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Rough volatility

Lecture 1: Econometrics

Jim Gatheral 
Department of Mathematics

Outline of Lecture 1
The briefest possible introduction to R and iPython notebook

The time series of historical volatility
Scaling properties
Approximate normality of increments of log volatility

Approximate multifractality

Estimation of H

What is R? (http://cran.r-project.org (http://cran.r-project.org))
From Wikipedia:

In computing, R is a programming language and software environment for statistical computing and
graphics. It is an implementation of the S programming language with lexical scoping semantics
inspired by Scheme.

R was created by Ross Ihaka and Robert Gentleman at the University of Auckland, New Zealand, and
is now developed by the R Development Core Team. It is named partly after the first names of the first
two R authors (Robert Gentleman and Ross Ihaka), and partly as a play on the name of S. The R
language has become a de facto standard among statisticians for the development of statistical
software.
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R is widely used for statistical software development and data analysis. R is part of the GNU project,
and its source code is freely available under the GNU General Public License, and pre-compiled binary
versions are provided for various operating systems. R uses a command line interface, though several
graphical user interfaces are available.

The IPython Notebook (http://ipython.org/notebook.html
(http://ipython.org/notebook.html))
From ipython.org:

The IPython Notebook is a web-based interactive computational environment where you can combine code
execution, text, mathematics, plots and rich media into a single document:

The IPython notebook with embedded text, code, math and figures. These notebooks are normal files that can
be shared with colleagues, converted to other formats such as HTML or PDF, etc. You can share any publicly
available notebook by using the IPython Notebook Viewer service which will render it as a static web page. This
makes it easy to give your colleagues a document they can read immediately without having to install anything.

http://nbviewer.ipython.org/github/dboyliao/cookbook-code/blob/master/notebooks/chapter07_stats/08_r.ipynb
(http://nbviewer.ipython.org/github/dboyliao/cookbook-
code/blob/master/notebooks/chapter07_stats/08_r.ipynb) has instructions on using R with iPython notebook.

Motivation for econometric study
[Alòs et al.]  and subsequently [Fukasawa]  showed that the empirically observed power-law term
structure of the at-the-money volatility skew could be replicated in the short expiration limit by a
stochastic volatility model where the volatility process is a function of fractional Brownian motion (fBm).

For such a model to offer a realistic description of the historical time series of instantaneous volatility,
this time series would have to exhibit scaling properties consistent with fBm.

It is therefore natural to investigate the scaling properties of volatility time series.

The time series of realized variance
We would like to study the time series of instantaneous variance  but of course cannot because  is
latent.

On the other hand, integrated variance  may (in principle) be estimated arbitrarily
accurately given enough price data.

In practice, market microstructure noise makes estimation harder at very high frequency.
Sophisticated estimators of integrated variance have been developed to adjust for market
microstructure noise. See Gatheral and Oomen  (for example) for details of these.

[1] [9]

[9]
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The Oxford-Man Institute of Quantitative Finance makes historical realized variance (RV) estimates
freely available at http://realized.oxford-man.ox.ac.uk (http://realized.oxford-man.ox.ac.uk). These
estimates are updated daily.

Each day, for 31 different indices, all trades and quotes are used to estimate realized (or
integrated) variance over the trading day from open to close.

Using daily RV estimates as proxies for instantaneous variance, we may investigate the time series
properties of integrated variance empirically.

First update and save the latest Oxford-Man data:

In [1]: setwd("./LRV") 

In [2]: download.file(url="https://realized.oxford-man.ox.ac.uk/images/oxfordman
realizedvolatilityindices.zip", destfile="oxfordRvData.zip") 
unzip(zipfile="oxfordRvData.zip") 

There are many different estimates of realized variance, all of them very similar. We will use the realized kernel
estimates denoted by ".rk".

In [3]: library(quantmod) 
library(repr) 

In [4]: rv.data <- read.csv("OxfordManRealizedVolatilityIndices.csv") 
 
rv1 <- data.frame(rv.data$X,rv.data$Symbol,rv.data$rk_th2) # Tukey-Hanni
ng kernel 
names(rv1) <- c("Date","Symbol","rk") 
index.names <- as.matrix(unique(rv1$Symbol)) 

In [5]: rv.list <- NULL 
index.names <- as.matrix(index.names) 

Loading required package: xts 
Loading required package: zoo 
 
Attaching package: ‘zoo’ 
 
The following objects are masked from ‘package:base’: 
 
    as.Date, as.Date.numeric 
 
Loading required package: TTR 
Version 0.4-0 included new data defaults. See ?getSymbols. 
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In [6]: n <- length(index.names) 
 
for (i in 1:n){ 
    pick <- (rv1$Symbol==index.names[i]) 
    tmp <- rv1[pick,] 
    #print(tmp$Date[1218:1222]) 
    #dates <- strptime(as.character(tmp$Date),"%Y-%m-%d") 
    dates <- as.Date(as.character(tmp$Date),"%Y-%m-%d") 
    #print(which(is.na(dates)==TRUE)) 
    #print(dates[1218:1222]) 
    tmp.krv1 <- xts(tmp$rk,order.by=dates)  
    rv.list[[i]] <- tmp.krv1[(tmp.krv1!="")&(tmp.krv1!="0")] 
} 

In [7]: names(rv.list) <- index.names 
names(rv.list) 

Let's plot SPX realized variance.

In [8]: library(repr) 
options(repr.plot.width=14,repr.plot.height=8) 

In [9]: spx.rk <- rv.list[[".SPX"]] 
stoxx.rk <- rv.list[[".STOXX50E"]] 

In [10]: save(spx.rk,stoxx.rk,file="OxfordRV.rData") 

'.AEX'  '.AORD'  '.BFX'  '.BSESN'  '.BVLG'  '.BVSP'  '.DJI'  '.FCHI'  '.FTMIB'
'.FTSE'  '.GDAXI'  '.GSPTSE'  '.HSI'  '.IBEX'  '.IXIC'  '.KS11'  '.KSE'  '.MXX'
'.N225'  '.NSEI'  '.OMXC20'  '.OMXHPI'  '.OMXSPI'  '.OSEAX'  '.RUT'  '.SMSI'
'.SPX'  '.SSEC'  '.SSMI'  '.STI'  '.STOXX50E'
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In [11]: plot(log(spx.rk), main="Log of SPX realized variance",col="red") 

Figure 1: Oxford-Man Log KRV estimates of SPX realized variance from January 2000 to the current date.

In [12]: print(head(spx.rk)) 
print(tail(spx.rk)) 

                   [,1] 
2000-01-03 1.301572e-04 
2000-01-04 1.622259e-04 
2000-01-05 2.398365e-04 
2000-01-06 1.322324e-04 
2000-01-07 9.486773e-05 
2000-01-10 1.121113e-04 
                   [,1] 
2019-01-03 2.168852e-04 
2019-01-04 1.305852e-04 
2019-01-07 8.449293e-05 
2019-01-08 8.199344e-05 
2019-01-09 7.417078e-05 
2019-01-10 6.374206e-05 
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Scaling of the volatility process
For , we define the th sample moment of differences of log-volatility at a given lag .(  denotes the
sample average):

For example

is just the sample variance of differences in log-volatility at the lag .

Scaling of  with lag 

In [13]: sig <- sqrt(as.numeric(spx.rk)) 
 
mq.del.Raw <- function(q,lag){mean(abs(diff(log(sig),lag=lag))^q)} 
mq.del <- function(x,q){sapply(x,function(x){mq.del.Raw(q,x)})} 
 
# Plot mq.del(1:100,q) for various q 
 
x <- 1:100 
 
mycol <- rainbow(5) 
 
ylab <- expression(paste(log," ",m(q,Delta))) 
xlab <- expression(paste(log, " ", Delta)) 
 
qVec <- c(.5,1,1.5,2,3) 
zeta.q <- numeric(5) 
q <- qVec[1] 

In [14]: options(repr.plot.height=7, repr.plot.width=10) 
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In [15]: plot(log(x),log(mq.del(x,q)),pch=20,cex=.5, 
         ylab=ylab, xlab=xlab,ylim=c(-3,-.5)) 
fit.lm <- lm(log(mq.del(x,q)) ~ log(x)) 
abline(fit.lm, col=mycol[1],lwd=2) 
zeta.q[1] <- coef(fit.lm)[2] 
 
for (i in 2:5){ 
    q <- qVec[i] 
    points(log(x),log(mq.del(x,q)),pch=20,cex=.5) 
    fit.lm <- lm(log(mq.del(x,q)) ~ log(x)) 
    abline(fit.lm, col=mycol[i],lwd=2) 
    zeta.q[i] <- coef(fit.lm)[2] 
    } 
 legend("bottomright", c("q = 0.5","q = 1.0","q = 1.5","q = 2.0","q = 3.
0"),inset=0.05, lty=1, col = mycol) 
 
print(zeta.q) 

Figure 2:  as a function of , SPX.

[1] 0.08194562 0.16102033 0.23676425 0.30875584 0.44017336 
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Monofractal scaling result
From the above log-log plot, we see that for each , .

How does  scale with ?

Scaling of  with 

In [16]: plot(qVec,zeta.q,xlab="q",ylab=expression(zeta[q]),pch=20,col="blue",cex
=2) 
fit.lm <- lm(zeta.q[1:4] ~ qVec[1:4]+0) 
abline(fit.lm, col="red",lwd=2) 
(h.est <- coef(fit.lm)[1]) 

Figure 3: Scaling of  with .

qVec[1:4]: 0.156620157857186
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We find the monofractal scaling relationship

with .

Note however that  does vary over time, in a narrow range, as we will see later.

Note also that our estimate of  is biased high because we proxied instantaneous variance  with its
average over each day , where  is one trading day.

On the other hand, the time series of realized variance is noisy and this causes our estimate of
 to be biased low.

This scaling property as  is equivalent to -Hölder continuity of paths of the volatility.
Since , volatility is rough!

Estimated  for all indices

We now repeat this analysis for all 31 indices in the Oxford-Man dataset.

In [17]: n <- length(rv.list) 
h <- numeric(n) # H is estimated as half of the slope 
nu <- numeric(n) 
 
for (i in 1:n){ # Run all the regressions 
  v <- rv.list[[i]] 
  sig <- sqrt(abs(as.numeric(v))) 
     
  x <- 1:100 
  dlsig2 <- function(lag){mean((diff(log(sig),lag=lag))^2)} 
  dlsig2Vec <- function(x){sapply(x,dlsig2)} 
 
  fit.lm <- lm(log(dlsig2Vec(x)) ~ log(x)) 
 
  nu[i] <- sqrt(exp(coef(fit.lm)[1])) 
  h[i] <- coef(fit.lm)[2]/2 
   
} 



1/20/2019 LRV1

http://127.0.0.1:8888/nbconvert/html/Course%20and%20workshops/LunterenRoughVolatility/LRV1.ipynb?download=false 10/27

In [18]: (OxfordH <- data.frame(names(rv.list),h.est=h,nu.est=nu)) 

names.rv.list. h.est nu.est

.AEX 0.14894456 0.2706965

.AORD 0.09554204 0.3035204

.BFX 0.13899514 0.2501847

.BSESN 0.12016597 0.2987163

.BVLG 0.09971147 0.2490247

.BVSP 0.12765229 0.2949439

.DJI 0.15548473 0.2801131

.FCHI 0.13419545 0.2807162

.FTMIB 0.12576047 0.2684509

.FTSE 0.13381297 0.2791950

.GDAXI 0.15013809 0.2614990

.GSPTSE 0.12541497 0.3038236

.HSI 0.11884095 0.2326801

.IBEX 0.12661706 0.2651929

.IXIC 0.14033643 0.2876229

.KS11 0.12132349 0.2686361

.KSE 0.11273493 0.3976586

.MXX 0.08634424 0.2978649

.N225 0.12239776 0.3027798

.NSEI 0.11664312 0.3268126

.OMXC20 0.10712565 0.3095523

.OMXHPI 0.11850950 0.3162702

.OMXSPI 0.12898628 0.3097799

.OSEAX 0.13302795 0.2556148

.RUT 0.11160780 0.3583539

.SMSI 0.10708354 0.3248299

.SPX 0.15437792 0.2939784

.SSEC 0.13181280 0.3304402

.SSMI 0.18041879 0.1737622

.STI 0.05678204 0.2665806

.STOXX50E 0.10635811 0.3537869
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Distributions of  for various lags 

Having established these beautiful scaling results for the moments, how do the histograms look?

In [19]: plotScaling <- function(j,scaleFactor){ 
  v <- as.numeric(rv.list[[j]]) 
  x <- 1:100 
   
  xDel <- function(x,lag){diff(x,lag=lag)} 
  sd1 <- sd(xDel(log(v),1)) 
  sdl <- function(lag){sd(xDel(log(v),lag))} 
 
  h <- OxfordH$h.est[j] 
   
  plotLag <- function(lag){ 
    y <- xDel(log(v),lag) 
    hist(y,breaks=100,freq=F,main=paste("Lag =",lag,"Days"),xlab=NA)# Ve
ry long tailed! 
    curve(dnorm(x,mean=mean(y),sd=sd(y)),add=T,col="red",lwd=2) 
    curve(dnorm(x,mean=0,sd=sd1*lag^h),add=T,lty=2,lwd=2,col="blue") 
  } 
   
  (lags <- scaleFactor^(0:3)) 
  print(names(rv.list)[j]) 
  par(mfrow=c(2,2)) 
  par(mar=c(3,2,1,3)) 
  for (i in 1:4){plotLag(lags[i])} 
  par(mfrow=c(1,1)) 
} 

In [20]: options(repr.plot.height=5, repr.plot.width=10) 
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In [21]: plotScaling(27,5) 

Figure 4: Histograms of  for various lags ; normal fit in red;  normal fit scaled by 
in blue.

Universality?
[Gatheral, Jaisson and Rosenbaum]

We have also checked that Gold and Crude Oil futures scale similarly.
Although the increments  seem to be fatter tailed than Gaussian.

[Bennedsen et al.][2]</a></sup>, estimate volatility time series for more than five thousand individual
US equities, finding rough volatility in every case.

A microstructural explanation: A Hawkes model of price formation
Why might rough volatility be universal?

[Jaisson and Rosenbaum]

Remarkably, [El Euch and Rosenbaum][6]</a></sup> were able to compute the characteristic function
of the resulting rough Heston model.

[8]</a></sup> compute daily realized variance estimates over one hour windows for DAX

and Bund futures contracts, finding similar scaling relationships.

[10]</a></sup> show that rough volatility can be obtained as a scaling limit of a simple model of price

dynamics in terms of Hawkes processes.

[1] ".SPX" 



1/20/2019 LRV1

http://127.0.0.1:8888/nbconvert/html/Course%20and%20workshops/LunterenRoughVolatility/LRV1.ipynb?download=false 13/27

A natural model of realized volatility
Distributions of differences in the log of realized variance are close to Gaussian.

This motivates us to model  as a lognormal random variable.

Moreover, the scaling property of variance of RV differences suggests the model:
(1)

where  is fractional Brownian motion.

Indeed, if  is constant, (1) is the unique model consistent with Gaussianity of log differences, the
observed scaling, and continuity of the volatility process.

Fractional Brownian motion (fBm)
Fractional Brownian motion (fBm)  is the unique Gaussian process with mean zero and
autocovariance function

where  is called the Hurst index or parameter.
In particular, when , fBm is just Brownian motion.
If , increments are positively correlated ("trending").
If , increments are negatively correlated ("reverting").

Efficient estimation of 

So far, we just used simple regression to estimate .

When  is small, as we find empirically, out of all the estimators that we tested, the ACF estimator
adopted by [Bennedsen et al.]

Heuristic derivation of the ACF estimator
Once again, the covariance structure of fBm is given by

Up to a multiplicative factor, our model is

Then  and

[4]</a></sup> is the most efficient.
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Dividing one by the other gives

Thus, for  sufficiently small,

Note in particular that we expect the ACF estimator to work best when .
Also, when , we have  as we would expect for Brownian motion.

The ACF estimator
Taking logs of each side, we obtain

Thus  can be estimated efficiently by regression.

In [22]: h.acf <- function(path){ 
    y.acf <- acf(path,plot=F) 
    log.del <- log(y.acf$lag[-1]) 
    log.lhs <- log(1-y.acf$acf[-1]) 
    fit.lm <- lm(log.lhs ~ log.del) 
    return(fit.lm$coef[2]/2) 
        } 

An example: Estimate of  for 2005
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In [23]: yPath <- spx.rk["2005-01-01::2005-12-31"] 
plot(yPath,col="blue") 

Figure 5: SPX realized kernel estimates of integrated variance for 2003.

In [24]: h.acf(as.numeric(yPath)) 

Time series of  using ACF

We now draw the time series of  using the ACF estimator.

In [24]: h.acf.i <- function(series)function(del)function(i){ 
    rk.path <- as.numeric(series[(i-del):i]) 
    h.acf(rk.path) 
    } 

In [25]: h.acf.i(spx.rk)(252)(1234) 

In [26]: h.acf.series <- function(series)function(del){ 
    require(xts) 
    n <- length(series) 
    res <- sapply((1+del):n,h.acf.i(series)(del)) 
    return(xts(res,order.by=index(series[(1+del):length(series)]),tzone 
= Sys.getenv("TZ"))) 
} 

log.del: 0.149562600615522

log.del: 0.145364597464173
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Compare the two estimates of 

In [27]: rownum <- which(OxfordH[,1]==".SPX") 
n.spx <- length(spx.rk) 
h.spx.acf <- as.numeric(h.acf.series(spx.rk)(n.spx-1)) 
h.spx.regression <- OxfordH$h.est[rownum] 
nu.spx.regression <- OxfordH$nu.est[rownum] 
data.frame(h.spx.acf,h.spx.regression) 

Looking again at the log-log plots of  against , we note that the points don't quite lie on a
straight line.

A more careful analysis that takes account of the bias due to averaging and the noisiness of the time
series of realized variance gives us an estimate of  more consistent with the ACF estimate.

Time series of  for SPX

Here . Estimates use 15-minute data.

Warning message in xts(res, order.by = index(series[(1 + del):length(se
ries)]), : 
“‘tzone’ setting ignored for  Date  indexes”

h.spx.acf h.spx.regression

0.1030575 0.1543779
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Figure 6: Time series of H from [Bennedsen et al.]

Observations
 tends to spike when the market is under stress.

And seems close to zero when the market is calm.
Could  be related to underlying market liquidity?

Note the following peaks
The Greek debt crisis in late 2011.
The Brexit vote in 2015. In this case  rises with uncertainty then collapses.

When the market crashes,  rises. But often  rises without the market crashing.

In particular,  of the volatility time series seems to be a meaningful and relevant statistic.

Repeat using the ACF estimator on daily realized kernel estimates

In [28]: h.spx.252 <-  h.acf.series(spx.rk)(252) 

In [29]: options(repr.plot.width=14,repr.plot.height=7) 
plot(h.spx.252,main="SPX",ylab="H",col="red") 
abline(h=median(h.spx.252),lty=2,col="red",lwd=2) 
abline(h=mean(h.spx.252),lty=2,col="blue",lwd=2) 

[4]</a></sup>.

Warning message in xts(res, order.by = index(series[(1 + del):length(se
ries)]), : 
“‘tzone’ setting ignored for  Date  indexes”
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Figure 7: Time series of  using data realized kernel estimates.

Time series of  for STOXX50

In [30]: h.stoxx.252 <- h.acf.series(stoxx.rk)(252) 

In [31]: plot(h.stoxx.252,main="STOXX50",ylab="H",col="blue") 
abline(h=median(h.stoxx.252),lty=2,col="red") 
abline(h=mean(h.stoxx.252),lty=2,col="blue") 

Figure 8: Time series of  for STOXX50 using data realized kernel estimates.

Plot both together

Warning message in xts(res, order.by = index(series[(1 + del):length(se
ries)]), : 
“‘tzone’ setting ignored for  Date  indexes”
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In [32]: plot(cbind(h.spx.252,h.stoxx.252),main="SPX plus STOXX50",col=c("red","b
lue"),lwd=2,major.ticks= "years", 
        minor.ticks = FALSE) 
legend((x="topleft"), legend = c("SPY", "STOXX50"),lty = 1,lwd=2,col = c
("red","blue")) 

Figure 9: Sometimes the peaks line up, and sometimes not.

Line up time series of  with VIX

First we use quantmod to download VIX data.

In [33]: options("getSymbols.warning4.0"=FALSE,"getSymbols.yahoo.warning"=FALSE) 
getSymbols('^VIX',from="2001-01-01") 

Superimpose VIX and H time series

'VIX'
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In [34]: plot(as.zoo(Cl(VIX)),col="blue",yaxt="n",ylab="",xlab="Date") 
par(new=TRUE)                
plot(as.zoo(h.spx.252),col="red", xaxt="n", yaxt="n",  xlab="", ylab="",
lwd=2) 

Figure 10: VIX in blue; H in red. Sometimes  increases with VIX and sometimes not.

Comte and Renault: FSV model
[Comte and Renault]
In their fractional stochastic volatility (FSV) model,

with

and .

[5]</a></sup> were perhaps the first to model volatility using fractional Brownian motion.
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RFSV and FSV
The model (1):

is not stationary.
Stationarity is desirable both for mathematical tractability and also to ensure reasonableness
of the model at very large times.

The RFSV model (the stationary version of (1)) is formally identical to the FSV model. Except that
 in RFSV vs  in FSV.
 in RFSV vs  in FSV, where  is a typical timescale of interest.

FSV and long memory
Why did [Comte and Renault]

Because it has been a widely-accepted stylized fact that the volatility time series exhibits long
memory.

In this technical sense, long memory means that the autocorrelation function of volatility decays as a
power-law.

One of the influential papers that established this was [Andersen, Bollerslev, Diebold and Ebens][2]</a>
</sup> which estimated the degree  of fractional integration from daily realized variance data for the
30 DJIA stocks. They effectively tried to fit something like FIGARCH.

Using the GPH (Geweke-Porter-Hudak) estimator, they found  around  which implies
that the ACF  as .

Log-log plot of empirical autocorrelation of volatility (correlogram)

[6]</a></sup> choose ?
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In [35]: v <- as.numeric(rv.list[[".SPX"]]  ) 
ac.sig <- acf(sqrt(v),lag=100,plot=F) 
plot(log(ac.sig$lag[-1]),log(ac.sig$acf[-1]),pch=20, 
     ylab=expression(rho[sigma](Delta)),xlab=expression(paste(Delta," (d
ays)")),col="blue") 

Figure 5: A correlogram of ; it doesn't look linear!

Power-law fit
We exclude the first 20 points so as to fit the tail.

In [36]: (fit.lm <- lm(log(ac.sig$acf[-1][-(1:20)]) ~ log(ac.sig$lag[-1][-(1:20
)]))) 

Call: 
lm(formula = log(ac.sig$acf[-1][-(1:20)]) ~ log(ac.sig$lag[-1][-(1:2
0)])) 
 
Coefficients: 
                 (Intercept)  log(ac.sig$lag[-1][-(1:20)])   
                      0.7912                       -0.4151   
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In [37]: plot(log(ac.sig$lag[-1]),log(ac.sig$acf[-1]),pch=20, 
     ylab=expression(rho(Delta)),xlab=expression(paste(Delta," (days)"
)),col="blue") 
abline(fit.lm,col="red",lwd=2) 

Figure 6: Correlogram of  with power-law fit.

In other words, just fitting a straight line to the log-log plot of the autocorrelation  of the volatility
we get

as .

This corresponds to , consistent with the  found by [Andersen, Bollerslev, Diebold
and Ebens]
Note however that the correlogram does not look like a straight line on the log-log plot!

Plot vs 

Again, we have  so

Thus  should be a linear function of .

[1]</a></sup>.
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In [38]: sig.cov <- acf(sig,lag.max=100,type="covariance",plot=F)$acf[-1] 
x <- (1:100)^(2*h.spx.regression) 
plot(x,sig.cov,pch=20,col="dark green",ylab= expression(paste("Covarianc
e of log ",sigma)),xlab=expression(Delta^0.30 )) 
abline(lm(sig.cov~x),col="red",lwd=2) 

Figure 7: The data is very consistent with the RFSV model.

Long memory of volatility may be spurious
Figures 5, 6, and 7 all demonstrate consistency of the realized kernel data with RFSV and are
inconsistent with power-law decay of the autocorrelation function.

RFSV does not have this long memory property.

Moreover, [Gatheral, Jaisson and Rosenbaum]

Real data and simulated data generate very similar plots and similar estimates of the long
memory parameter to those found in the prior literature.

Classical estimation procedures seem to identify spurious long memory of volatility.

Here is a quote from [Bennedsen, Lunde and Pakkanen][4]</a></sup>:

Having examined intraday volatility measurements on the E-mini S&P 500 futures contract, we
can conclude that volatility is rough, highly persistent, and non-Gaussian. However, we were
unable to distinguish between genuine long memory and persistence, yet technically short
memory in the data.

[6]</a></sup> simulate volatility in the RFSV model and apply standard

estimators to the simulated data.
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Incompatibility of FSV with realized variance (RV) data
In Figure 9, we demonstrate graphically that long memory volatility models such as FSV with 
are not compatible with the RV data.

In the FSV model, the autocorrelation function . Then, for long memory, we must have
$1/2
For , stationarity kicks in and  tends to a constant as .
For , mean reversion is not significant and .

RFSV vs FSV
We can compute  explicitly in both the FSV and RFSV models.

The smallest possible value of  in FSV is . One empirical estimate in the literature says that 
 some time in 2008.

Let's see how the theoretical estimates of  compare with data.

Figure 8: Black points are empirical estimates of ; the blue line is the FSV model with  and 
; the orange line is the RFSV model with  and .
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Does simulated RSFV data look real?

Figure 9: Volatility of SPX (above) and of the RFSV model (below).

Remarks on the comparison
In respect of roughness, the simulated and actual graphs look very alike.

Persistent periods of high volatility alternate with low volatility periods.

 generates very rough looking sample paths (compared with  for Brownian motion).

Hence rough volatility.



1/20/2019 LRV1

http://127.0.0.1:8888/nbconvert/html/Course%20and%20workshops/LunterenRoughVolatility/LRV1.ipynb?download=false 27/27

On closer inspection, we observe fractal-type behavior.

The graph of volatility over a small time period looks like the same graph over a much longer time
period.

This feature of volatility has been investigated both empirically and theoretically in, for example, [Bacry
and Muzy]

Summary
We uncovered a remarkable monofractal scaling relationship in historical volatility.

Conventional long memory models are inconsistent with this scaling relationship.
Prior work indicating long memory in volatility time series is not supporteed.

The Hurst exponent  varies over time.
Peaks typically correspond to periods of market stress.

These empirical observations lead naturally to the non-Markovian stochastic volatility RFSV model
under .
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