we have∑
i≥1

P
(
|r̂Nk(i)(Q̂

l
Nk(i),p

)− r(Qlp)| > ε
)
<∞.

Thus for such l, r̂Nk(i)(Q̂
l
Nk(i),p

) converges to r(Qlp) almost surely as i→∞.

Proof. Similar to (A.17), we write for a subsequence {Nk(i)}i≥1 which satisfies the result in Lemma 1 and 3,

P
(∣∣∣r̂Nk(i)(Q̂lNk(i),p)− r(Qlp)∣∣∣ > ε

)
≤ P

(∣∣∣r̂Nk(i)(Q̂lNk(i),p)− r(Q̂lNk(i),p)∣∣∣ > ε/2, Q̂lNk(i),p ∈ Jl
)

+ P
(
Q̂lNk(i),p /∈ Jl

)
+ P

(∣∣r(Q̂lNk(i),p)− r(Qlp)∣∣ > ε/2
)
.
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If l = 0, the two last probabilities on the above r.h.s. are 0, since Q̂0
Nk(i),p

= Q0
p = ∞, while the first

probability forms a convergent series on a subsequence in view of Assumption 3.
If l > 0, we argue as in the proof of Lemma 1, by finding a common subsequence in view of Assumption 3,
the result in Lemma 1 and the local continuity of r(·).

Proof of Theorem 9, when logα/ log p is an integer. In the r.h.s. of Equation (A.18), we consider the
subsequence {Nk(i)}i≥1 which satisfies the result in Lemma 5 for l = L∗ − 1 and l = L∗, such that we get
r̂Nk(i)(Q̂

L∗−1
Nk(i),p

)−p = r̂Nk(i)(Q̂
L∗−1
Nk(i),p

)−r(QL∗−1
p ) converges to zero almost surely and that r̂Nk(i)(Q̂

L∗
Nk(i),p

)−1 =

r̂Nk(i)(Q̂
L∗
Nk(i),p

) − r(QL
∗

p ) converges to zero almost surely, respectively. Finally, we apply Lemma 4 and
Theorem 12 to complete the proof.
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