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Classical and Causal Optimal Transport
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Classical Monge-Kantorovich optimal transport

Given two Polish probability spaces (X, µ), (Y, ν), move the mass
from µ to ν minimizing the cost of transportation c : X×Y → [0,∞]:

OT(µ, ν, c) := inf
{
Eπ[c(x, y)] : π ∈ Π(µ, ν)

}
,

 

Π(µ, ν): probability measures on X ×Y with marginals µ and ν.

µ ν
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Classical Monge-Kantorovich optimal transport

Monge transport: all mass sitting on x is transported into y=T (x).

x y=T(x)

T

 

µ ν
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Classical Monge-Kantorovich optimal transport

Kantorovich transport: mass can split.

x

µ ν
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From Monge-Kantorovich to causal optimal transport

Some literature on OT:

• G. Monge (1781)
• L.V. Kantorovich (1942, ’48)
• L. Ambrosio, Y. Brenier, L. Caffarelli, A. Figalli, N. Gigli,

R. McCann, F. Otto, F. Santabrogio, K.T. Sturm, C. Villani ...

→ We consider a dynamic setting: we have the time component
(mathematically: spaces X and Y endowed with filtrations)

→ Idea: move the mass in a non-anticipative way: what is
transported into the 2nd coordinate at time t, depends on the
1st coordinate only up to t (+ possibly on sth independent)

=⇒ causal (non-anticipatice) transport
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Causal optimal transport

Let F X =
Ä
F Xt

ä
t
on X, F Y =

Ä
F Yt

ä
t
on Y be right-cont. filtrations.

Definition ( Causal transport plans ΠF
X,F Y(µ, ν) )

A transport plan π ∈ Π(µ, ν) is called causal between (X,F X, µ)
and (Y,F Y, ν) if, for all t and D ∈ F Yt , the map X 3 x 7→ πx(D) is
measurable w.t.to F Xt (πx regular conditional kernel w.r.to X).

The concept goes back to T. Yamada and S. Watanabe (1971); see
also R. Lassalle (2013), J. Backhoff et al. (2016)

Causal optimal transport problem:

COT(µ, ν, c) := inf
{
Eπ[c(X,Y)] : π ∈ Πc(µ, ν)

}
,

where Πc(µ, ν) = set of causal transports with marginals µ and ν
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Example: weak-solutions of SDEs

X = Y = C0[0,∞)
F right-continuous canonical filtration

Example (Yamada-Watanabe’71)

Assume weak-existence of the solution to the SDE:

dYt = σ(Yt)dBt + b(Yt)dt, b, σ Borel measurable.

Then L(B,Y) is a causal transport plan between the spaces
(C0[0,∞),F , γ) and (C0[0,∞),F ,L(Y)), γ = Wiener measure.

Transport perspective: from an observed trajectory of B, the
mass can be split at each moment of time into Y only based
on the information available up to that time.

No splitting of mass:
Monge transport ⇐⇒ strong solution Y = F(B).



OT and COT Semim. preservation MkKean-Vlasov CN-equilibria Value of information Conclusions

Example: weak-solutions of SDEs

X = Y = C0[0,∞)
F right-continuous canonical filtration

Example (Yamada-Watanabe’71)

Assume weak-existence of the solution to the SDE:

dYt = σ(Yt)dBt + b(Yt)dt, b, σ Borel measurable.

Then L(B,Y) is a causal transport plan between the spaces
(C0[0,∞),F , γ) and (C0[0,∞),F ,L(Y)), γ = Wiener measure.

Transport perspective: from an observed trajectory of B, the
mass can be split at each moment of time into Y only based
on the information available up to that time.

No splitting of mass:
Monge transport ⇐⇒ strong solution Y = F(B).



OT and COT Semim. preservation MkKean-Vlasov CN-equilibria Value of information Conclusions

Example: weak-solutions of SDEs

X = Y = C0[0,∞)
F right-continuous canonical filtration

Example (Yamada-Watanabe’71)

Assume weak-existence of the solution to the SDE:

dYt = σ(Yt)dBt + b(Yt)dt, b, σ Borel measurable.

Then L(B,Y) is a causal transport plan between the spaces
(C0[0,∞),F , γ) and (C0[0,∞),F ,L(Y)), γ = Wiener measure.

Transport perspective: from an observed trajectory of B, the
mass can be split at each moment of time into Y only based
on the information available up to that time.

No splitting of mass:
Monge transport ⇐⇒ strong solution Y = F(B).



OT and COT Semim. preservation MkKean-Vlasov CN-equilibria Value of information Conclusions

Semimartingale preservation in
enlargement of filtrations
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Semimartingale preservation

Problem formulation:

given two filtrations F ⊂ G on a space of events Ω

and X semimartingale in (Ω,F ,P)

→ when is X going to remain a semimartingale in (Ω,G,P)?

Why is this interesting?

Semimartingales are the processes for which classical
stochastic integration works:

∫
HdX (e.g. asset price proc.)

Agents have access to different sets of information

Today: X = B Brownian motion in its own filtration F B ⊂ GB:

when is B semimartingale w.r.t. GB? Bt = B̃t + At

in particular, when is FV� Leb? Bt = B̃t +
∫ t

0 asds
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Filtration enlargement

→ Two most studied types of filtration enlargement:

initial enlargement: Gt = Ft ∨ σ(L)

progressive enlargement with a random time:
Gt = Ft ∨ σ(τ ∧ t)

Some literature:
T. Jeulin and M. Yor (1978), P. Brémaud and M. Yor (1978),
T. Jeulin (1980), J. Jacod (1985), R. Mansuy and M. Yor (2006)

→We consider a general enlargement of a (right cont.) filtration
(Ft)t∈[0,T ] to a (right cont.) filtration (Gt)t∈[0,T ]:

Ft ⊆ Gt ∀t ∈ [0,T ], ,FT = GT

and characterize semim. preservation via causal transport: B̃→ B
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Filtration enlargement

X = Y = C0[0,∞), W coordinate process: Wt(ω) = ωt

F X =F filtration generated by W

F Y = G ⊃ F

F B = B−1(F ), GB = B−1(G)

Example

Let B be a Brownian motion on (Ω,F B,P), which remains a semi-
martingale w.r.to the enlarged filtration GB, with decomposition

dBt = dB̃t + dAt.

Then L(B̃, B) is a causal transport plan between the spaces
(C0[0,∞),F , γ) and (C0[0,∞),G, γ).
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Semimartingale preservation: characterization via COT

Theorem
For any fixed anticipation G, TFAE:

i. any process B which is a Brownian motion on some (Ω,P),
remains a semimartingale in the enlarged filtration GB;

ii. for some ν ∼ γ, the following causal transport problem is finite

inf
π∈ΠF ,G(γ,ν)

Eπ[VT (ω − ω)].

Optimal π̂ := (ξ, id)#ν, where ξt(ω) := ωt − At(ω), with A dual pred.
proj. of (ω − ω) w.r.t. (π, {∅,C0[0,T ]} × G), ∀ π with finite cost.

Notation. (ω,ω): generic element in C[0,T ] × C[0,T ]
VT : total variation up to T
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The absolutely continuous case

We have given a characterization of BM remaining semimartingale
in a bigger filtration (Bt = B̃t + At). Now we want to answer:

→ When does it have an absolutely continuous finite variation
part?

(
Bt = B̃t +

∫ t
0 αsds information drift

)

• Brownian bridge: dBt = dB̃t + BT−Bt
T−t dt

• Initial enlargement under Jacod’s condition

• Progressive enlargement with a random τ (Jeulin-Yor formula)

• Enlargement with Jt := inf s≥t Rs, where dRt = 1
Rt

dt + dBt:
dBt = dB̃t + 2dJt −

1
Rt

dt

→ This question can be answered in an analogous way.
[see slides at the end]
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Extensions

Our results have natural extensions in two directions:

→ Multidimensional processes.

→ General continuous semimartingales: for non-Brownian
processes, generalization of the definition of causality:

Eπ[(ωt − ωs) fs(ω)] = 0, 0 ≤ s < t ≤ T, fs ∈ L∞(C,Gs, ν),

which leads to analogous results.

In particular, if X continuous semimartingale which remains a
semimartingale in the enlarged filtration GX, with X = X̃ + N ⇒
the transport plan L(X̃, X) satisfies the condition above.
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MkKean-Vlasov optimal control
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N-player stochastic differential game

→ N players with private state processes evolving as

dXN,i
t = bt(XN,i

t , αN,i
t , ν̄N,−i

t )dt + dW i
t , i = 1, ...,N

• W1, ...,WN independent Wiener processes

• αN,1, ..., αN,N controls of the N players

• ν̄N,−i
t = 1

N−1
∑

j,i δXN, j
t

empirical distrib. states of the other players

→ Objective of player i: to choose a control αN,i that minimizes

E

ñ∫ T

0
ft(XN,i

t , αN,i
t , η̄N,−i

t )dt + g(XN,i
T , ν̄N,−i

T )
ô

• η̄N,−i
t = 1

N−1
∑

j,i δ(XN, j
t ,α

N, j
t ) empirical distrib. of states & controls

→ Statistically identical players: same functions bt, ft, g
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N-player stochastic differential game

Problems:

search for equilibria: very difficult

even when they exist, difficult to characterize

Idea:

for large symmetric games, some averaging is expected when
the number of players tends to infinity

resort to approximation by asymptotic arguments:

N-player game − − − − − − −− > N→ ∞

Nash equilibrium (non-coop) −−−− > Mean Field Game

Social planner (cooperative) − − −− > McKean Vlasov
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McKean-Vlasov control problem

→ Asymptotic formulation in the case of cooperative equilibria, as
well as for non-cooperative equilibria in the potential case:

McKean-Vlasov control problem:

inf
α
E

ñ∫ T

0
ft (Xt, αt,L(Xt, αt)) dt + g (XT ,L(XT ))

ô
subject to dXt = bt (Xt, αt,L(Xt)) dt + dWt, X0 = 0

Some literature on MFG and MKV:

• J.M. Lasry and P.L. Lions (2006, ’07)
• M. Huang, P.E. Caines, and R.P. Malhamé (2006, ’07)
• P. Cardaliaguet, R. Carmona, F. Delarue, M. Fischer, J.P. Fouque,

A. Lachapelle, D. Lacker, C.A. Lehalle, H. Pham, X. Wei ...
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McKean-Vlasov control problem

Classical approaches for MFG/MKV:

• analytic (Lasry-Lions): HJB, forward-backward system of PDEs

• probabilistic: Pontryagin maximum principle, FBSDEs

Our approach: use causal transport: W → X, with the aim of:

↪→ providing different existence results

↪→ finding explicit solutions
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McKean-Vlasov control problem and Causal Transport

→ McKean-Vlasov control problem:

inf
α
E

ñ∫ T

0
ft (Xt, αt,L(Xt, αt)) dt + g (XT ,L(XT ))

ô
subject to

dXt = bt (Xt, αt,L(Xt)) dt + dWt, X0 = 0

→ The joint distribution L(W, X) is a causal transport plan
between (C0[0,T ],F , γ) and (C0[0,T ],F ,L(X)):

γ −→ ? = distribution of the state
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McKean-Vlasov control problem

Definition. A weak solution to the McKean-Vlasov control problem
is a tuple (Ω, (Ft)t∈[0,T ],P,W, X, α) such that:

(i) (Ω, (Ft)t∈[0,T ],P) supports X, BM W, α is F -progress. meas.

(ii) the state equation dXt = bt (Xt, αt,L(Xt)) dt + dWt holds

(iii) if (Ω′, (F ′t )t∈[0,T ],P
′,W′, X′, α′) is another tuple s.t. (i)-(ii) hold,

EP
ñ∫ T

0
ft (Xt, αt,LP(Xt, αt)) dt + g (XT ,LP(XT ))

ô
≤ EP

′

ñ∫ T

0
ft
(
X′t , α

′
t ,LP′(X

′
t , α
′
t)
)

dt + g
(
X′T ,LP′(X

′
T )
)ô
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Assumptions

→We need some convexity assumptions.

→ In the case of linear drift:

dXt = (c1
t Xt + c2

t αt + c3
t E[Xt])dt + dWt,

ci
t ∈ R, c

2
t > 0, our assumptions reduce to: for all x, a, η,

ft is bounded from below uniformly in t

ft(x, ., η) is convex

ft(x, a, .) is ≺conv-monotone

E.g. satisfied by the inter-bank borrowing & lending model of
Carmona-Fouque-Sun [see slides at the end]
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Characterization of weak MKV solutions via COT

Here X = Y = C0[0,T ], and for simplicity control = drift, sq. integr.

Theorem
The weak MKV problem is equivalent to the variational problem

inf
ν�γ

inf
π∈Πc(γ,ν)

Eπ
ñ∫ T

0
ft
Ä
ωt, (

˙̆
ω − ω)t, pt

(
(ω, ˙̇

ω − ω)#π
)ä

dt + g(ωT , νT )
ôÄ

= inf
π∈Πc(γ,.)

Eπ
[
...
]ä

Notation: ( ˙̆
ω − ω)t = βt when ω − ω =

∫ .
0 βsds, and +∞ else

[for the general case: see slides at the end]
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Characterization of weak MKV solutions via COT

’Equivalence’ means that the above variational problem and

inf EP
ñ∫ T

0
ft (Xt, αt,L(Xt, αt)) dt + g (XT ,L(XT ))

ô
have the same value, where the infimum is taken over tuples
(Ω, (Ft),P,W, X, α) s.t. dXt = bt (Xt, αt,L(Xt)) dt + dWt, and that
moreover the optimizers are related via:

ν∗ = L(X∗)

π∗ ←→ α∗, with π∗ = L(W∗, X∗)
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Characterization of weak MKV solutions via COT

Corollary (Weak closed loop)
1 The infimum can be taken over tuples s.t. α is F X-measurable

(weak closed loop).

2 If the infimum is attained, then the optimal control α is in weak
closed loop form.

Corollary (Existence)

Minimizations in the variational problem done over compact sets,
hence lower-semicontinuity ⇒ existence.

Note: in classical the approaches, strong regularity is required

Special case: separable costs [see slides at the end]
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Dynamic Cournot-Nash equilibria
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Problem formulation

Given: a population of Agents whose type evolves in time. Each
of them:

→ selects its own actions/strategies

→ faces a cost depending on its own type, action, and on the
symmetric interaction with the rest of the population:

cost(i) = fcn
(
type(i), action(i), actions distribution

)

Crucial: the actions of a player should not anticipate its type!

Our aim is to:

→ find/characterize equilibria for games in this setting

→ develop/exploit connection with causal optimal transport
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Pure strategies

x A(x)

A

type action

adapted pure strategy = adapted Monge transport 

η ?
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Mixed strategies

x

type actions

non-anticipative mixed strategy = causal Kantorovich transport 

η ?
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Main results

mixed strategy equilibria are solutions to COT problems

pure strategy equilibria are solutions to COT problems over
Monge maps

for potential games, we characterize Cournot-Nash equilibria
as solutions to a variational problem involving COT problems:
↪→ new existence results
↪→ new uniqueness results
↪→ results on first structure of equilibria

[for precise setting and results see slides at the end]
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Value of information in
stochastic optimization problems
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Value of information

Aim: use causal transport framework to give an estimate of
the value of the additional information, for some classical
stochastic optimization problems (difference of optimal value
of these problems with or without additional information).

Idea: take projection w.r.to causal couplings of the optimizers
in the problem with the larger filtration (additional information),
so building a feasible element in the problem with the smaller
filtration and making a comparison possible.

Pflug (2009) uses this idea in discrete-time, to gauge the
dependence of multistage stochastic programming problems
w.r.to different reference probability measures.

→ Here we see utility maximixation [for optimal stopping: see
slides at the end]



OT and COT Semim. preservation MkKean-Vlasov CN-equilibria Value of information Conclusions

Utility maximisation

B d-dimensional Brownian motion on (Ω,P).

Financial market: riskless asset ≡ 1, and m ≤ d risky assets:

dS i
t = S i

t

Ä
bi

t dt +
d∑

j=1
σ

i j
t dB j

t

ä
, i = 1, ...,m.

|bi
t(ω) − bi

t(ω̃)| ≤ L
∑d

k=1 sups≤t |ω
k
s − ω̃

k
s |, same for σi j, σ bdd

λi
t: proportion of an agent’s wealth invested in the ith stock at

time t: assume λi
t ∈ [0, 1] (no short-selling)

A(F B): set of admissible portfolios for the agent without
anticipative information (F B-progressively measurable λ)

A(GB): set of admissible portfolios for the agent wit
anticipative information (GB-progressively measurable λ)



OT and COT Semim. preservation MkKean-Vlasov CN-equilibria Value of information Conclusions

Utility maximisation

B d-dimensional Brownian motion on (Ω,P).

Financial market: riskless asset ≡ 1, and m ≤ d risky assets:

dS i
t = S i

t

Ä
bi

t dt +
d∑

j=1
σ

i j
t dB j

t

ä
, i = 1, ...,m.

|bi
t(ω) − bi

t(ω̃)| ≤ L
∑d

k=1 sups≤t |ω
k
s − ω̃

k
s |, same for σi j, σ bdd

λi
t: proportion of an agent’s wealth invested in the ith stock at

time t: assume λi
t ∈ [0, 1] (no short-selling)

A(F B): set of admissible portfolios for the agent without
anticipative information (F B-progressively measurable λ)

A(GB): set of admissible portfolios for the agent wit
anticipative information (GB-progressively measurable λ)



OT and COT Semim. preservation MkKean-Vlasov CN-equilibria Value of information Conclusions

Utility maximisation

→ We want to compare the utility maximization problems:

vF = sup
λ∈A(F B)

E[U(Xλ
T )], vG = sup

λ∈A(GB)
E[U(Xλ

T )].

(Xλ
t )t: wealth process corresponding to λ, Xλ

0 = 1.

utility function U : R+ → R concave, increasing, and s.t.

F := U ◦ exp is C-Lipschitz, concave and increasing.

e.g. U(x) = xa

a , a ≤ 0; U(x) = ln(x); U(x) = −1
a e−ax, a ≥ 1

Proposition

The following bound holds, for a specific constant K:

0 ≤ vG − vF ≤ K inf
π∈ΠF ,G(γ,γ)

Eπ[VT (ω − ω)].

Causal transports on C0[0,T ] × C0[0,T ]



OT and COT Semim. preservation MkKean-Vlasov CN-equilibria Value of information Conclusions

Utility maximisation

→ We want to compare the utility maximization problems:

vF = sup
λ∈A(F B)

E[U(Xλ
T )], vG = sup

λ∈A(GB)
E[U(Xλ

T )].

(Xλ
t )t: wealth process corresponding to λ, Xλ

0 = 1.

utility function U : R+ → R concave, increasing, and s.t.

F := U ◦ exp is C-Lipschitz, concave and increasing.

e.g. U(x) = xa

a , a ≤ 0; U(x) = ln(x); U(x) = −1
a e−ax, a ≥ 1

Proposition

The following bound holds, for a specific constant K:

0 ≤ vG − vF ≤ K inf
π∈ΠF ,G(γ,γ)

Eπ[VT (ω − ω)].

Causal transports on C0[0,T ] × C0[0,T ]



OT and COT Semim. preservation MkKean-Vlasov CN-equilibria Value of information Conclusions

Utility maximisation

Remark. If complete market, log utility, and initial enlargement,
then vG − vF is known explicitly (Pikovsky-Karatzas 1996).

Steps of the proof:

fix a causal transport π ∈ ΠF ,G(γ, γ)

consider vF to be solved in the ω variable and vG in ω

take (ε-)optimizer λ̂ = λ̂(ω) for vG

(π,F ⊗ {∅,C})-optional projection: λ̃ ∈ A(F B)

in particular λ̃t(ω) = λ̃t(ω,ω) = Eπ[λ̂t|Ft] = Eπ[λ̂t|FT ]

substitute in vF



OT and COT Semim. preservation MkKean-Vlasov CN-equilibria Value of information Conclusions

Utility maximisation

Remark. If complete market, log utility, and initial enlargement,
then vG − vF is known explicitly (Pikovsky-Karatzas 1996).

Steps of the proof:

fix a causal transport π ∈ ΠF ,G(γ, γ)

consider vF to be solved in the ω variable and vG in ω

take (ε-)optimizer λ̂ = λ̂(ω) for vG

(π,F ⊗ {∅,C})-optional projection: λ̃ ∈ A(F B)

in particular λ̃t(ω) = λ̃t(ω,ω) = Eπ[λ̂t|Ft] = Eπ[λ̂t|FT ]

substitute in vF



OT and COT Semim. preservation MkKean-Vlasov CN-equilibria Value of information Conclusions

Conclusions

We have exploited causal transport to study several problems:

semimartingale preservation:

G − BM −→ F − BM

weak solutions to MKV:

noise −→ state dynamics

Cournot-Nash equilibria:

types −→ actions

value of information:

G − BM −→ F − BM
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THANK YOU FOR YOUR ATTENTION!
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Addendum to the
Semimartingale preservation section
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The absolutely continuous case

Semimartingale preservation⇐⇒ finite causal transport
problem for the total variation cost

In the A.C. case, the cost functions of interest are

cρ(ω,ω) :=
∫ T

0
ρ
(
( ˙̆
ω − ω)t

)
dt,

where ρ : R→ R+ is convex, even, ρ(0) = 0, ρ(+∞) = +∞, and
( ˙̆
ω − ω)t = βt when ω − ω =

∫ .
0 βsds, and +∞ else. E.g.

ρ(x) = x2/2⇒ Cameron-Martin cost cρ(ω,ω) = 1
2 |ω − ω|

2
H.

→ In the A.C. case we get a characterization of the semim.
preservation via COT over π’s under which ω − ω � Leb.
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The absolutely continuous case

Theorem
For any fixed anticipation G, TFAE:

i. any process B which is a Brownian motion on some (Ω,P),
remains a semimartingale in the enlarged filtration GB, with
absolutely continuous FV part, i.e.

dBt = dB̃t + αt(B)dt;

ii. for some ν ∼ γ, and some ρ as above (eqv., for ρ = | . | ) the
following causal transport problem is finite

inf
π∈ΠF ,G(γ,ν)

Eπ[cρ(ω,ω)].

Optimal transport π̂ := (ξ, id)#ν, where ξt(ω) := ωt −
∫ t

0 as(ω)ds, a

pred.pr. of ˙̇
ω − ω w.r.t. (π, {∅,C} × G), ∀ π with finite cost.
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Cameron-Martin cost

Let cρ(ω,ω) = 1
2 |ω − ω|

2
H. If infπ∈ΠF ,G(γ,γ) E

π[cρ] < ∞, then:

dBt = dB̃t + αt(B)dt, with α square integrable;

by Girsanov, B BM w.r.t. GB under a new measure Q, and

COT = 1
2E

γ
[ ∫ T

0 α2
t dt
]

= H(P|Q);

by martingale representation, H ′-hypothesis holds for F B,
GB, i.e. all F B-semimartingales are GB-semimartingales;

in case of initial enlargement with r.v. L = L(B) with law `:

COT =
∫

H(γL=x|γ)`(dx) = I(B, L(B)) := H(PB,L(B)|PB ⊗ PL(B)),

mutual information between B and L(B);

if L is discrete, COT= entropy of the partition {L = xn}n:

COT = −
∑

n pn ln(pn), pn = P(L = xn).
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Addendum to the
McKean-Vlasov section
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Example: Inter-bank borrowing & lending

Carmona-Fouque-Sun (2013)

Consider a network of N banks, with log-monetary reserve

dXi
t =

î
k

N−1
∑

j,i
(
X j

t − Xi
t
)

+ αi
t

ó
dt + dW i

t ,

=
î
k
(
XN,−i

t − Xi
t
)

+ αi
t

ó
dt + dW i

t , i = 1, ...,N

• k ≥ 0 rate of m-r in the interaction from b&l between banks
• αi control of bank i, b&l outside of the N bank network

Bank i tries to minimize the cost

E
î ∫ T

0

Ä
1
2 (αi

t)
2 − qαi

t(X
N,−i
t − Xi

t) + c
2 (XN,−i

t − Xi
t)

2
ä
dt + d

2 (XN,−i
T − Xi

T )2
ó

• q > 0 incentive to borrowing (αt > 0) or lending (αt < 0)
• c, d > 0 penalize departure from average
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Example: Inter-bank borrowing & lending

In the previous example:

The log-monetary reserve of each bank, asymptotically, is
governed by the MKV equation

dXt = [k(E[Xt] − Xt) + αt]dt + dWt

(all banks control their rate of b&l with the same policy α)

Need to minimize the cost

E
î ∫ T

0

Ä1
2
α2

t −qαt(E[Xt]−Xt)+
c
2

(E[Xt]−Xt)2
ä
dt+

d
2

(E[XT ]−XT )2
ó
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Separable cost

Special case: separable running cost = f 1
t (x, a) + f 2

t (νt, x):

inf
ν�γ

¶
COT(γ, ν, c f 1) + F f 2,g(ν)

©
↑ ↑

standard COT penalty
(A. et al. 2016)

For COT easy to get existence (& uniqueness) of π∗ ∈ Πc(γ, ν)

ν 7→COT(γ, ν, c f 1) convex

Need conditions on F to have existence/uniqueness, e.g.

• F lsc ⇒ exist ν∗

• F strictly convex ⇒ unique ν∗
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Separable cost

Example: take k = q = 0 in the example above, then

state dynamics: dXt = αtdt + dWt

cost: E
î ∫ T

0

Ä
1
2α

2
t + c

2 (E[Xt] − Xt)2
ä
dt + d

2 (E[XT ] − XT )2
ó

⇒ COT w.r.t. Cameron-Martin distance (Lassalle 2015):

1
2 inf
π∈Πc(γ,ν)

Eπ[|ω − ω|2H] = H(ν|γ), thus

inf
ν�γ

®
H(ν|γ) +

c
2

∫ T

0
Var(νt)dt +

d
2

Var(νT )
´

More generally: for cost 1
2α

2
t + ht(Xt,L(Xt)), by Sanov theorem:

inf
ν�γ

¶
H(ν|γ) + F(ν)

©
= lim

n→∞
− 1

n lnE enF( 1
n

∑n
i=1 δWi), {Wi} ind. BMs.

And this does not seem to be limited to the entropic case (1
2α

2
t ).
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Characterization: the general case

Assumptions. For all x, a ∈ R,m ∈ P(R), η ∈ P(R × R):

(A1) bt(x, .,m) injective and convex

(A2) ft bdd below unif. in t, and ft(x, b−1
t (x, .,m)(y), η) convex in y

(A3) ft(x, a, .) is ≺cm-monotone (resp. ≺conv-monotone if b is linear)

(≺cm (resp. ≺conv) denotes the conv/monotone (resp. conv) order)

Pathwise quadratic variation. For ω ∈ C := C0[0,T ], n ∈ N, let

σn
0(ω) := 0, σn

k+1(ω) := inf{t > σn
k(ω) : |ω(t) − ω(σn

k)| ≥ 2−n}, k ∈ N

We say that ω has quadratic variation if

Vn(ω)(t) :=
∞∑

k=0

(ω(σn
k+1 ∧ t) − ω(σn

k ∧ t))2 →u =: 〈ω〉t ∈ C

Notation. P̃ = {ν ∈ P(C) : 〈ω〉 ∃ ν-a.s., with 〈ω〉t = t for all t}
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Characterization: the general case

Under the above assumptions, the following characterization of
weak McKean-Vlasov solutions via causal transport holds.

Theorem
The weak MKV problem is equivalent to the following problem

inf
ν∈P̃

inf
π∈Πc(γ,ν)

Eπ
ñ∫ T

0
ft
(
ωt, uνt (ω,ω), pt

(
(ω, uν)#π

))
dt + g(ωT , νT )

ô
where uνt (ω,ω) = b−1

t (ωt, ., νt)
(
( ˙̇
ω − ω)t

)
and pt(η) = ηt.
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Addendum to the
CN-equilibria section
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Setting

Discrete time T = {1, ...,N}.

X = path-space of types, and Y = path-space of actions, e.g.

X = Y = RN .

η ∈ P(X): types’ distribution (of public knowledge).

Cost function: k(x, y, ν) = c(x, y) + V[ν](y)
↗ ↑ ↖ ↗ ↖

type action actions idiosyncratic mean-field
x ∈ X y ∈ Y distribution part interaction

ν ∈ P(Y)

Usually,

c(x, y) =

N∑
t=1

ct(x1:t, y1:t), V[ν](y) =

N∑
t=1

Vt[ν1:t](y1:t)
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Setting

The mean-field interaction term may capture repulsive/attractive
effects. For example:

→ Congestion effect: Vc[ν](y) = f
Ä
y, dν

dm (y)
ä
, with m ∈ P(Y)

reference measure wrt which congestion measured, f (y, .)↗

→ Attractive effect: Va[ν](y) =
∫
Y φ(y, z)dν(z), with φ cont,

symmetric, convex, minimal on the diagonal

Non-cooperative equilibrium with a continuum of agents.

Static case:

Schmeidler (1973)

Mas-Colell (1984)

. . .

Blanchet and Carlier (2015)
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A motivating example: n-player game

T = {1, 2} meaning this week or next week.

X = {(s, s), (s, h), (h, s), (h, h)}, with
s = sick and h = healthy.

Y = {(v, v), (v,w), (w, v), (w,w)} with
v = vacation and w = work.

ηx1(x2) = P(time-2 type = x2 | time-1 type = x1).

We denote (xi
1, x

i
2) and (yi

1, y
i
2) for Agent i’s types and actions.

The Game: Agents must decide “now” how they will distribute
work and vacation for this and next week, taking into account:

→ current types xi
1 ∈ {s, h}, and priors ηxi

1 ∈ P({s, h}) (known)

→ the fact that taking holidays gets more expensive if many
people are thinking likewise
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A motivating example: n-player game

Agent i selects yi
1 ∈ {v,w} for current week, and guesses a time-2

action yi
2(xi

2) ∈ {v,w} depending on its unknown time-2 type.

The cost of such arrangement, seen from now, is

Ji
Ä
{yi

1, y
i
2(.)}, {yk

1, y
k
2(.)}k,i

ä
:= c1(xi

1, y
i
1) + V1

î
1

n−1

∑
k,i

δyk
1

ó
(yi

1)

+

∫¶
c2(xi

1, x
i
2, y

i
1, y

i
2(xi

2))+V2
î

1
n−1

∑
k,i

δ(yk
1,y

k
2(xk

2))

ó
(yi

1, y
i
2(xi

2))
©
⊗kη

xk
1(dxk

2).

Definition (Dynamic Nash equilibrium)

{yi
1, y

i
2(·)}ni=1 is a dynamic Nash equilibrium if, for all i,

(yi
1, y

i
2(·)) ∈ argmin(a,A(·)) Ji

Ä
{a, A(·)}, {yk

1, y
k
2(.)}k,i

ä
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A motivating example: n-player game

Problems:

search for equilibria: very difficult

even when they exist, difficult to characterize

Idea:

If size n of population is big, one tries to approximate this
difficult equilibrium problem by a hopefully simpler one

For this we need that, as n→ ∞, the empirical distributions of
the n-player game equilibria converge to distributions that
corresponds to equilibria for infinitely many players
(dynamic Nash equilibria → dynamic Cournot-Nash equilibria)

→ From now on we think of the limiting case (infinitesimal agents)
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Pure adapted strategies

Pure strategy: all players of type-path x ∈ X choose same strategy

Y 3 y = A(x) = (At(x))t∈T

Adapted strategy: At(x) = At(x1:t) for all t ∈ T

Denote by A the set of pure adapted strategies A : X → Y

types’ distribution: η ∈ P(X) (of public knowledge)

strategies’ distribution: ν = A(η) ∈ P(Y) (to be determined in
equilibrium)
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Pure equilibrium

Definition ((Pure) dynamic Cournot-Nash equilibrium)

(A∗, ν∗) ∈ A × P(Y) is called dynamic Cournot-Nash equilibrium if

A∗ attains

P(ν∗) := inf
A∈A

∫
X

{
c(x, A(x)) + V[ν∗](A(x))

}
dη(x)

and A∗(η) = ν∗

→ “minimization of an average cost + fixed point condition”

→ Pure equilibria known to rarely exists, so we shall consider:
generalization to mixed-strategy (i.e. randomized) equilibria
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Mixed non-anticipative strategy

mixed-strategy: players of same type can choose different actions

non-anticipative: At(x) = fcn(x1:t) + sth independent of x

• Non-anticipative mixed-strategy = causal (Kantorovic) transport

• The causal Monge transports π = (id, A)(η) ∈ Πc(η, .) are the
pure adapted strategies with prior η on types.

• The set of pure adapted strategies with prior η is dense in (and
equals the extreme point of) the set Πc(η, . ).
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Mixed-strategy equilibrium

For ν ∈ P(Y), denote M(ν) := infπ∈Πc(η,.) E
π
[
c(x, y) + V[ν](y)

]
.

Definition (Mixed-strategy dynamic Cournot-Nash equilibrium)

(π∗, ν∗) ∈ Πc(η, .) × P(Y) is called a mixed-strategy equilibrium if

π∗ attains M(ν∗),

with ν∗ = p2(π∗), i.e., π∗ ∈ Πc(η, ν∗).

→ Mixed-strategy equilibria are solutions to causal transport
problems, i.e. π∗ as above does also attain

inf
π∈Πc(η,ν∗)

Eπ[c(x, y)].

→ Analogously, pure equilibria are solutions to causal transport
problems over Monge maps.
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Potential games

We have seen that equilibrium =⇒ optimal transport

For potential games, we will have “⇐⇒” in a precise sense

Definition (Potential Game)

V is the first variation of an energy functional E : P(Y)→ R:

lim
ε→0+

E(ν + ε(µ − ν)) − E(ν)
ε

=

∫
Y

V[ν]d(µ − ν), ∀ ν, µ ∈ P(Y)

E.g. for congestion and attractive costs Vc and Va, we have

Ec(ν) =

∫
Y

F
Ä
y,

dν
dm

(y)
ä
dm(y), Ea(ν) =

1
2

∫
Y×Y

φ(y, z)dν(z)dν(y),

where F(y, u) =
∫ u

0 f (y, s)ds.
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Potential games

Consider the variational problem

(VP) inf
ν∈P(Y)

®
inf

π∈Πc(η,ν)
Eπ[c(x, y)]︸                    ︷︷                    ︸

CT(η, ν)

+E[ν]
´

Theorem
Let E be convex, then the following are equivalent:

(i) (π∗, ν∗) is a mixed-strategy equilibrium;

(ii) ν∗ solves (VP), and π∗ solves CT(η, ν∗).

Convexity of E only needed for “(i)⇒ (ii)”.

Remark. Note:
(VP) = inf

π∈Πc(η,·)

{
Eπ[c] + E[p2(π)]

}
.

Thus if E concave and ∃ equilibrium ⇒ ∃ pure equilibrium.
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Potential games

Corollary (existence)

Let c be l.s.c. and bounded below. Then

V = Vc and growth condition on f ⇒ ∃ m-s equilibrium;

V = Va and growth condition on c ⇒ ∃ m-s equilibrium.

Growth conditions ensure existence of a solution ν∗ to (VP), and
CT(η, ν∗) admits a solution π∗ easily. Now apply previous theorem.

Corollary (uniqueness)

If E strictly convex ⇒ all m-s equilibria have same second
marginal ν∗, i.e., unique optimal distribution of actions.

Indeed, ν 7→CT(η, ν) convex, hence E strictly convex implies
unique solution ν∗ for (VP). Then apply previous theorem.
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Addendum to the
Value of information section
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Optimal stopping

With the same method used above, we can estimate the value
of information wrt other optimization problems, e.g.

vF := inf
FW -st.t.

EP [`(W, τ)] , vG := inf
GW -st.t.

EP [`(W, τ)] ,

where ` : C[0,T ] × R+ cost function, W BM

Proposition

Let ` be F -optional, and K-Lipschitz in its first argument wrt a
metric d on C × C, uniformly in time. Then

0 ≤ vF − vG ≤ K inf
π∈ΠF ,G(γ,γ)

Eπ[d(ω,ω)].

E.g. `(x, t) = f (xt) and `(x, t) = f (sups≤t xs) satisfy the above
conditions, with d(ω, ω̃) = ‖ω − ω̃‖∞, if f is Lipschitz. In this case

0 ≤ vF − vG ≤ K inf
π∈ΠF ,G(γ,γ)

Eπ[VT (ω − ω)].
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Optimal stopping

Steps of the proof:

Fix a causal transport π ∈ ΠF ,G(γ, γ).

Similar idea, but “projecting stopping times” less obvious.

Randomized stopping time: Σ ∈ RS T (F , µ) is increasing,
right-cont., F -adapted, with Σ0 = 0 and ΣT = 1, µ-a.s.

For Σ ∈ RS T (G, γ), let Σ̃ be its (π,F ⊗ {∅,C})-opt. proj.

By causality: opt. proj. is π-ind. from dual opt. proj.

Then Σ̃ ∈ RS T (F , γ) and

Eπ
î∫ T

0 `(ω, t)dΣt(ω)
ó

= Eγ
î∫ T

0 `(ω, t)dΣ̃t(ω)
ó

Conclude by using inf
FW -st.t.

EP [`(W, τ)] = inf
Σ̃∈RS T (F ,γ)

Eγ
î∫
`tdΣ̃t

ó
(analogous in the enlarged filtration)
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