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» Forward variance models

» Affine forward variance models

» The characteristic function of an affine forward variance model
= The rough Heston characteristic function

Rational approximation of the rough Heston solution

Numerical experiments

Forward variance models

Following [Bergomi and Guyon][Z], forward variance models may be written in the form

ds, = S, (det +4/1 —pde,J'>

dé,(u) = n,(u; w) dW,,

where W, W+ are independent Brownian motions, the R (-valued stochastic process 1, (u; ) is progressively
measurable for all # > 0 and £ is linked to the instantaneous variance v by

E(T) =E[vr| Fl.

» Models of this form were also studied by Hans Buihler as variance curve models.
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« If vis continuous and uniformly integrable, we can recover v, from &,(u) as v, = lim,,|, &,(u). For our
purposes, v, = &,(1).

« The initial conditions of a forward variance model are the initial stock price S; and the initial forward
variance curve &,(ut),~.

Important remark

As noted by [Bergomi and Guyon][gl, all conventional finite-dimensional Markovian stochastic volatility models
may be cast as forward variance models.

Example: The classical Heston model
The classical Heston stochastic volatility model may be written as

ds,
— = W dZ,
Sy

with [ [dZ; dW;] = p dt and where A is the speed of reversion of v; to its long term mean V.

Forward variance in the Heston model

With &,(u) = E [v, | F;] take expectations of the SDE for v, to get
dé(u) = —A (& (u) — V) du.

This ODE has the solution
E) = (E0) =) e 45 = (y, = 1) e 47,

The Heston model in forward variance form

For each u, &;(u) is a conditional expectation and so a martingale in ¢. It is then immediate from the last
equation that

dE(u) = e W= g‘; = et @ N dw,
where E\Z denotes the martingale part of dv, .

« ltis easy to check explicitly that all drift (i.e. df) terms cancel.
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The rough Heston model

By considering the limit of a simple Hawkes process-based model of order flow, [El Euch and Rosenbaum]#!
derive a rough Heston model. The equation for variance in this model takes the form

| z | u
-0 - _ H—I/ZA d + —/ _ NH-12 dW )
Ve = 000 = F ) /, =) WAt s W T AW

« H € (0, 1/2] is the Hurst exponent of the volatility, 4 > 0 is the mean reversion parameter, > 0 is
the volatility of volatility parameter.

« The function @ is assumed to be continuous and represents a time-dependent mean reversion level.

» The rough Heston model is a natural fractional generalization of the classical Heston model which is
recovered when H = 1/2.

Forward variance in the rough Heston model
» We will consider only the special case A = 0. In this case, &,(u) = E [v, | F;] = O(u).

o [t follows that

_ 1 ! _ NH-12
vy = &u) + TH+ 12 /t (u— )"~ " nyvs dW;.

o Also

1 ! H-172
L= +—_— - Vs dW,.
Vi = crri) I'(H + 1/2) /,J,h(u ) Y

The rough Heston model in forward variance form

Subtracting these two equations gives
1 o H-1/2
u)— &)= ————— u—s)' aw,.
Srrn(u) — E(u) TH 1 172) /t (u—8)"" Ny

Taking the limit 4 — 0, we obtain

dE () = ——

H-1/2
" - aw,,
T+ Um0 VAW

the rough Heston model in forward variance form.
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Non-Markovianity of the rough Heston model

» Note that the limit u — ¢ of the rough Heston model makes no sense.
» This reflects the fact that the rough Heston model is not Markovian.
= There is no SDE for v, and no corresponding PDE.
» On the other hand, we can write an SDE for each &,(u), u > t.
o We can even apply Ité6's Lemmal

» The rough Heston model is Markovian in the infinite-dimensional forward variance curve &,(u), u > t.

Affine processes

The following explanation is due to Martin Keller-Ressel:

An affine process can be described as a Markov process whose log-characteristic function is an
affine function of its initial state vector.

And here's a definition of the word affine from Wikipedia:

In geometry, an affine transformation or affine map or an affinity (from the Latin, affinis,
"connected with") between two vector spaces (strictly speaking, two affine spaces) consists of a
linear transformation followed by a translation:

x—=>Ax+b

Affine CGF

Let X, = log S;. According to Definition 2.2 of [Gatheral and Keller-Ressel]¥, we say that a forward variance
model has an affine cumulant generating function determined by g(t; u), if its conditional cumulant generating
function is of the form

M

T
log E [e“(XT_X')| F| = / g(T — s;u) £,(s)ds.
t

forallu € [0,1],0 <t < Tand g(.;u) is Rgy-valued and continuous on [0, 7] for all 7 > Oand u € [0, 1].

 The restriction u € [0, 1] is for mathematical convenience. We will later allow complex u.
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When is a forward variance model affine?

Theorem 2.4 of [Gatheral and Keller-Ressel]® states that a forward variance model has an affine CGF if and only

if it takes the form
das
=t — \/W dZt
S

dE,(u) = /%7 k(u— 1) dW,
for some deterministic, non-negative decreasing kernel kx, which satisfies /OT k(r)dr < coforall T > 0.

» Essentially, the only affine stochstic volatility model is the Heston model, up to a choice of kernel.

Moreover, g(.,u) : R5o — Rqin the definition (1) of the CGF is the unique global continuous solution of the
convolution Riccati equation

g(t,u) = Ry (u, / k(t — 5)g(s, u)ds> =Ry <u, (x % g)(t, u)>, t>0
0

where

1 1
Ry(u,w) = 5(142 —u)+puw+ sz.

Alternatively, g(¢, u) can be written as
g(t’ M) = RV(uaf(t’ u))’

where f(t, u) is the unique global solution of the non-linear Volterra equation

f(t,u) = / k(t — )Ry (u, f(t, s))ds.
0

Derivation of the Riccati equation

From the definition definition (1) of the CGF,

T
M, =E|[¥|F,] = exp{uXt +/ E(s) g(T = s; u)a’s} =: exp{uX, + G;}
t

is a conditional expectation and thus a martingale in ¢.
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Applying It6's Lemma to M gives

2
M _ yax, +dG, + ”7 d(X), + % d(G), + ud(X, G),.
t
Now
1
X, = — Evtdt+ Ve dZ,
T
dG, = = &0 g(T — t,u)dr + / dé,(s) (T — sy u) ds
7
= —v, g(T - t;u)dt+/ k(s — 1) \/v; AW, g(T — s;u) ds.
t
We compute

d(X); = v, dt

T
d{G), = v, dt </ k(s — 1) g(T — s;u) ds)

2

T
d{X,G), =pv;dt / k(s — 1) g(T — s;u)ds.
t

Imposing [ [dM,] = 0 and letting = T — ¢ gives
1 1 1
0=v,dt {—§u+ 5 u? —gnyu)+pu(k * g)(r,u) + 2 (K*g)(r,u)z}

where the convolution integral is given by

(x % g)(r,u) = / k(z — 5) g(s; u) ds.
0

« It is almost obvious why the CGF is affine if an only if the forward variance process is of the form

dé(u) = /v; k(u — 1) dW,.

The convolution Riccati equation

Rearranging gives

1 1
gy = S ul =1+ pulcx )@ u) + = (K * )(F; u)? = Ry (u, (k * g)),

as required.
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Example: The classical Heston model
In this case, k(7) = e *".

Then
nh(zs ) = (c % g)w ) = 1 / 6= (s ) ds.
0

Also, 0 h(t; u) = —A h(t; u) + g(t; u). The convolution Riccati equation then becomes

2)
0.h(z; u) = %u(u D)= (= pnuyh(zu) + %nz Wz u)?

consistent with the classical derivation in (for example) Chapter 2 of [The Volatility Surface].

The Heston characteristic function

» The classical Heston Riccati ODE (2) may be solved in closed form as in as in equation (2.12) of [The
Volatility Surface](@l.

» The characteristic function is then given by

T
¢l (a)=E [ei“XT| F,] = exp{iaX, + / E,(s) g(T — s;1a) a’s}

where
g(ryu) = 9,h(t;u) + A h(t; u).

Example: The rough Heston model (with 4 = ()

_n
()

nh(tiu) = (k * g)(r; u) = % /0 (r — )% g(s;u) ds = n1g(z; u).

1

In this case, witha = H + % k(1) = 7% " and

where D* and I * represent fractional differential and integral operators respectively.
Inverting this gives g(7; u) = D*h(z; u).
The convolution integral Riccati equation then reads

3)
1 1
D%h(z;u) = S U u—1)+pnuh(t;u) + > n* h(z; u)?,

consistent with [El Euch and Rosenbaum]@.
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An aside: Fractional calculus

Define the fractional integral and differential operators:

1 ! d
1%f(t) = ) /O (t—$)* ' f(s)ds; Df@) = 511‘%‘@.

The fractional integral is a natural generalization of the ordinary integral using the Cauchy formula for repeated

integration:
t 1 Iy—1
I"'f(1) .= / dtl/ codt, f@t,)dt,
0 0 0
1

- ' -l
= oD /0 (t— )" f(s)ds.

The proof follows easily by induction when you notice that

1 t
DI"f(t) = =D /0 (n=1)(t— )" f(s)ds = I""'f(®)

and of course that D I f(t) = f(1).

A microstructural foundation of the rough Heston model

» The rough Heston model emerges as the continuous time limit of a Hawkes process-based model of
order flow.
= Buys(sells) make the price go up(down)
= Buys(sells) induce more buys(sells). That is, the processes are self-exciting.
= Excitations decay as a power law.

» We explain the relationship between the class of Affine Forward Intensity (AFI) models of order flow and
their limiting Affine Forward Variance (AFV) models in Lecture 5.

» This gives us a clue as to why rough volatility appears to be universal.

The rough Heston characteristic function

» There exist a number of standard numerical techniques, such as the Adams scheme, for solving
fractional differential equations such as the rough Heston fractional Riccati equation.
= These techniques are all slow!

« Recently, [Gatheral and Radoi&i¢]Z! showed how to approximate the solution of the rough Heston
fractional Riccati equation by a rational function.
= This approximation solution is just as fast as the classical Heston solution and appears to be
more accurate than the Adams scheme for any reasonable number of time steps!
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Rational approximation to the rough Heston solution
Wilog, set v = 1 and x = ¢. Then the rough Heston fractional Riccati ODE reads

D%h(a,x) = — % a(a+1i)+ipah(a,x) + % h(a, x)*
1
=3 (h(a,x) —r_) (h(a,x) —ry)

with

A= \/a(a+i)—p2a2; ry = {-1patA}.

The idea is to paste together short- and long-time expansions of the solution using a rational (Padé
approximation).

Short-time expansion

From the exponentiation theorem of [Alds, Gatheral and Radoi¢ig]1)</a></sup>, h(a. x) can be written as

- I'l+ja) N G+Da
hla,x) = Z;t T+ G+ ha 7 @*

=
=

fola) = — %a(a +)

1S I'(l+ia) ' +ja)
@) = 5 ;) Ttz PO B E e D T+ G Do)
ipa A+ k- Da)ﬂk_l(a).

I'l+ka)

+ We will explain the exponentiation theorem in Lecture 5.

Solving the rough Heston Riccati equation for long times

» In analogy with the classical Heston solution, we expect that for a suitable range of ¢,

lim h(a,x) =r_.

X—>00
« In that case, for large x, we could linearize the fractional Riccati equation as follows.
1
D%h(a, x) = 5 (h(a,x) - r_) (h(a,x) —ry)

1
N — (r+ - r_) (h(a,x) - r_)

2
= —-A (h(a,x) — r_).
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» The above linear fractional differential equation has the exact solution

heo (a,%) = r_ |1 — E,(—AxY)],
where E,(-) is the Mittag-Leffler function.

e Asx — 00,

E,(-Ax%) = —— +0 (JAx*]
(—A x%) AT a) (1Ax*|72)
e Thus, as x — oo,
r_ x ¢
h (a,x)—r_= — +0O(|Ax*72).
w(@x) =1 = 25 o 0 (147

Large x expansion

» The form of the asymptotic solution motivates the following expansion of / for large x:

00 —ka
X
h(a,x) =r_ PR SEE—
(@) ,; " AT = ka)
» The coefficients y; satisfy the recursion
n=-r=-1
r- o~ I'd — ka)
= -y +— Y Vi vi7i .
Yk Yk—1 A iJZ=1 i+j=k Vi Vj I —ia) T - ja)

Rational approximation

» Now we have small- and large-x expansions we can compute global rational approximations to /(a, x)
of the form

it DY
im0 dnY"

R (a, x) =

with y = x® that match these expansions up to order m and n respectively.

« Only the diagonal approximants 4" are admissible approximations of /.
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133 is the best

« From various numerical experiments, the particular approximation 4#3-3) seems to be amazingly close
to the true solution for reasonable choices of model parameters.

« Though the excellent quality of the global approximation 43-3) might at first seem very surprising, it is
consistent with many Padé approximation stories from the literature.

« Inour case, 13 is clearly better than either h%% or i+,
= 10 is another very good approximation, but still not as good as 4. A is obviously

also slower to compute.
= Higher order approximations may turn out to beat hB> . However, h3 may still be best in

practice if speed of computation is taken into account.

Computing /7

« We have the series expansion of & for small y:
hy() = by y+ b2y + b3y + OG").

« We have the series expansion of & for large y:

&1 | & 1
hf(y)=go+—+—2+c9<—3>.
y y y
« Matching the coefficients of the rational approximation
HeI(y) = py+py +psy

l+qy+@y +q¢:)°

to hy(y) and h,(y) respectively gives a linear system of six equations with six unknowns.

Some R-code
In [1]: setwd("./LRV")

In [2]: source("BlackScholes.R")
source("Lewis.R")
source( "roughHestonPade.R")

In [3]: 1library(repr)
options(repr.plot.height=5)

R implementation of the rational approximation

The code below shows how the solution is implemented.
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In [4]: d.h.Pade33

function (params)
function(a, x) {
H <- paramsS$H
rho <- params$rho
eta <- paramsS$Seta
al <- H + 0.5

LRV4

aa <- sqrt(a * (a + (0 + (0+1i))) - rho"2 * a"2)

rm <- -(0 + (0+1i)) * rho * a - aa

rp <- -(0 + (0+1i)) * rho * a + aa

bl <- -a * (a + (0+1i))/(2 * gamma(l + al))

b2 <- (1 - a * (0+1i)) * a”2 * rho/(2 * gamma(l + 2 * al))
b3 <- gamma(l + 2 * al)/gamma(l + 3 * al) * (a”2 * (0+1i +

a)"2/(8 * gamma(l + al)"2) + (a + (0+1i)) * a”3 * rho"2/(2 *

gamma(l + 2 * al)))

g0 <- rm

gl <- -rm/(aa * gamma(l - al))

g2 <- rm/aa”2/gamma(l - 2 * al) * (1 + rm/(2 * aa) * gamma(l -

2 * al)/gamma(l - al)"2)
den <- g0"3 + 2 * bl * g0 * gl - b2 * gl™2 + bl"2 * g2 +

b2 * g0 * g2
pl <- bl

p2 <- (bl*2 * g0"2 + b2 * g0"3 + bl"3 * gl + bl * b2 * g0 *
gl - b2"2 * gl”2 + bl * b3 * gl”"2 + b2°2 * g0 * g2 -

bl * b3 * g0
gl <- (bl * g0°2

bl * b2 * g2
g2 <- (b172 * g0

b2%2 * g2 - b

*

+

+
1

g2)/den

bl1"2 * gl - b2 * g0 * gl + b3 * gl*2 -

b3 * g0 * g2)/den

b2 * g0®"2 - bl * b2 * gl - b3 * g0 * gl +
* b3 * g2)/den

g3 <- (bl"3 + 2 * bl * b2 * g0 + b3 * g0"2 - b2"2 * gl +
bl * b3 * gl)/den

p3 <- g0 * g3
y <- x"al

h.pade <- (pl * y + p2 * y"2 + p3 * y*"3)/(1 + ql * y + g2 *

y'2 + g3 * y*3)

res <- 1/2 * (h.pade - rm) * (h.pade - rp)

return(res)
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Computing option prices from the characteristic function

It turns out (see [Carr and Madan]®! and [Lewis]&) that it is quite straightforward to get option prices by inverting
the characteristic function of a given stochastic process (if it is known in closed-form).

Formula (5.6) of [The Volatility Surface]® is a special case of formula (2.10) of Lewis (as usual we assume zero
interest rates and dividends):

Formula (2.10) of Lewis

(7
du

u? +

C(S,K,,T) =8 — \/SKl / Re [e7 T (u —if2)]
T Jo

1
4

with k = log(%).

« An anologous formula holds for puts.

R implementation of the Lewis formula

In [5]: option.OTM.raw

function (phi, k, t)

{
integrand <- function(u) {
Re(exp(-(0+1i) * u * k) * phi(u - (0+1i)/2, t)/(u”2 +
1/4))
}
k.minus <- (k < 0) * k
res <- exp(k.minus) - exp(k/2)/pi * integrate(integrand,
lower = 0, upper = Inf, rel.tol = le-08)S$value
return(res)
}
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Some notable features of R

« Complex arithmetic with 11i.
» Functional programming:
= This is what allows us to code a function which is called as:

impvol.phi(phiHeston(paramsBCC)) (0,1)

» We can define a function that returns a function (and so on indefinitely).
= We could even conveniently define a new function:

impvolBCC <-
impvol.phi(phiHeston (paramsBCC))

» We can conceptually separate parameters and variables rather than having to carry all the parameters
around with each function call.

The rough Heston smile

In [6]: params.rHeston <- list(H=0.05,nu=0.4,rho=-.65,eta=0.4)
xiCurve <- function(t){0.025+0*t}

In [7]: phi <- phiRoughHestonDhApprox(params.rHeston, xiCurve, dh.approx= d.h.Pa
de33, n=20)
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In [8]: vol <- function(k)({
sapply(k, function(x){impvol.phi(phi)(x,1)})}
system.time(curve(vol(x),from=-.4,to=.4,col="red"))

user system elapsed
1.222 0.044 1.270

(Tp]
[N —
o
[an]
N
o
x
5
>
)
o
o
S l I | | I
-0.4 -0.2 0.0 0.2 0.4
x

Figure 1: The 1-year rough Heston smile using the approximation hG3

How does /1®) compare with 4>? and h*% 2

In [9]: phi2 <- phiRoughHestonDhApprox(params.rHeston, xiCurve, dh.approx= d.h.P
ade22, n=20)
phi4 <- phiRoughHestonDhApprox(params.rHeston, xiCurve, dh.approx= d.h.P
aded44, n=20)

In [10]: vol2 <- function(k){sapply(k,function(x){impvol.phi(phi2)(x,1)})}
vol4d <- function(k){sapply(k, function(x){impvol.phi(phid)(x,1)})}
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In [11]: curve(vol(x),from=-.4,to=.4,col="red")
curve(vol2(x),from=-.4,to=.4,col="blue",add=T,1ty=2)
curve(vol4d (x),from=-.4,to=.4,col="greend",add=T,1ty=3)

[Te]
N
o
o
o
o

_—

=
=
o
=

[Te]
- -
=]
=]
1_‘_
o

Figure 2: The 1-year rough Heston smile in red with approximation h33  The blue dashed line is A%?, and the
green dotted line h4¥.

Sensitivity of the rough Heston smile to 7

First, a function to compute the 1-year smile:

In [12]: vol <- function(params)function(k){ # A function to compute the l-year s
mile
phi <- phiRoughHestonDhApprox(params, xiCurve, dh.approx= d.h.Pade33
, n=20)
sapply(k, function(x){impvol.phi(phi)(x,1)})}

myCol <- rainbow(6)

In [13]: sub.eta <- function(eta.in){
tmp <- params.rHeston
tmp$eta <- eta.in
return(tmp)

}
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In [14]: yrange <- c¢(0.05,.35)
curve(vol (params.rHeston) (x),from=-.5,to=.5,col=myCol[1l],ylim=yrange,lwd
=2,ylab="Implied vol.",xlab="Log-strike k")
eta.vec <- params.rHeston$eta + ¢(0.1,0.2,0.3,0.4,0.5)
for (j in 1:5)
{

curve(vol(sub.eta(eta.vec[]j])) (X),from=-.5,to=.5,col=myCol[j+1],1lty=
2,add=T)
}

Implied vol.

0.05 0.10 0.15 0.20 0.25 0.30 0.35
|

Log-strike k

Figure 3: The dotted lines are smiles with 5 =7 + {0.1,0.2,0.3,0.4,0.5}.

Sensitivity of the rough Heston smile to p

In [15]: sub.rho <- function(rho.in){
tmp <- params.rHeston
tmp$rho <- rho.in
return(tmp)
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In [16]: yrange <- c(0.05,.35)
curve(vol (params.rHeston) (x),from=-.5,to=.5,col=myCol[1l],ylim=yrange, lwd
=2,ylab="Implied vol.",xlab="Log-strike k")
rho.vec <- params.rHeston$rho - ¢(0.05,0.10,0.15,0.20,0.25)
for (j in 1:5)
{

curve(vol(sub.rho(rho.vec[j])) (x),from=-.5,to=.5,col=myCol[j+1],1lty=
2,add=T)
}

Implied vol.

0.05 0.10 0.15 0.20 0.25 0.30 0.35
|

Log-strike k

Figure 4: The dotted lines are smiles with p — p — {0.05,0.10,0.15,0.2,0.25}.

Sensitivity of the rough Heston 1 year smile to H

In [17]: sub.H <- function(H.in)({
tmp <- params.rHeston
tmp$H <- H.in
return(tmp)
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In [18]: yrange <- c(0.05,.35)
curve(vol (params.rHeston) (x),from=-.5,to=.5,col=myCol[1l],ylim=yrange, lwd
=2,ylab="Implied vol.",xlab="Log-strike k")
H.vec <- params.rHeston$H + seq(0.1,0.4,0.1)
for (j in 1:4)

{
curve(vol(sub.H(H.vec[j])) (x),from=-.5,to=.5,col=myCol[]j+1],1lty=2,ad
d=T)
}
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Figure 5: The dotted lines are 1 year smiles with H — H + {0.1,0.2,0.3,0.4}.

Sensitivity of the rough Heston 1 week smile to H

A function to draw the 1-week smile:

In [19]: vol <- function(params)function(k){
phi <- phiRoughHestonDhApprox(params, xiCurve, dh.approx= d.h.Pade33
, n=20)
sapply(k, function(x) {impvol.phi(phi) (x,1/52)})}
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In [20]: yrange <- c(0.05,.4)
curve(vol (params.rHeston) (x),from=-.15,to=.15,col=myCol[1l],ylim=yrange,l
wd=2,ylab="Implied vol.",xlab="Log-strike k")
H.vec <- params.rHeston$H + seq(0.1,0.4,0.1)
for (j in 1:4)
{
curve(vol(sub.H(H.vec[]j])) (x),from=-.15,to=.15,col=myCol[j+1],1lty=2,
1lwd=2,add=T)

}
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Figure 6: The dotted lines are 1 week smiles with H — H + {0.1,0.2,0.3, 0.4}. The smile flattens as we
increase H.

Ease of calibration of rough volatility models

» Rough volatility models are typically very parsimonious.

» Moreover, from the above sensitivity analyses, the effect of changing each parameter is clear.
» Contrast this with the classical Heston model where volatility of volatility and mean reversion
are competing effects.
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Dynamics of the rough Heston volatility surface

« All rough stochastic volatility models have essentially the same implications for the shape of the
volatility surface.

» Recall from Lecture 2 that we can differentiate between models by examining how ATM skew depends
on ATM volatility keeping model parameters fixed.

» In Figure 7, we that rough Heston dynamics are not consistent with empirical dynamics, in contract to
rough Bergomi.

-0.2

-0.4

3m ATM volatility skew
-0.6

-0.8

-1.0

0.1 0.2 0.3 0.4 0.5

3m ATM volatility

Figure 7: Blue points are empirical 3-month ATM volatilities and skews (from Jan-1996 to today); the red line is
the rough Bergomi computation with the above parameters; the pink curve is the rough Heston computation.
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Summary of Lecture 4

» We introduce forward variance and affine models.

» We showed how to compute the characteristic function for any affine forward variance model.
» We applied these general results to the classical Heston and rough Heston models.

» We explained the idea behind the Padé approximation to the rough Heston solution.

» We explored the effects of the rough Heston parameters on volatility smiles.

+ However, though rough Heaton is highly tractable, its dynamics are unreasonable.
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