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18th Winter school on Mathematical Finance

Lunteren, January 21-23, 2019

Rough volatility

Lecture 3: Forecasting

Jim Gatheral 
Department of Mathematics

Outline of Lecture 3

Forecasting realized variance

Predicting the forward variance curve

The fair value of VIX futures

Rough volatility and forecasting

What is are rough volatility models good for?
One obvious application is to volatility forecasting.

If follows that we can estimate the fair value of the variance swap curve.
With high frequency data as input, rough volatility models generate option fair value
estimates.
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Forcasting fBm

In the RFSV model (1),  for some constant .

[Nuzman and Poor]

A heuristic explanation of the formula

The forecast formula comes from regressing  against the  with $s

Let

Then, for  and $0
In particular,

With  thus defined and for $s

In other words, the  are the normal regression coefficients.

[6]</a></sup> show that  is conditionally Gaussian with conditional expectation

 and conditional variance

where
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The forecast formula

Using that  is a Gaussian random variable, we get that

Variance forecast formula

 
(3)

 

where

Discretization of the forecast formula

In [Gatheral, Jaisson, Rosenbaum]

where  is the maximum number of lags and the normalizing constant  is given by

Inspired by [Bennedsen, Lunde and Pakkanen][2]</a></sup>, we approximate the first term in the sum more
accurately as follows.

where  is chosen such that

where . Thus

[4]</a></sup>, we discretize the integral by taking mid-points as in
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Load some useful libraries

In [1]: library(quantmod) 
library(repr) 
library(stinepack) 

In [2]: options(repr.plot.width=10,repr.plot.height=7) 

Load realized kernel estimates from Lecture 1

In [3]: setwd("./LRV") 
 
load("OxfordRV.rData") 

In [4]: h.spx.regression <- 0.15 
nu.spx.regression <- 0.30 

In [5]: tail(spx.rk) 

Implement variance forecast in R

Loading required package: xts 
Loading required package: zoo 
 
Attaching package: ‘zoo’ 
 
The following objects are masked from ‘package:base’: 
 
    as.Date, as.Date.numeric 
 
Loading required package: TTR 
Version 0.4-0 included new data defaults. See ?getSymbols. 

                   [,1] 
2019-01-03 2.168852e-04 
2019-01-04 1.305852e-04 
2019-01-07 8.449293e-05 
2019-01-08 8.199344e-05 
2019-01-09 7.417078e-05 
2019-01-10 6.374206e-05
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In [6]: # Find all of the dates 
dateIndex <- substr(as.character(index(spx.rk)),1,10) # Create index of
 dates 
 
cTilde <- function(h){gamma(3/2-h)/(gamma(h+1/2)*gamma(2-2*h))} # Factor
 because we are computing conditional on \cF_t 
 
# XTS compatible version of forecast 
rv.forecast.XTS <- function(rvdata,h,date,nLags,delta,nu){ 
    gam <- 1/2-h 
    j <- (1:nLags)-1 
    cf <- 1/((j+1/2)^(h+1/2)*(j+1/2+delta)) # Lowest number should apply
 to latest date 
    s.star <- gam^(1/(1-gam)) 
    cf[1] <- 1/(s.star^(h+1/2)*(s.star+delta)) 
    datepos <- which(dateIndex==date) 
    ldata <- log(as.numeric(rvdata[datepos-j])) # Note that this object
 is ordered from earlier to later 
    pick <- which(!is.na(ldata)) 
    norm <- sum(cf[pick]) 
    fcst <- cf[pick]%*%ldata[rev(pick)]/norm # Most recent dates get the
 highest weight 
    return(exp(fcst+2*nu^2*cTilde(h)*delta^(2*h))) 
 
    } 

SPX actual vs forecast variance

In order to forecast using (3), we need estimates of  and .
We use our estimates of  and  from the regressions rather than from the ACF estimator.
The choice does not seem to make much difference.

In [7]: var.forecast.spx <- function(h,nu)function(del){ 
    n <- length(spx.rk) 
    nLags <- 200 
     
    range <- nLags:(n-del) 
    rv.predict <- sapply(dateIndex[range],function(d){rv.forecast.XTS(rv
data=spx.rk,h,d,nLags=nLags,delta=del,nu)}) 
    rv.actual <- spx.rk[range+del] 
    return(list(rv.predict=rv.predict,rv.actual=rv.actual)) 
    } 

From experiment, we found that around 200 lags works best.

Scatter plot of delta days ahead predictions
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In [8]: del <- 1 
vf <- var.forecast.spx(h=h.spx.regression,nu=nu.spx.regression)(del) 
rv.predict <- vf$rv.predict 
rv.actual <- vf$rv.actual 
vol.predict <- sqrt(as.numeric(rv.predict)) 
vol.actual <- sqrt(as.numeric(rv.actual)) 
vol.actual <-  sqrt(as.numeric(rv.actual)) 

In [9]: c(mean(vol.actual-vol.predict),sd(vol.actual-vol.predict)) 

In [10]: plot(vol.predict,vol.actual,col="blue",pch=20,cex=.7, ylab="Actual vol."
, xlab="Predicted vol.") 
abline(coef=c(0,1),col="red") 

Figure 1: Actual vols vs predicted vols.

Which point is the outlier?

In [11]: rv.actual[which(as.numeric(vol.actual)>.09)] 

-0.000342823993285706  0.00270576631284872

                  [,1] 
2008-10-10 0.008509655
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In [12]: rv.predict[which(as.numeric(vol.predict)>.06)] 

Superimpose actual and predicted vols

In [13]: plot(vol.actual, col="blue",type="l") 
lines(vol.predict, col="red",type="l") 

Figure 2: Actual volatilities in blue; predicted vols in red. Note that volatilities are in daily terms.

VolX

The commercial company VolX (http://volx.us (http://volx.us)) has developed a number of RealVol
Instruments and RealVol Indices based on realized volatility as defined by the RealVol Formulas.

Their business model is to license these indices to exchanges and information providers.

They publish daily forecasts of RV using HARK (which is HAR-RV with Kalman filtering, and RVOL, an
implementation of the Rough Volatility forecast.

You can compare forecast versus actual volatility for the two estimators here:
http://www.volx.us/volatilitycharts.shtml?2&SPY&PRED (http://www.volx.us/volatilitycharts.shtml?
2&SPY&PRED).

2008-10-10: 0.00481234404469367
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VolX screenshots
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Conditional and unconditional variances

The HAR and rough volatility forecasts are both impressive.
Much superior to alternatives such as GARCH.

However, HAR is a regression and rough volatility is a proper model.

One practical consequence is that we can put error bars on our volatility forecasts.
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So how good is the forecast?

Specifically, by how much is the variance of the future variance reduced by taking into account the whole
history of the fBm?

In practice of course, we only consider some finite history, 200 points say.
We know this again from [Nuzman and Poor]

We can compute this ratio empirically and compare with the model prediction.

Unconditional and conditional variance vs lag 

First we compute the time series of prediction errors.

In [14]: log.vol.err <- function(del){ 
    vf <- var.forecast.spx(h=h.spx.regression,nu=nu.spx.regression)(del) 
    rv.predict <- vf$rv.predict 
    rv.actual <- vf$rv.actual 
    vol.predict <- sqrt(as.numeric(rv.predict)) 
    vol.actual <-  sqrt(as.numeric(rv.actual))  
    err <- log(vol.actual)-log(vol.predict) 
    return(err) 
    } 

In [15]: var.log.err <- function(del){ 
    var(log.vol.err(del)) 
} 

In [16]: var.log.err(10) 

The following code takes too long to run. You can run it by uncommenting the code.

In [17]: del <- 1:100 
#var.log.err.del <- sapply(del,var.log.err) 

In [18]: #save(var.log.err.del ,file="./LRV/varerr201811.rData") 
load(file="varerr201811.rData") 

[10]</a></sup> who showed that the ratio of the conditional to the

unconditional variance of the  is

0.132808422717691
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Plot of conditional and unconditional variance

The unconditional variance of differences in log-vol is given by

The conditional variance is given by var.log.err .

In [19]: sig <- sqrt(as.numeric(spx.rk)) 
 
mq.del.Raw <- function(q,lag){mean(abs(diff(log(sig),lag=lag))^q)} 
mq.del <- function(x,q){sapply(x,function(x){mq.del.Raw(q,x)})} 

In [20]: plot(del,mq.del(del,2),pch=20,cex=1,ylab=expression(Variance),  
     xlab=expression(Delta),col="blue",ylim=c(0,.35), 
     main= "Unconditional and conditional variance") 
curve(nu.spx.regression^2*x^(2*h.spx.regression),from=0,to=100,add=T,col
="red",lwd=2,n=1000) 
points(del,var.log.err.del,col="green4",pch=20) 
curve(cTilde(h.spx.regression)* nu.spx.regression^2*x^(2*h.spx.regressio
n),from=0,to=100, 
      add=T,col="orange",lwd=2,n=1000) 

Figure 3: Actual unconditional variance in blue, rough volatility prediction in red; Actual conditional variance in
green, rough volatility prediction in orange.
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Amazing agreement between data and model

We observe that the ratio of conditional to unconditional variance is more or less exactly as predicted
by the model!

Forecasting the variance swap curve

Finally, we forecast the whole variance swap curve using the variance forecasting formula (3).

In [21]: xi.raw <- function(date,nu,h,delta){ # delta is in days 
    xi <- rv.forecast.XTS(rvdata=spx.rk,h=h,date=date,nLags=200,delta=de
lta,nu=nu) 
    return(xi) 
} 
 
# Forward variance curve (again the array tt should be in units of year
s) 
xi.forecast <- Vectorize(xi.raw, vectorize.args = "delta") 

In [22]: xi.forecast(date="2010-05-10",nu=nu.spx.regression,h=h.spx.regression,de
lta=c(9,10)) 

In [23]: varSwapBDays <- function(date,nDays,nu,h,onFactor){ 
 
  tvec <- 1:nDays 
  xicurve <- xi.forecast(date,nu,h,tvec) 
  int.xicurve <- cumsum(xicurve) 
  varcurve <- cumsum(xicurve)/tvec * onFactor 
  res <- data.frame(tvec,varcurve) 
  names(res) <- c("BDays","varswap") 
  return(res) 
} 

Plot of variance swap forecasts by day

0.000273054381799061  0.000266195103982083
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In [24]: plot(varSwapBDays("2016-01-04",3*252,nu=nu.spx.regression,h=h.spx.regres
sion,onFactor=1.4), 
    pch=20,col="blue",xlab="Trading days", ylab="Variance swap rate fore
cast") 

Figure 4: Forecast forward variance curve as of January 4, 2016.

A function to draw a continuous curve

In [25]: varSwapForecast <- function (date, tau, nu, h, onFactor)  
{ 
    vsc <- varSwapBDays(date, 252 * 3, nu = nu, h = h, onFactor) 
    x <- vsc$BDays/252 
    y <- sqrt(vsc$varswap * 252) 
    res <- stinterp(x, y, tau)$y 
    return(res) 
} 
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In [26]: curve(varSwapForecast("2016-01-04",x,nu=nu.spx.regression,h=h.spx.regres
sion,onFactor=2.5), 
    from=0,to=3,col="red",xlab="Maturity (years)", ylab="Forecast varian
ce swap quote",n=1000) 

Figure 5: Forecast of annualized variance swap quotes as of January 4, 2016.

Constructing a time series of variance swap curves

For each of 2,658 days from Jan 27, 2003 to August 31, 2013:

We computed proxy variance swaps from closing prices of SPX options sourced from OptionMetrics
(www.optionmetrics.com) via WRDS.

We form the forecasts  using (3) with 200 lags of SPX RV data sourced from The Oxford-
Man Institute of Quantitative Finance (http://realized.oxford-man.ox.ac.uk (http://realized.oxford-
man.ox.ac.uk)).

We note that the actual variance swap curve is a factor (of roughly 1.4) higher than the forecast, which
we may attribute to a combination of overnight movements of the index and the price of volatility risk.

Forecasts must therefore be rescaled to obtain close-to-close realized variance forecasts.
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3-month forecast vs actual variance swaps

Figure 18: Actual (proxy) 3-month variance swap quotes in blue vs forecast in red (with no scaling factor).
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Ratio of actual to forecast

Figure 19: The ratio between 3-month actual variance swap quotes and 3-month forecasts.
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The Lehman weekend

Empirically, it seems that the variance curve is a simple scaling factor times the forecast, but that this
scaling factor is time-varying.

We can think of this factor as having two multiplicative components: the overnight factor, and
the price of volatility risk.

Recall that as of the close on Friday September 12, 2008, it was widely believed that Lehman Brothers
would be rescued over the weekend. By Monday morning, we knew that Lehman had failed.

In Figure 19, we see that variance swap curves just before and just after the collapse of Lehman are
just rescaled versions of the RFSV forecast curves.

It appears that most of the evolution of the variance swap curve may be explained by a single extra
data point - intraday realized variance from the open to the close of trading on Monday September 15,
2008.
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Figure 5: SPX variance swap curves as of September 12, 2008 (red) and September 15, 2008 (blue). The dashed
curves are RFSV model forecasts rescaled by the 3-month ratio ( ) as of the Friday close. Time measured in
years.

Remarks

We note that

The actual variance swaps curves are very close to the forecast curves, up to a scaling factor.

We are able to explain the change in the variance swap curve with only one extra observation: daily
variance over the trading day on Monday 15-Sep-2008.

The SPX options market appears to be backward-looking in a very sophisticated way.

Compare forecast with actual variance swap curves

We focus on January 4, 2016
A day with an interesting term structure of VIX futures from [Jacquier, Martini and Muguruza]

In [27]: source("plotIvols.R") 
source("fwdVarCurve.R") 
source("roughBergomiVixFutures.R") 

ATM volatilities on January 4, 2016

[5]

</a></sup>.



1/15/2019 LRV3

http://127.0.0.1:8888/nbconvert/html/Course%20and%20workshops/LunterenRoughVolatility/LRV3.ipynb?download=false 19/29

In [28]: ivolData <- read.csv("spxVols20160104.csv") 
res <- plotIvols(ivolData,plot=F) 
plot(res$expiries,res$atmVol,col="green4",pch=20,type="b",xlab="Expiry
 (years)", ylab="Implied volatility") 

Figure 6: Term structure of SPX ATM volatility as of January 4, 2016

Variance swap estimates from eSSVI fits

[Jacquier, Martini and Muguruza]

In [29]: vsData.20160104 <- read.csv("varianceSwaps20160104.csv") 

[5]</a></sup> explain in detail how to fit eSSVI to the volatility surface.
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In [30]: plot(vsData.20160104$texp,sqrt(vsData.20160104$vs),pch=20,col="blue",yla
b="Variance rate",xlab="Expiry") 
curve(varSwapForecast("2016-01-04",x,nu=nu.spx.regression,h=h.spx.regres
sion,onFactor=3.), 
     from=0,to=3,col="red",xlab="Maturity (years)", ylab="Forecast varia
nce swap quote",n=1000000,add=T) 

Figure 7: SPX variance swap rates estimates (in blue) as of Jan 4, 2016 with variance curve forecast
superimposed in red.

Remarks

The forecast doesn't look that great, although the characteristic shape is there.

We can ask a different question: Is there any choice of the parameters  and  and the overnight
factor that would make the forecast close to the actual?

In Figure 8, we see the answer is affirmative.
Moreover the parameters make sense.

Optimized forecast vs actual variance swap curve as of January 4, 2016
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In [31]: plot(vsData.20160104$texp,sqrt(vsData.20160104$vs),pch=20,col="blue",yla
b="Variance rate",xlab="Expiry") 
curve(varSwapForecast("2016-01-04",x,nu=.391,h=.135,onFactor=2.37), 
    from=0,to=3,col="red",xlab="Maturity (years)", ylab="Forecast varian
ce swap quote",n=1000000,add=T) 

Figure 8: SPX variance swap rates estimates (in blue) as of Jan 4, 2016 with variance curve forecast
superimposed in red.

Sensitivity of variance swaps to extrapolation

In general, the value of a variance swap is very sensitive to how the smile is extrapolated.
Two curves that appear to fit traded strikes very well can be very different in the wings.

The key point here is that rough volatility models are consistent with the shape of the forward variance
cuve.
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VIX futures

If we can forecast the variance swap curve, we can also forecast the foreward variance curve.

The VIX payoff is the square-root of the forward variance swap.
A convexity adjustment relates  to .

In principle, we can therefore forecast VIX futures

[Jacquier, Martini and Muguruza]

The distribution of VIX future payoffs

Denote the terminal value of the VIX futures by . Then, by definition (see Chapter 11 of [The
Volatility Surface]  for more details),

where  is one month.

In the rough Bergomi model,

with  so  is lognormal.

The lognormal approximation under rough Bergomi

Under rough Bergomi, the VIX payoff and its square  should be approximately lognormally
distributed.

The quality of this approximation was confirmed by [Jacquier, Martini and Muguruza]

In that case, the terminal distribution of  is completely determined by  and 
.

[5]</a></sup> did the reverse:
Given the estimated forward variance curve and the observed VIX futures prices, what are  and ?

[3]

[5]</a>

</sup>.
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Obviously

Recall that forward variances  may be estimated from variance swaps which can
themselves be proxied by the log-strip (see Chapter 11 of [The Volatility Surface]

Alternatively they may be estimated from linear strips of VIX options.

Approximating the conditional variance of  under rough Bergomi

To estimate the conditional variance of , we approximate the arithmetic mean by the geometric
mean as follows:

Let  and recall that . Apart from  measurable terms (abbreviated as ``drift''), we have

This gives

where

[8]</a></sup>

again).
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Calibration of  from VIX futures

Both [Bayer, Friz and Gatheral]  and [Jacquier, Martini and Muguruza]

However, calibration to VIX futures could be a very quick and practical way of fixing .

If  is fixed, calibration using the Hybrid BSS scheme becomes fast and efficient.
The expensive part is the simulation of  which is fixed if  is fixed.

R implementation

Here is a function that takes a total variance curve as input and outputs VIX future prices for various maturities,
given  and .

In [32]: f.vix 

[1] [5]</a></sup> find that the volatility of

volatility parameter  estimated by calibration to the SPX is roughly 20% greater than the estimate from VIX futures and options.
Arbitrage or model mis-specification?

function (expiries, w, vixMaturities)  
function(H, nu) { 
    conv.adj <- vixConvexity(H, nu, vixMaturities, delta = 1/12) 
    ev2 <- eVix2(expiries, w)(vixMaturities) 
    sqrt(ev2) * conv.adj * 100 
}
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VIX futures on January 4, 2016

Load VIX futures data

In [33]: load("VIX-futures.rData") 

In [34]: vix.fut.20160104 

Compute VIX futures as of January 4, 2016 given  and 

Contract Cdays Tdays Price

Jan 15 12 19.825

Feb 43 32 19.525

Mar 71 52 19.525

Apr 106 77 19.775

May 134 97 19.925

Jun 162 117 20.100

Jul 197 142 20.400

Aug 225 162 20.425

Sep 260 187 20.850
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In [35]: (vix.t <- vix.fut.20160104$Cdays/365.25) 

Now compute VIX futures to these dates:

In [36]: f.vix(vsData.20160104$texp,vsData.20160104$vs*vsData.20160104$texp, 
      vixMaturities=vix.t)(H=0.01,nu=3) 

Find optimal  and 

In [37]: fVIX <- function(paramvec){ 
     
    H <- paramvec[1] 
    nu <- paramvec[2] 
    return(f.vix(vsData.20160104$texp,vsData.20160104$vs*vsData.20160104
$texp, 
      vixMaturities=vix.t)(H,nu)) 
} 

In [38]: fVIX(c(.01,3)) 

In [39]: obj <- function(paramvec){ 
     
    fVIX.model <- fVIX(paramvec) 
    fVIX.actual <- vix.fut.20160104$Price 
    return(sum((fVIX.model-fVIX.actual)^2)*1e6) 
} 

In [40]: obj(c(.01,3)) 

0.0410677618069815  0.11772758384668  0.194387405886379
0.290212183436003  0.366872005475702  0.4435318275154
0.539356605065024  0.616016427104723  0.711841204654346

19.460172306998  20.091495223692  20.2627296849605  20.0280964596902
20.0814026159928  20.8931173006634  20.1570180729451  20.0427861789934
20.5664820341733

19.460172306998  20.091495223692  20.2627296849605  20.0280964596902
20.0814026159928  20.8931173006634  20.1570180729451  20.0427861789934
20.5664820341733

2001325.87971786
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In [41]: (res.optim <- optim(c(.05,3),obj, 
                method="L-BFGS-B",lower=c(0.0001,0.01),upper=c(.49,10))) 

Compare model with market

Our optimization gives , .

[Jacquier, Martini and Muguruza]
Only the produce  is really relevant.

Our fit gives , theirs gives .

In [42]: (fVIX.fit <- fVIX(res.optim$par)) 

[5]</a></sup> find , .

function

gradient

$par

0.0109595897146603  2.94112857204862
$value

1895730.10634589
$counts

83
83

$convergence

0
$message

'CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH'

19.4247191396411  20.0237231871493  20.1754444362798  19.9253449738318
19.968170363363  20.7664364807375  20.0257491692953  19.9060236556735
20.4190736112191
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In [43]: plot(vix.t,vix.fut.20160104$Price,col="blue",cex=2,pch=20,ylim=c(19,21),
ylab="VIX",xlab="Maturity") 
points(vix.t,fVIX.fit,col="red",pch=20,type="b") 
legend("topleft", c("VIX Futures (Rough Bergomi)","VIX Futures (Market)"
), pch = 20, 
       col=c("red","blue") ,inset = .02) 

Figure 9: VIX futures as of January 4, 2016. Rough Bergomi fit in red vs market prices in blue.

Remarks

We don't reproduce the nice futures curve in [Jacquier, Martini and Muguruza]
However, we do more or less agree with their fitted parameters.

It seems that they really did find a nice way to fix  from the VIX futures market.

[5]</a></sup>.
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Summary

The rough volatility forecast is both simpler than and superior to other available volatility forecasts.

In the context of the rough Bergomi model, we can use this forecast of future variance under  to
forecast the forward variance curve.

In particular, we can forecast the term structure of VIX futures.
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