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Forward variance models
Following [Bergomi and Guyon] , forward variance models may be written in the form

where  are independent Brownian motions, the -valued stochastic process  is progressively
measurable for all  and  is linked to the instantaneous variance  by

Models of this form were also studied by Hans Bühler as variance curve models.
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If  is continuous and uniformly integrable, we can recover  from  as . For our
purposes, .

The initial conditions of a forward variance model are the initial stock price  and the initial forward
variance curve .

Important remark

As noted by [Bergomi and Guyon] , all conventional finite-dimensional Markovian stochastic volatility models
may be cast as forward variance models.

Example: The classical Heston model
The classical Heston stochastic volatility model may be written as

with  and where  is the speed of reversion of  to its long term mean .

Forward variance in the Heston model
With , take expectations of the SDE for  to get

This ODE has the solution

The Heston model in forward variance form
For each ,  is a conditional expectation and so a martingale in . It is then immediate from the last
equation that

where  denotes the martingale part of .

It is easy to check explicitly that all drift (i.e. ) terms cancel.

[3]
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The rough Heston model
By considering the limit of a simple Hawkes process-based model of order flow, [El Euch and Rosenbaum]
derive a rough Heston model. The equation for variance in this model takes the form

 is the Hurst exponent of the volatility,  is the mean reversion parameter,  is
the volatility of volatility parameter.
The function  is assumed to be continuous and represents a time-dependent mean reversion level.
The rough Heston model is a natural fractional generalization of the classical Heston model which is
recovered when .

Forward variance in the rough Heston model
We will consider only the special case . In this case, .

It follows that

Also

The rough Heston model in forward variance form
Subtracting these two equations gives

Taking the limit , we obtain

the rough Heston model in forward variance form.

[4]
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Non-Markovianity of the rough Heston model
Note that the limit  of the rough Heston model makes no sense.

This reflects the fact that the rough Heston model is not Markovian.
There is no SDE for  and no corresponding PDE.
On the other hand, we can write an SDE for each , .

We can even apply Itô's Lemma!

The rough Heston model is Markovian in the infinite-dimensional forward variance curve .

Affine processes
The following explanation is due to Martin Keller-Ressel:

An affine process can be described as a Markov process whose log-characteristic function is an
affine function of its initial state vector.

And here's a definition of the word affine from Wikipedia:

In geometry, an affine transformation or affine map or an affinity (from the Latin, affinis,
"connected with") between two vector spaces (strictly speaking, two affine spaces) consists of a
linear transformation followed by a translation:

Affine CGF
Let . According to Definition 2.2 of [Gatheral and Keller-Ressel] , we say that a forward variance
model has an affine cumulant generating function determined by , if its conditional cumulant generating
function is of the form

(1)

for all ,  and  is -valued and continuous on  for all  and .

The restriction  is for mathematical convenience. We will later allow complex .

[6]
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When is a forward variance model affine?
Theorem 2.4 of [Gatheral and Keller-Ressel]  states that a forward variance model has an affine CGF if and only
if it takes the form

for some deterministic, non-negative decreasing kernel , which satisfies  for all .

Essentially, the only affine stochstic volatility model is the Heston model, up to a choice of kernel.

Moreover,  in the definition (1) of the CGF is the unique global continuous solution of the
convolution Riccati equation

where

Alternatively,  can be written as

where  is the unique global solution of the non-linear Volterra equation

Derivation of the Riccati equation
From the definition definition (1) of the CGF,

is a conditional expectation and thus a martingale in .

[6]
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Applying Itô's Lemma to  gives

Now

We compute

Imposing  and letting  gives

where the convolution integral is given by

It is almost obvious why the CGF is affine if an only if the forward variance process is of the form 
.

The convolution Riccati equation
Rearranging gives

as required.
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Example: The classical Heston model
In this case, .

Then

Also,  The convolution Riccati equation then becomes

(2)

consistent with the classical derivation in (for example) Chapter 2 of [The Volatility Surface] .

The Heston characteristic function
The classical Heston Riccati ODE (2) may be solved in closed form as in as in equation (2.12) of [The
Volatility Surface] .

The characteristic function is then given by

where

Example: The rough Heston model (with )

In this case, with ,  and

where  and  represent fractional differential and integral operators respectively.

Inverting this gives 

The convolution integral Riccati equation then reads

(3)

consistent with [El Euch and Rosenbaum] .

[5]

[5]

[6]



1/15/2019 LRV4

http://127.0.0.1:8888/nbconvert/html/Course%20and%20workshops/LunterenRoughVolatility/LRV4.ipynb?download=false 8/22

An aside: Fractional calculus
Define the fractional integral and differential operators:

The fractional integral is a natural generalization of the ordinary integral using the Cauchy formula for repeated
integration:

The proof follows easily by induction when you notice that

and of course that .

A microstructural foundation of the rough Heston model
The rough Heston model emerges as the continuous time limit of a Hawkes process-based model of
order flow.

Buys(sells) make the price go up(down)
Buys(sells) induce more buys(sells). That is, the processes are self-exciting.
Excitations decay as a power law.

We explain the relationship between the class of Affine Forward Intensity (AFI) models of order flow and
their limiting Affine Forward Variance (AFV) models in Lecture 5.

This gives us a clue as to why rough volatility appears to be universal.

The rough Heston characteristic function
There exist a number of standard numerical techniques, such as the Adams scheme, for solving
fractional differential equations such as the rough Heston fractional Riccati equation.

These techniques are all slow!

Recently, [Gatheral and Radoičić]  showed how to approximate the solution of the rough Heston
fractional Riccati equation by a rational function.

This approximation solution is just as fast as the classical Heston solution and appears to be
more accurate than the Adams scheme for any reasonable number of time steps!

[7]
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Rational approximation to the rough Heston solution
Wlog, set  and . Then the rough Heston fractional Riccati ODE reads

with

The idea is to paste together short- and long-time expansions of the solution using a rational (Padé
approximation).

Short-time expansion
From the exponentiation theorem of [Alòs, Gatheral and Radoičić]

with

We will explain the exponentiation theorem in Lecture 5.

Solving the rough Heston Riccati equation for long times
In analogy with the classical Heston solution, we expect that for a suitable range of ,

In that case, for large , we could linearize the fractional Riccati equation as follows.

[1]</a></sup>,  can be written as
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The above linear fractional differential equation has the exact solution

where  is the Mittag-Leffler function.

As ,

Thus, as ,

Large  expansion

The form of the asymptotic solution motivates the following expansion of  for large :

The coefficients  satisfy the recursion

Rational approximation
Now we have small- and large-  expansions we can compute global rational approximations to 
of the form

with  that match these expansions up to order  and  respectively.

Only the diagonal approximants  are admissible approximations of .
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 is the best

From various numerical experiments, the particular approximation  seems to be amazingly close
to the true solution for reasonable choices of model parameters.

Though the excellent quality of the global approximation  might at first seem very surprising, it is
consistent with many Padé approximation stories from the literature.

In our case,  is clearly better than either  or .
 is another very good approximation, but still not as good as .  is obviously

also slower to compute.
Higher order approximations may turn out to beat . However,  may still be best in
practice if speed of computation is taken into account.

Computing 

We have the series expansion of  for small :

We have the series expansion of  for large :

Matching the coefficients of the rational approximation

to  and  respectively gives a linear system of six equations with six unknowns.

Some R-code

In [1]: setwd("./LRV") 

In [2]: source("BlackScholes.R") 
source("Lewis.R") 
source("roughHestonPade.R") 

In [3]: library(repr) 
options(repr.plot.height=5) 

R implementation of the rational approximation
The code below shows how the solution is implemented.
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In [4]: d.h.Pade33 

function (params)  
function(a, x) { 
    H <- params$H 
    rho <- params$rho 
    eta <- params$eta 
    al <- H + 0.5 
    aa <- sqrt(a * (a + (0 + (0+1i))) - rho^2 * a^2) 
    rm <- -(0 + (0+1i)) * rho * a - aa 
    rp <- -(0 + (0+1i)) * rho * a + aa 
    b1 <- -a * (a + (0+1i))/(2 * gamma(1 + al)) 
    b2 <- (1 - a * (0+1i)) * a^2 * rho/(2 * gamma(1 + 2 * al)) 
    b3 <- gamma(1 + 2 * al)/gamma(1 + 3 * al) * (a^2 * (0+1i +  
        a)^2/(8 * gamma(1 + al)^2) + (a + (0+1i)) * a^3 * rho^2/(2 *  
        gamma(1 + 2 * al))) 
    g0 <- rm 
    g1 <- -rm/(aa * gamma(1 - al)) 
    g2 <- rm/aa^2/gamma(1 - 2 * al) * (1 + rm/(2 * aa) * gamma(1 -  
        2 * al)/gamma(1 - al)^2) 
    den <- g0^3 + 2 * b1 * g0 * g1 - b2 * g1^2 + b1^2 * g2 +  
        b2 * g0 * g2 
    p1 <- b1 
    p2 <- (b1^2 * g0^2 + b2 * g0^3 + b1^3 * g1 + b1 * b2 * g0 *  
        g1 - b2^2 * g1^2 + b1 * b3 * g1^2 + b2^2 * g0 * g2 -  
        b1 * b3 * g0 * g2)/den 
    q1 <- (b1 * g0^2 + b1^2 * g1 - b2 * g0 * g1 + b3 * g1^2 -  
        b1 * b2 * g2 - b3 * g0 * g2)/den 
    q2 <- (b1^2 * g0 + b2 * g0^2 - b1 * b2 * g1 - b3 * g0 * g1 +  
        b2^2 * g2 - b1 * b3 * g2)/den 
    q3 <- (b1^3 + 2 * b1 * b2 * g0 + b3 * g0^2 - b2^2 * g1 +  
        b1 * b3 * g1)/den 
    p3 <- g0 * q3 
    y <- x^al 
    h.pade <- (p1 * y + p2 * y^2 + p3 * y^3)/(1 + q1 * y + q2 *  
        y^2 + q3 * y^3) 
    res <- 1/2 * (h.pade - rm) * (h.pade - rp) 
    return(res) 
}
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Computing option prices from the characteristic function
It turns out (see [Carr and Madan]  and [Lewis] ) that it is quite straightforward to get option prices by inverting
the characteristic function of a given stochastic process (if it is known in closed-form).

Formula (5.6) of [The Volatility Surface]  is a special case of formula (2.10) of Lewis (as usual we assume zero
interest rates and dividends):

Formula (2.10) of Lewis
 
(7)

 
 

with .

An anologous formula holds for puts.

R implementation of the Lewis formula

In [5]: option.OTM.raw 

[3] [8]

[5]

function (phi, k, t)  
{ 
    integrand <- function(u) { 
        Re(exp(-(0+1i) * u * k) * phi(u - (0+1i)/2, t)/(u^2 +  
            1/4)) 
    } 
    k.minus <- (k < 0) * k 
    res <- exp(k.minus) - exp(k/2)/pi * integrate(integrand,  
        lower = 0, upper = Inf, rel.tol = 1e-08)$value 
    return(res) 
}
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Some notable features of R
Complex arithmetic with .
Functional programming:

This is what allows us to code a function which is called as:

 impvol.phi(phiHeston(paramsBCC))(0,1)

We can define a function that returns a function (and so on indefinitely).
We could even conveniently define a new function:

 impvolBCC <- 
     impvol.phi(phiHeston(paramsBCC)) 

We can conceptually separate parameters and variables rather than having to carry all the parameters
around with each function call.

The rough Heston smile

In [6]: params.rHeston <- list(H=0.05,nu=0.4,rho=-.65,eta=0.4) 
xiCurve <- function(t){0.025+0*t} 

In [7]: phi <- phiRoughHestonDhApprox(params.rHeston, xiCurve, dh.approx= d.h.Pa
de33, n=20) 
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In [8]: vol <- function(k){ 
    sapply(k,function(x){impvol.phi(phi)(x,1)})} 
system.time(curve(vol(x),from=-.4,to=.4,col="red")) 

Figure 1: The 1-year rough Heston smile using the approximation .

How does  compare with  and  ?

In [9]: phi2 <- phiRoughHestonDhApprox(params.rHeston, xiCurve, dh.approx= d.h.P
ade22, n=20) 
phi4 <- phiRoughHestonDhApprox(params.rHeston, xiCurve, dh.approx= d.h.P
ade44, n=20) 

In [10]: vol2 <- function(k){sapply(k,function(x){impvol.phi(phi2)(x,1)})} 
vol4 <- function(k){sapply(k,function(x){impvol.phi(phi4)(x,1)})} 

   user  system elapsed  
  1.222   0.044   1.270 
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In [11]: curve(vol(x),from=-.4,to=.4,col="red") 
curve(vol2(x),from=-.4,to=.4,col="blue",add=T,lty=2) 
curve(vol4(x),from=-.4,to=.4,col="green4",add=T,lty=3) 

Figure 2: The 1-year rough Heston smile in red with approximation . The blue dashed line is , and the
green dotted line .

Sensitivity of the rough Heston smile to 

First, a function to compute the 1-year smile:

In [12]: vol <- function(params)function(k){ # A function to compute the 1-year s
mile 
    phi <- phiRoughHestonDhApprox(params, xiCurve, dh.approx= d.h.Pade33
, n=20) 
    sapply(k,function(x){impvol.phi(phi)(x,1)})} 
     
myCol <- rainbow(6) 

In [13]: sub.eta <- function(eta.in){ 
    tmp <- params.rHeston 
    tmp$eta <- eta.in 
    return(tmp) 
} 
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In [14]: yrange <- c(0.05,.35) 
curve(vol(params.rHeston)(x),from=-.5,to=.5,col=myCol[1],ylim=yrange,lwd
=2,ylab="Implied vol.",xlab="Log-strike k") 
eta.vec <- params.rHeston$eta + c(0.1,0.2,0.3,0.4,0.5) 
for (j in 1:5) 
    { 
     
    curve(vol(sub.eta(eta.vec[j]))(x),from=-.5,to=.5,col=myCol[j+1],lty=
2,add=T) 
    } 

Figure 3: The dotted lines are smiles with .

Sensitivity of the rough Heston smile to 

In [15]: sub.rho <- function(rho.in){ 
    tmp <- params.rHeston 
    tmp$rho <- rho.in 
    return(tmp) 
} 
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In [16]: yrange <- c(0.05,.35) 
curve(vol(params.rHeston)(x),from=-.5,to=.5,col=myCol[1],ylim=yrange,lwd
=2,ylab="Implied vol.",xlab="Log-strike k") 
rho.vec <- params.rHeston$rho - c(0.05,0.10,0.15,0.20,0.25) 
for (j in 1:5) 
    { 
     
    curve(vol(sub.rho(rho.vec[j]))(x),from=-.5,to=.5,col=myCol[j+1],lty=
2,add=T) 
    } 

Figure 4: The dotted lines are smiles with .

Sensitivity of the rough Heston 1 year smile to 

In [17]: sub.H <- function(H.in){ 
    tmp <- params.rHeston 
    tmp$H <- H.in 
    return(tmp) 
} 
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In [18]: yrange <- c(0.05,.35) 
curve(vol(params.rHeston)(x),from=-.5,to=.5,col=myCol[1],ylim=yrange,lwd
=2,ylab="Implied vol.",xlab="Log-strike k") 
H.vec <- params.rHeston$H + seq(0.1,0.4,0.1) 
for (j in 1:4) 
    { 
    curve(vol(sub.H(H.vec[j]))(x),from=-.5,to=.5,col=myCol[j+1],lty=2,ad
d=T) 
    } 

Figure 5: The dotted lines are 1 year smiles with .

Sensitivity of the rough Heston 1 week smile to 

A function to draw the 1-week smile:

In [19]: vol <- function(params)function(k){ 
    phi <- phiRoughHestonDhApprox(params, xiCurve, dh.approx= d.h.Pade33
, n=20) 
    sapply(k,function(x){impvol.phi(phi)(x,1/52)})} 
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In [20]: yrange <- c(0.05,.4) 
curve(vol(params.rHeston)(x),from=-.15,to=.15,col=myCol[1],ylim=yrange,l
wd=2,ylab="Implied vol.",xlab="Log-strike k") 
H.vec <- params.rHeston$H + seq(0.1,0.4,0.1) 
for (j in 1:4) 
    { 
    curve(vol(sub.H(H.vec[j]))(x),from=-.15,to=.15,col=myCol[j+1],lty=2,
lwd=2,add=T) 
    } 

Figure 6: The dotted lines are 1 week smiles with . The smile flattens as we
increase .

Ease of calibration of rough volatility models
Rough volatility models are typically very parsimonious.

Moreover, from the above sensitivity analyses, the effect of changing each parameter is clear.
Contrast this with the classical Heston model where volatility of volatility and mean reversion
are competing effects.
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Dynamics of the rough Heston volatility surface
All rough stochastic volatility models have essentially the same implications for the shape of the
volatility surface.

Recall from Lecture 2 that we can differentiate between models by examining how ATM skew depends
on ATM volatility keeping model parameters fixed.

In Figure 7, we that rough Heston dynamics are not consistent with empirical dynamics, in contract to
rough Bergomi.

Figure 7: Blue points are empirical 3-month ATM volatilities and skews (from Jan-1996 to today); the red line is
the rough Bergomi computation with the above parameters; the pink curve is the rough Heston computation.
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Summary of Lecture 4
We introduce forward variance and affine models.
We showed how to compute the characteristic function for any affine forward variance model.
We applied these general results to the classical Heston and rough Heston models.
We explained the idea behind the Padé approximation to the rough Heston solution.
We explored the effects of the rough Heston parameters on volatility smiles.

However, though rough Heaton is highly tractable, its dynamics are unreasonable.
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