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A General ABSDE Result

Anticipated BSDEs “of the McKean type” in the line of

Peng, S. and Z. Yang (2009). Anticipated backward stochastic
differential equations (ABSDEs), or BSDEs “of the McKean
type” The Annals of Probability 37(3), 877–902.

In the XVA context, see also Agarwal, Marco, Gobet, López-Salas,
Noubiagain, and Zhou (2018) in relation with their modeling of the
so-called initial margin.
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Standard weak martingale representation setup, driven by

a d variate Brownian motion B
a compensated integer valued random measure
M(dt, de) = j(dt, de)− η(t, e)π(de)dt, where the σ finite measure π
integrates 1 ∧ |e|2 and η is bounded.
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Given a positive integer l , we introduce:

S l2, the space of Rl valued adapted càdlàg processes Y such that

‖Y ‖2S l2 = E
[

sup
0≤t≤T

|Yt |2
]
< +∞;

Hl
2, the space of Rl⊗d valued predictable processes Z such that

‖Z‖2Hl
2

= E
[ ∫ T

0
|Zt |2dt

]
< +∞;

Ĥl
2, the space of l variate predictable random functions U such that

‖U‖2Ĥl
2

= E
[ ∫ T

0

∫
E
|Ut(e)|2η(t, e)π(de)dt

]
= E

[ ∫ T

0
|Ut |2tdt

]
<∞.
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We assume that every (F,P) square integrable martingale null at time
0 has a representation of the form∫ t

0
ZsdBs +

∫ t

0

∫
E
Us(e)M(ds, de) , 0 ≤ t ≤ T ,

for suitable integrands Z ∈ H1
2 and U ∈ Ĥ1

2.
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Let there be given a map ρ from S l2×Hl
2 × Ĥl

2 into the space of F
predictable processes satisfying the following:

Assumption 1

There exists a constant cρ such that, for any t ∈ [0,T ] and (Y ,Z ,U),

(Y ′,Z ′,U ′) in S l2×Hl
2 × Ĥl

2,

|ρt(Y ,Z ,U)− ρt(Y ′,Z ′,U ′)|2 ≤

c2ρEt

[
sup

t≤s≤T
|Ys − Y ′s |

2
+

∫ T

t

(
|Zs − Z ′s |2 + |Us − U ′s |2s

)
ds
]
.
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Example 1

Conditional tail expectation (∼ expected shortfall) of a random loss `

ESαt [`] = Et [`|` > VaRαt (`)] = (1− α)−1Et [`1{`>VaRα
t (`)}].
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Standard square integrability and Lipschitz assumptions on an (l
variate) BSDE terminal condition ξ and coefficient f , except

f “‘depends on %” and is only monotone in y
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We consider the following l variate ABSDE:
YT = ξ and, for t ≤ T ,

−dYt = f (t,Yt ,Zt ,Ut , ρt(Y ,Z ,U)) dt − ZtdBt −
∫
E
Ut(e)M(dt, de),

(1)
to be solved in (Y ,Z ,U) in S l2 ×Hl

2 × Ĥl
2 .
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Theorem 1

The ABSDE (1) has a unique solution (Y ,Z ,U) in S l2 ×Hl
2 × Ĥl

2, which

is the limit in S l2 ×Hl
2 × Ĥl

2, with a geometrical convergence rate, of the
Picard iteration defined by (Y (0),Z (0),U(0)) = (0, 0, 0) and, for n ≥ 1,

Y
(n)
T = ξ and, for t ≤ T

− dY
(n)
t = f

(
t,Y

(n)
t ,Z

(n)
t ,U

(n)
t , ρt(Y

(n−1),Z (n−1),U(n−1))
)
dt

− Z
(n)
t dBt −

∫
E
U

(n)
t (e)M(dt, de).
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Proof. We extend the arguments in Peng and Yang (2009) to

jumps

because of the counterparty defaults,

monotone coefficient

as we assume interest rates only bounded from below,

a more general anticipated dependence of the coefficient

on the martingale part of the value process. .
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A Special Case

Assume that

ρ(Y ,Z ,U) = ρ̄
(
Y ,

∫ ·
0
ZsdBs +

∫ ·
0

∫
E
Us(e)M(ds, de)

)
f (t, y , z , u, %) = f̄ (t, y , %),

where ρ̄ and f̄ satisfy the obviously amended forms of our previous
assumptions on ρ and f .
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Then, denoting by m(S) the (F,P) canonical Doob–Meyer local
martingale component of an (F,P) special semimartingale S ;

1 The ABSDE (1) for (Y ,Z ,U) in S l2 ×Hl
2 × Ĥl

2 is equivalent, via the
martingale representation property, to the following equation to be
solved for a (special) semimartingale Y in S l2 with m(Y ) in S l2:

Yt = Et

[
ξ +

∫ T

t
f̄
(
s,Ys , ρ̄s

(
Y ,m(Y )

))
ds
]
, t ≤ T , (2)
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2 which is in turn equivalent to the following system of equations for a
(special) semimartingale Y in S l2 and a martingale N(= m(Y )) in S l2:

N0 = Y0 and, for t ∈ (0,T ],

dNt = dYt − f̄ (t,Yt , ρ̄t(Y ,N)) dt

Yt = Et

[
ξ +

∫ T

t
f̄
(
s,Ys , ρ̄s(Y ,N)

)
ds
]
;
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3 The Picard iteration of Theorem 1 for (Y ,Z ,U) is equivalent to the
following Picard iteration for (Y ,N = m(Y )) in (3): Y (0) = N(0) = 0
and, for n ≥ 1,

Y
(n)
t = Et

[
ξ +

∫ T

t
f̄
(
s,Y

(n)
s , ρ̄s(Y (n−1),N(n−1))

)
ds
]
, 0 ≤ t ≤ T ,

N
(n)
0 = Y

(n)
0 and, for t ∈ (0,T ],

dN
(n)
t = dY

(n)
t − f̄

(
t,Y

(n)
t , ρ̄t(Y

(n−1),N(n−1))
)
dt.
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XVAs: Pricing add-ons (or rebates) with respect to the
counterparty-risk-free value of financial derivatives, meant to account
for counterparty risk and its capital and funding implications.

VA stands for valuation adjustment and X is a catch-all letter to be
replaced by C for credit, D for debt, F for funding, M for margin, and
K for capital.

19 / 56



The main XVA protagonists.

MtM Mark-to-market
CVA Credit valuation adjustment
FVA Funding valuation adjustment
CA Contra-assets valuation
CR Capital at risk
KVA Capital valuation adjustment
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Consider a bank engaged into bilateral trading with a client, with
final maturity of the portfolio T .

Let MtM (mark-to-market) denote the counterparty risk free value of
the client portfolio of the bank, counted positively when positive to
the bank

Let Rc denote the recovery rate of the client in case it defaults at
time τc .

Let VM denote the variation margin from the client to the bank

collateral guarantee tracking the mark-to-market of the portfolio,
assumed remunerated at the risk-free rate by the receiving party

Let λ denote the funding spread of the bank
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CVA and FVA in the base case without capital at risk

Pricing stochastic basis (F,P) with risk-neutral discount factor β

Pricing cash flows by risk-neutral discounted expectation yields, for
0 ≤ t ≤ T :

CVAt = Et

[
1{t<τc≤T}β

−1
t βτc ×

(1− Rc)
(
MtMτc −VMτc

)+]
,

FVAt = Et

∫ τc∧T

t
β−1t βs ×

λs

(
MtMs −VMs − CVAs − FVAs

)+
ds.
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These equations can be readily extended to several clients, initial
margin, positive liquidation times, centrally cleared derivatives, etc.
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EPE

Assuming deterministic interest rates, the time 0 CVA can be
rewritten as

CVA0 = (1− Rc)

∫ T

0
βtEPE(t)P(τc ∈ dt), (3)

for an expected positive exposure (EPE) defined as

EPE(t) = E
(
(MtMs −VMs )

+|s = τc
)
|τc=t
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Wrong-Way Risk

The exposure based CVA formula (3) is popular with practitioners as
it decouples the credit and the market sides of the problem.

But it is specific to the valuation time 0 and it can hardly be
exploited rigorously beyond the simplistic setup where the default of
the client is independent of the corresponding counterparty exposure

whereas wrong-way risk, i.e. the risk of adverse dependence between
the credit risk of the counterparty and the underlying market exposure,
is a key CVA feature.

Analogous stylized FVA formulas integrated with respect to the credit
(CDS curve) of the bank itself, with similar limitations.
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Capital at risk and capital valuation adjustment

The capital at risk (CR) of the bank is dynamically modeled as the
conditional expected shortfall (economic capital ESt), at some
quantile level a (= 97.5%), of the one-year-ahead trading loss L of
the bank, i.e., also accounting for discounting:

CRt = ESat (

∫ t+1

t
β−1t βsdLs).
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Proposition 1

Assuming a constant hurdle rate h, the amount needed by the bank to
remunerate its shareholders for their capital at risk in the future is

KVAt = hEt

∫ T

t
e−

∫ s
t (ru+h)duCRsds , t ∈ [0,T ]. (4)
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Proof.

A constant hurdle rate h means (as the KVA itself is loss-absorbing)

−dKVAt + rtKVAtdt = h(CRt − KVAt)dt − dMartt ,

i.e., setting β̄t = e−
∫ t
0 (rs+h)ds

−d(β̄tKVAt) = hβ̄tCRtdt − β̄tdMartt

Added to a terminal condition KVAT = 0, this is equivalent to

β̄tKVAt = Et

∫ T

t
β̄shCRsds,

which is (4).
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What is L?

Assume market risk replicated by the bank but no XVA hedge

Setting Q = MtM−VM and CA = CVA + FVA, we obtain

L0 = z (∼ arbitrary, set to CA0 henceforth) and, for t ∈ (0,T ],

dLt = dCAt − rtCAtdt + (1− Rc)Q+
τcδτc (dt)

+ λt
(
1{t≤τc}Qt − CAt

)+
dt.

→ L = martingale part of (CA + (1− Rc)Q+ � δτc ), where
CA = CVA + FVA

L = µ+ m(FVA), for the exogenous

µ = m(CVA) + m
(
(1− Rc)Q+ � δ

)
.
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Using capital at risk as variation margin

Accounting for the possibility for a bank to use capital at risk as
variation margin (VM), the variation margin funding needs, i.e. the
drift (modulo discounting) of the FVA BSDE, are diminished from(
1{t≤τc}Qt − CAt

)+
to(

1{t≤τc}Qt − CAt−CRt

)+
,

where

CRt = ESat (

∫ t+1

t
β−1t βsdLs),
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(FVA,KVA) ABSDEs

→ FVA anticipated BSDE of the form (2), with

ρ̄(Y ,N) = ESt

[∫ (t+1)∧T

t
β−1t βs (dµs + dNs)

]
, t ∈ [0,T ]

And even (FVA,KVA) ABSDE system of such, as the KVA is
actually part of capital at risk, hence the definition of CRt needs in
fact be refined into CRt = max

(
ESat (

∫ t+1
t β−1t βsdLs),KVAt

)
.
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Theorem 2

The XVA equations are well-posed, including in the realistic case where
capital is fungible with variation margin.

Proof. By application of Theorem 1 and observation 1.

Moreover, the reformulation of the Picard iteration made in the
observations 2 and 3 opens the door to Monte Carlo approximation of
the solution.
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What is λ?

“Credit and/or liquidity”

But liquidity spreads are typically in the order of a handful of basis
points while banks funding spreads can run into the hundreds of basis
points

If “credit mainly”, it seems we forgot (at least) half of the story

Banks are themselves risky and this is precisely the reason why we
saw all these regulatory changes

What then about DVA etc..?
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Adding bank default

In the realistic case of a defaultable bank, we need to account for the
discrepancy between the so called clean pricing model used by the
derivative traders of the bank, who ignore the default of the bank
itself, and the pricing model of the XVA traders, that have the default
of the bank in mind

We also need to stop all equations ‘before the bank default’ in order
to be aligned with the interest of bank shareholders, who have the
decision power as long as the bank is nondefault
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Unilateral versus bilateral XVAs

Theorem 3

Ultimately same equations as before after reduction of all XVA equations
‘stopped before the bank default’ to the clean pricing model (filtration and
pricing measure).

Hence the XVA equations are well posed and amenable to Monte
Carlo simulation, including in the realistic case of a defaultable bank.
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Even though our setup includes the default of the bank itself, we end
up with unilateral CVA, FVA and KVA (pre-default) formulas [and
DVA is irrelevant] pricing the related cash flows until the final
maturity T of the portfolio

As opposed to τ̄ = τ ∧ T
Under a reduced filtration (and possibly changed probability measure)
ignoring the default of the bank itself, but without bank default
intensity discounting.
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In particular, our approach is therefore naturally consistent with the
regulatory requirement that the reserve capital

CA = CVA + FVA

of a bank should not diminish simply because of a deterioration of the
bank credit spread.
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XVA Metrics for Bilateral Trade Portfolios

Assuming n netting sets (and one funding set):

nonlinear CVA terminal payoffs, hence the CVA can only be computed
at the level of each netting set

semilinear FVA equation, hence, in principle, the FVA can only be
computed at the level of the overall portfolio

The KVA can only be computed at the level of the overall portfolio
and relies on future conditional risk measures of the trading loss
process of the bank, which itself involves future fluctuations of other
XVAs, as these are part of the bank liabilities
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Algorithmic and computational challenges

Heavy computations at the portfolio level

Yet need accuracy so that (trade) incremental XVA computations are
not in the numerical noise of the machinery
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XVA dependence tree, from the most outer layer to the most inner
one. The sub-tree rooted at the lowest node on each inner layer
should be duplicated starting from each node above on the same layer.

KVA0

ECs, 0<s<T

ECs

FVAt=s,...,s+1

CVAt, MVAt, t=s,...,s+1

IMt=s,...,s+1

  , MtMt=s,...,s+1

FVAt

CVAu, MVAu, u=t,...,T

IMu=t,...,T

  , MtMu=t,...,T MVAu, CVAu

IMv=u,...,T

  , MtMv=u,...,T

IMv

  , MtMw=v,...,v+

   , MtMw

Depth

Mcva
Mfva

Mkva

Mec

Mim Mmtm

. .
 . 

. .

. .
 . 

.

. .
 . 

.

. .
 .

. .
 .

. .
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FVA (inner) backwardations. The yellow pavings symbolize
regressions. The fine blue paths denote inner resimulated paths.

Time steps

M(i-1)

M(i)

M(i)

M(i)
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The above XVA dependence tree yields the big picture in the most general
situation and without any simplification. However:

If the user is only interested in some of the XVA components, then
only the sub-XVA tree corresponding to the most outer XVA of
interest in the figure needs be processed computationally;

If one or several layers can be computed by exact or approximate
formulas instead of Monte Carlo simulation, then the corresponding
layers drop out of the picture.
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XVA Exposure Based Computational Approaches (cf. (3))

First, compute the mark-to-market cube of the counterparty-risk free
valuation of all contracts in any scenario and future time point.

Then integrate in time the ensuing expected positive exposure (EPE)
profile “against the client CDS curve” in order to obtain the CVA.

A similar approach is applied to FVA (using the funding curve of the
bank itself as exposure integration kernel) and other XVAs
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Mainstream in most banks

However, an exposure-based approach is purely static, whereas a
dynamic perspective is required for (even partial, but rigorous) XVA
hedging purposes and for properly accounting for the feedback effects
between different XVAs (e.g. from the CVA into the FVA).
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Moreover, an exposure-based XVA approach essentially assumes
independence between the market and credit sides of the problem

Beyond more or less elaborate patches such as the ones proposed in
(Pykhtin 2012), (Hull and White 2012), (Li and Mercurio 2015), or
(Iben Taarit 2017), it is hard to extend rigorously to wrong-way risk

Risk of adverse dependence between the credit risk of the counterparty
(or bank itself) and the underlying market exposure
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Last but not least, an exposure-based XVA approach comes with little
error control, at least whenever the exposure is computed by global
regression

This is due to the unconditional approximations involved in such
global regressions.
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Nested Monte Carlo

An alternative is a nested Monte Carlo XVA computational approach,
optimally implemented on GPUs.

In an NMC perspective (see (Gordy and Juneja 2010) for a seminal
reference), higher layers are launched first and trigger nested
simulations on-the-fly whenever required in order to compute an item
from a lower layer
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XVA NMC Design Parameterization

Assuming the same variance created through the different layers of
the tree, the mean square error (MSE) of an
M(0) ⊗M(1) ⊗ . . .⊗M(i) = M(0) ⊗M(0) ⊗ . . .⊗M(0) NMC is the

same as the one of an M(0) ⊗
√

M(0) ⊗ . . .⊗
√
M(0) NMC

O(M
− 1

2

(0) )

Proof based on a uniform control of the moments of the error and
regularity assumptions that are needed to justify the application of
Taylor formula
cf. Gordy and Juneja (2010, Assumption 1), Abbas-Turki and Mikou
(2015, Assumption 3.1), and Rainforth, Cornish, Yang, Warrington,
and Wood (2017).
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Semi-Nested MC Approach for the XVA ABSDEs

Picard iteration (3)

Nested Monte Carlo used for estimating the XVA metrics at outer
simulation nodes

Regression of the conditional expected shortfall risk measures
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Real portfolio study (Albanese, Caenazzo, and Crépey
(2017))

Representative banking portfolio with about 2,000 counterparties,
100,000 fixed income trades including swaps, swaptions, FX options,
inflation swaps and CDS trades.

VM = 0.
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Representative banking portfolio XVA values.

XVA $Value

CVA0 242 M

FVA
(0)
0 126 M

FVA0 62 M

KVA0 275 M

FTDCVA 194 M

FTDDVA 166 M
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Left: Term structure of economic capital compared with the term
structure of KVA.
Right:FVA blended funding curve computed from the ground up
based on capital projections.
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Thanks for your attention!
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