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Outline of Lecture 5
A microstructural foundation for affine stochastic volatility models

Exponentiation of conditional expectations

Leverage swap computation

Calibration of rough Heston parameters

A microstructural foundation for affine stochastic volatility models
[Jaisson and Rosenbaum]

In the following, we both generalize and hopefully shed light on their argument.

Hawkes processes
Dating from the 1970's, Hawkes processes are jump processes where the jump arrival rate is self-
exciting.

One of the first applications was to the modeling of earthquakes.

[7]</a></sup> first showed that affine stochastic volatility models could arise as limits of Hawkes

process-based models of order flow.
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The Hawkes process-based microstructure model of Jaisson and
Rosenbaum
[Jaisson and Rosenbaum]

Order arrivals are modeled as a counting process
Buy order arrivals cause the price to increase
Sell order arrivals cause the price to decrease
All orders are unit size

The order arrival process is self-exciting
The price process is a bivariate Hawkes process.

The stock price process
Specifically, with ,

where  are counting processes with arrival rates , and  is determined by the martingale condition on 
.

The order arrival rate process

where  and . The kernel  is a  matrix.

The order arrival process is self-exciting.
As orders arrive, the order arrival rate increases.
In the absence of new orders, the order arrival rate decays according to some Hawkes kernel 

.

[Jaisson and Rosenbaum]

[6]</a></sup> consider the following simple model of price formation:

[6]</a></sup> show that that in a suitable scaling limit, and with a suitable choice of the kernel , this

model tends to the rough Heston model.
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Affine forward intensity (AFI) models
In analogy to stochastic volatility models in forward variance form, [Gatheral and Keller-Ressel]  define
the forward intensity model

where  is an integrable, decreasing non-zero kernel.
 are positive constants

jumps can have various sizes; the jump size measures are 
 is determined by the martingale condition on 

The  denote the compensated order flow processes, i.e.

where

Variance and jump intensity
Denote the variance per unit time of the process  by . Then

where

are the variance of positive and negative jump sizes respectively.

Continuing the analogy with stochastic volatility,  is linked to  by

Setting

the affine forward intensity (AFI) model may be rewritten as

[6]
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High-frequency limit of the AFI model
Consider new processes  such that

Thus in the limit ,

jump sizes are very small and jumps are very frequent.
the martingale component of  may be approximated by 

 may be approximated by  for some diffusion process .

High frequency limit of the AFI model
In the limit, we obtain

where

Then

where

As for the correlation between  and , we first compute

so

where
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Example: The bivariate Hawkes process of of Jaisson and Rosenbaum
Consider the case of a bivariate Hawkes process  with unit jump size (i.e., . Then in
the above limit, as , the process converges to

where  and

Near instability of Hawkes kernel in the limit
So far, we have shown how AFV models arise naturally as limits of AFI models.

Now we show that in order to get stochastic (as opposed to constant) volatility, the AFI model Hawkes
process needs to be nearly unstable.

Consider the (generalized) Hawkes process

where .

Following [Bacry et al.][3]</a></sup>, we rewrite this last equation symbolically as
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Rearranging gives

and applying the Laplace transform gives

which may be rearranged as

where

Then

where

Inverting the Laplace transform, and recalling that , we obtain

Taking a conditional expectation wrt ,

and so , the dynamics of an AFI model.
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Now

Recall that the kernel of our generalized Hawkes process is . The stability condition is then

since in that limit,  and .

Conversely,  as  only if . Then in the limit,  and volatility is deterministic.

Near instability
 
The high frequency limit of the AFI model is a non-trivial AFV model if and only if the Hawkes
process is nearly unstable.  
 

Diamonds and the exponentiation theorem
We now turn our attention to diamonds and the exponentiation theorem.

The exponentiation theorem is effectively a generalization of both the Alòs decomposition formula and
the Bergomi-Guyon expansion.

Diamond functionals are generalizations of the Bergomi-Guyon autocovariance functionals.

The Alòs decomposition formula
Following [Alòs]

Now let  (  for short) be some function that solves the Black-Scholes equation.

Specifically,

which is of course the gamma-vega relationship.

Note in particular that  and  commute when applied to a solution of the Black-Scholes equation.

[1]</a></sup>, let  and consider the price process
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Variance swaps
We now specify the variance swap  as the integral of the expected future variance:

where the  are forward variances.

Notice that

where the martingale . Then it follows that

The Itô Decomposition Formula
Applying Itô's Formula to , taking conditional expectations, simplifying using the Black-Scholes equation and
integrating, we obtain

The Itô Decomposition Formula of Alòs

(1)

Note in particular that this decomposition is exact.

Diamond notation
Let  and  be semimartingales (here some combinations of  and ). Then

When  appears before some solution  of the Black-Scholes equation, the dot  means act on 
with the appropriate combintation of  and .

So for example

and so on.
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Diamond functionals as covariances
Diamond (or autocovariance) functionals are intimately related to conventional covariances.

Covariances are typically easy to compute using simulation.

Diamond functionals are expressible directly in terms of the formulation of a model in forward variance
form.

⧵end{frame}

Bergomi-Guyon in diamond notation
According to equation (13) of [Bergomi and Guyon]

We notice that

the exponential of a sum of `connected diagrams'.

Motivated by exponentiation results in physics, we are tempted to see if something like this holds to all
orders.

[1]</a></sup>, in diamond notation, the conditional expectation of a solution of

the Black-Scholes equation satisfies



1/15/2019 LRV5

http://127.0.0.1:8888/nbconvert/html/Course%20and%20workshops/LunterenRoughVolatility/LRV5.ipynb?download=false 10/25

Freezing derivatives
Freezing the derivatives in (1) gives us the approximation

In Theorem 3.3 of [Alòs] for example the error in this approximation is bounded in the context of
European option pricing.

The idea of the exponentiation theorem
The essence of the exponentiation theorem we prove in [Alòs, Gatheral and Radoičić]

Trees
Terms such as ,  and  are naturally indexed by trees, each of whose leaves
corresponds to either  or .

We end up with diamond trees reminiscent of Feynman diagrams, with analogous rules.

[2]</a></sup> is that

we may express  as an exact expansion consisting of infinitely many terms, with derivatives in each such term frozen.
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The first few terms
Applying the recursion, we have

Forests

The forest recursion

 
Let . Then the higher order forests  are defined recursively as follows:

 
 



1/15/2019 LRV5

http://127.0.0.1:8888/nbconvert/html/Course%20and%20workshops/LunterenRoughVolatility/LRV5.ipynb?download=false 12/25

The exponentiation theorem

The exponentiation theorem

 
Let  be any solution of the Black-Scholes equation such that  is finite and the
integrals contributing to each forest  exist.

Then

 
 

If  is a characteristic function

Consider the Black-Scholes characteristic function

Applying  to  just multiplies  by some deterministic factor.

Then

where  is  with each occurrence of  replaced with  and each occurrence of 
replaced with .



1/15/2019 LRV5

http://127.0.0.1:8888/nbconvert/html/Course%20and%20workshops/LunterenRoughVolatility/LRV5.ipynb?download=false 13/25

The characteristic function under stochastic volatility
Applying the Exponentiation Theorem, we have the following lemma.

Let

be the characteristic function of the log stock price. Then

The cumulant generating function under stochastic volatility
As a corollary, the cumulant generating function (CGF) is given by

An explicit expression for the CGF for any stochastic volatility model!
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Variance and gamma swaps
The variance swap is given by the fair value of the log-strip:

and the gamma swap (wlog set ) by

The point is that we can in principle compute such moments for any stochastic volatility model
written in forward variance form, whether or not there exists a closed-form expression for the
characteristic function.

The gamma swap
We can compute the gamma swap as

It is easy to see that only trees containing a single  leaf will survive in the sum after differentiation when 
 so that

where  is defined recursively for  as .

For example, .
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Then the fair value of a gamma swap is given by

This expression allows for explicit computation of the gamma swap for any model written in
forward variance form.

The leverage swap
We deduce that the fair value of a leverage swap is given by

(2)

The leverage swap is expressed explicitly in terms of covariance functionals of the spot and vol.
processes.

If spot and vol. processes are uncorrelated, the fair value of the leverage swap is zero.

The leverage swap may be easily estimated from the volatility smile along the lines of [Fukasawa]
or alternatively by integration if we have fitted some curve to the smile.

We use two different Vola Dynamics (http://www.voladynamics.com
(http://www.voladynamics.com)) curves below.

We will now use (2) to compute an explicit expression for the value of a leverage swap in the rough
Heston model.

The rough Heston model in forward variance form
Recall that in forward variance form, the rough Heaston model reads

The rough Heston model (with  turns out to be even more tractable than the classical Heston
model!

[5]
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Computation of autocovariance functionals
Apart from  measurable terms (abbreviated as `drift'), we have

The first order forest
There is only one tree in the forest .
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The second order forest
There are two trees in . The first tree is

The second tree  is more complicated.

Define for 

In terms of 

We may then rewrite the above expressions as
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A little more computation gives
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One can be easily convinced that each tree in the level-  forest  is  multiplied by a simple prefactor.

The third order forest
For example, continuing to the forest , we have the following.

In particular, we easily identify the pattern
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The leverage swap under rough Heston
Using (2), we have

where  denotes the Mittag-Leffler function.

A closed-form formula for the leverage swap!

The normalized leverage swap
Given the form of the expression for the leverage swap, it is natural to normalize by the variance swap. We
therefore define

In the special case of the rough Heston model with a flat forward variance curve,

where  is a generalized Mittag-Leffler function, independent of the reversion level . We further define
an th order approximation to  as

Implement the approximate formulae
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In [1]:

A numerical example
We now perform a numerical computation of the value of the leverage swap using the forest expansion in
the rough Heston model with the following parameters, calibrated in [Roughening Heston]  to the SPX
options market as of May 19, 2017:

In [2]:

Plot of successive approximations

In [3]:

In [4]:

Figure 1: Successive approximations to the (absolute value of) the normalized rough Heston leverage swap.
The solid red line is the exact expression ; , , and  are brown dashed, blue
dotted and dark green dash-dotted lines respectively.

[4]
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Calibration of rough Heston using the leverage swap

We get leverage swap estimates from Vola Dynamics.

In [5]:

In [6]:

In [7]:

Rough Heston parameter optimization

In [8]:

In [9]:

In [10]:

asOfTime expiryTime timeV var gam lev chi

20170519-
160000.000-
EDT

20170522-
160000.000-
EDT

0.008219178 4.611848e-
05

4.529596e-
05

-8.225198e-
07 0.0825122

20170519-
160000.000-
EDT

20170524-
160000.000-
EDT

0.013698630 1.486447e-
04

1.449538e-
04

-3.690866e-
06 0.0428453

20170519-
160000.000-
EDT

20170526-
160000.000-
EDT

0.019178082 2.525408e-
04

2.442417e-
04

-8.299132e-
06 0.0961516

20170519-
160000.000-
EDT

20170530-
160000.000-
EDT

0.030136986 3.303599e-
04

3.184876e-
04

-1.187229e-
05 0.0317533

20170519-
160000.000-
EDT

20170531-
160000.000-
EDT

0.032876712 3.890970e-
04

3.741274e-
04

-1.496953e-
05 0.0603001

20170519-
160000.000-
EDT

20170602-
160000.000-
EDT

0.038356164 5.156240e-
04

4.928132e-
04

-2.281081e-
05 0.0480975

4669.56287459822

   user  system elapsed  
  0.024   0.000   0.024 
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In [11]:

Notice how fast the calibration is!

The optimized parameters are:

In [12]:

In [13]:

Plot the Roughening Heston and optimized leverage swap fits

   user  system elapsed  
  0.032   0.000   0.032 

$H
0.000835784396700211
$nu
0.373719584768268
$rho
-0.652211596123752

$H
0.0033274407426272
$nu
0.38222733264668
$rho
-0.652436353082184
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In [14]:

Figure 2: Vola Dynamics (http://www.voladynamics.com (http://www.voladynamics.com)) red and blue
points are C14PM and C15PM estimates respectively; normalized l|everage swap fits with optimized
parameters in red and blue respectively; with smile-calibrated parameters in green.

Summary of lecture 5
There is a one-to-one correspondence between AFI models and AFV models.

Jaisson and Rosenbaum's rough Heston model is one example.

To get a non-trivial stochastic volatility model as a limit, we need near-instability of the Hawkes
kernel.

Diamonds and the exponentiation theorem allow easy computation of model quantities that can be
compared with market values

Easy calibration.
As many matching conditions as market option expirations.
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Rough volatility summary
Roughness of volatility appears to be universal.

The microstructural explanation is cool.

Rough volatility models tend to be parsimonious yet consistent with both time series and implied
volatility data.

There should be many applications to trading.

And of course the are many interesting mathematical problems.

Rough volatility continues to be an active and fashionable research topic.

More resources: The Rough Volatility Network
For an exhaustive list of papers and presentations on rough volatility and to keep up with the latest
developments, see https://sites.google.com/site/roughvol/ (https://sites.google.com/site/roughvol/)
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