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General framework

I We consider an asset price which is modelled as,

St = 1{t<ζ}e
Xt .

I The asset price is an exponential function of some process
Xt .

I We allow for default in the asset price, and assume the
default occurs with some intensity γ(s,Xs).

I We are interested in pricing derivatives with the
log-underlying some stochastic process Xt .
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European options

Consider a European option with maturity time T . The payo� at
T is given by Φ(T ,ST ). The option value v(t, x) is defined by

v(t, x) = E
[
e−

∫ T
t rdsΦ(T ,ST )|Xt = x

]
, t ∈ [0,T ].

This can be rewritten using St = 1{ζ>t}e
Xt as

v(t, x) = 1{ζ>t}E
[
e−

∫ T
t (r+γ(s,Xs))dsφ(T ,XT )|Xt = x

]
, t ∈ [0,T ],

where we have defined φ(x) := Φ(ex).
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Bermudan put option

Consider M exercise moments {t1, ..., tM} with payo� at exercise
time tm to be φ (tm, x). The option value v(t, x) is defined
recursively as

v(tM , x) = 1{ζ>tM}φ(tM , x),

and{
c(t, x) = E

[
e
∫ tm
t (r+γ(s,Xs))dsv(tm,Xtm)|Xt = x

]
, t ∈ [tm−1, tm[

v(tm−1, x) = 1{ζ>tm−1}max{φ(tm−1, x), c(tm−1, x)}, m ∈ {2, . . . ,M},

followed by
v(0, x) = c(0, x).
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Computing the expected value
In order to compute the option price, we must evaluate functions
of the form

u(t, x) := E
[
e−

∫ T
t γ(s,Xs)dsφ(T ,XT )|Xt = x

]
.

The function u can be represented as an integral with respect to
the transition distribution of the defaultable log-price process
log S :

u(t, x) =

∫
R
φ(y)Γ(t, x ;T , dy).

The characteristic function of log S is given by

Γ̂(t, x ;T , ξ) := F(Γ(t, x ;T , ·))(ξ) =

∫
R
e iξyΓ(t, x ;T , dy), ξ ∈ R.
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Least Squares Monte Carlo
1. Generate paths using a Monte Carlo simulation
2. Calculate continuation value in a backwards recursive

manner for every path at every time step using a
least-squares regression:

ĉ(tm, x(ω)) =
K∑

k=0

αtm(k)ψk(x(ω)),

with ψk , k = 0, ...,K a set of basis functions and the
coe�cients αtm chosen by fitting a regression between the
discounted future payo�s and the current underlying values.

3. Set up cash flow matrix by comparing exercise and
continuation: max(v(tm, x(ω)), c(tm, x(ω))

4. Finally, the option price is the sum of discounted cash flows
averaged over the paths.
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Approximation for expected values
With the COS method we calculate expected values (integrals):

u(t, x) =

∫
R
φ(T , y)Γ(t, x ;T , dy),

≈
N−1∑′

k=0

Re
(
e−ikπ

a
b−a Γ̂

(
t, x ;T ,

kπ

b − a

))
Vk(T ),

by truncating the integration to [a, b], replacing the distribution
with its cosine expansion and truncating the summation to N
terms. Here Vk(T ) is the Fourier-cosine coe�cient of the payo�
function

Vk(T ) =
2

b − a

∫ b

a
cos
(
kπ

y − a

b − a

)
φ(T , y)dy ,

and Γ̂ is the characteristic function.
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Lévy processes
I With exponential Lévy processes the asset price is modelled

as an exponential function of a Lévy process Lt ,

St = eLt .

I Each Lévy process can be characterised by a triplet (µ, σ, ν)
with µ ∈ R, σ ≤ 0 and ν a measure with ν(0) = 0 and∫

R
min(1, |x |2)ν(dx) <∞.

I For the Lévy process we have an explicit form of the
characteristic function (Lévy-Khinchine formula)

Γ̂(t, x ,T , ζ) = e(T−t)(iµζ− 1
2σ

2ζ2+
∫
R(e iζx−1−iζx1{|x|<1}ν(dx)).
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Motivation Fourier methods

I Fourier methods are methods that are
I computationally fast,
I not restricted to Gaussian-based models,
I work as long as we have the characteristic function (available

for Lévy processes and Heston model).

I Problem: there are interesting dynamics, with lots of
flexibility, for which we do not have explicit characteristic
functions.

I We have to resort to techniques to approximate them.
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Local Lévy process

We consider a defaultable asset S whose risk-neutral dynamics
are given by:

St = 1{t<ζ}e
Xt ,

dXt = µ(t,Xt)dt + σ(t,Xt)dWt +

∫
R
dÑt(t,Xt−, dz)z ,

dÑt(t,Xt−, dz) = dNt(t,Xt−, dz)− ν(t,Xt−, dz)dt,

ζ = inf{t ≥ 0 :

∫ t

0
γ(s,Xs)ds ≥ ε}, (1)

where Ñt(t, x , dz) is a compensated random measure with
state-dependent Lévy measure ν(t, x , dz) and ε ∼ Exp(1) and is
independent of X .
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Approximating the characteristic function (Ruijter, Oosterlee,

2015)

I Suppose we have no jumps, i.e. dXt = µ(Xt)dt + σ(Xt)dWt .
I Discretize the process, by e.g. Euler scheme, Milstein

scheme or order 2.0 weak Taylor scheme.
I In a general form,

X∆
m+1 = x + m(x)∆t + s(x)∆Wm+1 + k(x)(∆Wm+1)2, X∆

m = x .

I The characteristic function of X∆
m+1 given X∆

m = x is given
by

Γ̂(tm, x ; tm+1, ζ) = e
iζx+iζm(x)∆t−

1
2 ζ

2s2(x)∆t

1−2iζk(x)∆t (1− 2iζk(x)∆t)−
1
2 .
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Adjoint expansion of the characteristic function
(Pagliarani, Pascucci, Riga, 2013)

The density Γ(t, x ;T , y) of a process solves the Cauchy problem{
L(t, x)Γ(t, x ;T , y) = 0, t ∈ [0,T [, x ∈ R,
Γ(T , ·;T , y) = δy , x ∈ R,

(2)

where L(t, x) is the integro-di�erential operator (of the process)

L(t, x) = ∂t + r∂x + γ(t, x)(∂x − 1)

+
σ2(t, x)

2
(∂xx − ∂x)−

∫
R
ν(t, x , dz)(ez − 1− z)∂x

+

∫
R
ν(t, x , dz)(ez∂x − 1− z∂x).
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A Taylor expansion of the coe�cients
Use an expansion of the space-dependent coe�cients in the
operator L around some point x̄ .
Consider for simplicity only a local-volatility. Define

a(t, x) :=
σ2(t, x)

2
, ak =

∂kx a(x̄)

k!

The nth-order approximation of L is

Ln = L0 +
n∑

k=1

(
(x − x̄)kak(∂xx − ∂x)

)
,

L0 =∂t + r∂x + a0(∂xx − ∂x).

Notice that

Lh − Lh−1 = (x − x̄)hah(∂xx − ∂x).
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Cauchy problems of the expansion
The nth-order approximation of Γ is defined as

Γ(n)(t, x ;T , y) =
n∑

k=0

G k(t, x ;T , y),

with G 0 solving {
L0G

0(t, x ;T , y) = 0,
G 0(T , ·;T , y) = δy .

and G k for k ≥ 1 defined throughL0G
k(t, x ;T , y) = −

k∑
h=1

(Lh − Lh−1)G k−h(t, x ;T , y),

G k(T , x ;T , y) = 0.

for t ∈ [0,T [, x ∈ R
Anastasia Borovykh CWI, Amsterdam

Pricing options under processes with unknown characteristic functions



15/25

Solving the Adjoint Cauchy problems in Fourier space

The nth-order approximation of the characteristic function Γ̂ is
defined to be

Γ̂(n)(t, x ;T , ξ) =
n∑

k=0

F
(
G k(t, x ;T , ·)

)
(ξ) :=

n∑
k=0

Ĝ k(t, x ;T , ξ), ξ ∈ R.

Note that Fourier transform is taken with respect to (T , y), but L
acts on (t, x). We will:

I Define the functions G 0(t, x ; ·, ·) and G k(t, x ; ·, ·), k ≥ 1
through the Cauchy problems with the adjoint operator
L̃

(T ,y)
0 and L̃

(T ,y)
h − L̃

(T ,y)
h−1 .

I Solve the adjoint Cauchy problems in the Fourier space. This
immediately gives Γ̂.
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Theorem (Dual formulation)
The function G 0(t, x ; ·, ·) is de�ned through the following dual Cauchy
problem {

L̃
(T ,y)
0 G 0(t, x ;T , y) = 0 T > t, y ∈ R,

G 0(T , x ;T , ·) = δx .

For any k ≥ 1the function G k(t, x ; ·, ·) is de�ned throughL̃
(T ,y)
0 G k(t, x ;T , y) = −

k∑
h=1

(
L̃

(T ,y)
h − L̃

(T ,y)
h−1

)
G k−h(t, x ;T , y) T > t, y ∈ R,

G k(T , x ;T , y) = 0 y ∈ R,

with L̃(T ,y)
0 and L̃(T ,y)

h − L̃
(T ,y)
h−1 being the adjoint operators.
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Solution in Fourier space
We have

L̃
(T ,y)
0 = −∂T − r∂y + a0(∂yy + ∂y ).

Then

F
(
L̃

(T ,·)
0 G k(t, x ;T , ·)

)
(ξ) = ψ(ξ)Ĝ k(t, x ;T , ξ)−∂T Ĝ k(t, x ;T , ξ),

where
ψ(ξ) = iξr + a0(−ξ2 − iξ).

Then the solution to the adjoint Cauchy problems is given by

Ĝ 0(t, x ;T , ξ) = e iξx+(T−t)ψ(ξ),

Ĝ k(t, x ;T , ξ) = −
∫ T

t

eψ(ξ)(T−s)F

(
k∑

h=1

(
L̃

(s,·)
h − L̃

(s,·)
h−1

)
G k−h(t, x ; s, ·)

)
(ξ)ds.
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The characteristic function

The approximation of order n of the characteristic function is of
the form

Γ̂(n)(t, x ;T , ξ) := e iξx
n∑

h=0

(x − x̄)hgn,h(t,T , ξ),

where the coe�cients gn,h, with 0 ≤ h ≤ n, depend only on t,T
and ξ, but not on x .
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Back to the Bermudan option valuation [1/2]

Remember we had to value the continuation value of the form:

ĉ(t, x) = e−r(tm+1−t)

N−1∑′

k=0

Re
(
e−ikπ

a
b−a Γ̂

(
t, x ; tm+1,

kπ

b − a

))
Vk(tm+1),

Vk(tm) =
2

b − a

∫ b

a
cos
(
kπ

y − a

b − a

)
max{φ(tm, y), c(tm, y)}dy .

We can rewrite

Vk(tm) =
2

b − a

∫ b

x∗m

cos
(
kπ

y − a

b − a

)
c(tm, y)dy + Ck ,

with x∗m being the early-exercise point such that
c(tm, x

∗
m) = φ(tm, x

∗
m).
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Back to the Bermudan option valuation [2/2]

Inserting ĉ(t, x) into the formula for Vk(tm) we find in vectorized
form:

V̂(tm) =
n∑

h=0

e−r(tm+1−tm)Re
(
Mh(x∗m, b)uh

)
+ C, (3)

with

Mh
k,j(x

∗
m, b) =

2
b − a

∫ b

x∗m

e ijπ
x−a
b−a (x − x̄)h cos

(
kπ

x − a

b − a

)
dx (4)

The matrix-vector multiplicationM(x∗m, b)u can be calculated
using a fast Fourier transform.
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A quick example
Consider a process under the CEV-Merton dynamics with local
vol. and Gaussian jumps.

Table: Prices for a European and a Bermudan Put option (T = 1 and
10 exercise dates) in the CEV-Merton model for the 2nd-order
approximation of the characteristic function, and a Monte Carlo
method.

European Bermudan

K MC 95% c.i. Value MC 95% c.i. Value
0.8 0.02526-0.02622 0.02581 0.02617-0.02711 0.02520
1 0.08225-0.08395 0.08250 0.08480-0.08640 0.08593
1.2 0.1965-0.1989 0.1977 0.2097-0.2115 0.2132
1.4 0.3560-0.3589 0.3574 0.3946-0.3957 0.3954
1.6 0.5341-0.5385 0.5364 0.5930-0.5941 0.5932
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Other applications: Gas storage pricing

I Optimal operation of a storage facility amounts to finding
the optimal times to inject and withdraw gas, depending on
the current and expected spot/futures prices.

I The contract then allows the holder to take an action un at
any time tn, n = 1, ...N − 1.

I Injection at time tn as a positive volume change ∆vn and a
withdrawal as a negative volume change ∆vn.

I The volume in the storage tank satisfies a constraint,
vmin
n ≤ vn ≤ vmax

n .

I The withdrawal rate is assumed to satisfy,
αw (n, vn) ≤ ∆vn ≤ αi (n, vn), with αw the (negative)
maximum withdrawal rate, and αi the (positive) maximum
withdrawal rate.
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Pricing gas contracts
I Define the set of allowed actions at time tn given the volume vn to

be,

D(n, vn) :=
{

∆v |vmin
n+1 ≤ vn + ∆v ≤ vmax

n+1 , and α
w (n, vn) ≤ ∆v ≤ αi (n, vn)

}
.

I Denote the value of a storage contract starting at time tn with volume vn
by u(n, Sn, vn), the payo� after taking some action as h(Sn,∆v) and
define the continuation value c(n, Sn, vn+1) as the value we attach to the
contract after taking an allowed action ∆v ∈ D(n, vn),

c(n,Sn, vn+1) := En

[
e−r∆tu(n + 1,Sn+1, vn + ∆v)

]
.

I Then we find the dynamic programming backwards recursion,

u(N,SN , vN) = q(SN , vN),

u(n,Sn, vn) = max
∆v∈D(n,vn)

(h(Sn,∆v) + c(n, Sn, vn+1)) , n = N − 1, ..., 0.

I We can solve this using a Least Squares Monte Carlo or as usual the COS
method approach.
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The challenges

I The spot price is typically a complex process; seasonality,
mean-reversion, price spikes should be included.

I Previous work included modelling the asset price as a time
in-homogeneous exponential Lévy process (Safarov and
Atkinson (2017)).

I Alternatively, the local Lévy model might be of interest to
use.

I The gas storage value is very sensitive to the modeling
assumptions. Therefore, a good asset model is of the essence.

I Future work: combining the COS method with an asset
model for which we can approximate the characteristic
function for fast and e�cient gas storage valuation.
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