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Long Run and Stochastic Investment Opportunities

Independent Returns?
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• Higher yields tend to be followed by higher long-term returns.
• Should not happen if returns independent!
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Utility Maximization
• Basic portfolio choice problem: maximize utility from terminal wealth:

max
π

E [U(Xπ
T )]

• Easy for logarithmic utility U(x) = log x .
Myopic portfolio π = Σ−1µ optimal. Numeraire argument.

• Portfolio does not depend on horizon (even random!), and on the
dynamics of the the state variable, but only its current value.

• But logarithmic utility leads to counterfactual predictions.
And implies that unhedgeable risk premia are all zero.

• Power utility U(x) = x1−γ/(1− γ) is more flexible.
Portfolio no longer myopic. Risk premia nonzero, and depend on γ.

• Power utility far less tractable.
Joint dependence on horizon and state variable dynamics.

• Explicit solutions few and cumbersome.
• Goal: keep dependence from state variable dynamics, lose from horizon.
• Tool: assume long horizon.
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Asset Prices and State Variables
• Safe asset S0

t = exp
(∫ t

0 r(Ys)ds
)

, d risky assets, k state variables.

dSi
t

Si
t

=r(Yt )dt + dR i
t 1 ≤ i ≤ d

dR i
t =µi (Yt )dt +

n∑
j=1

σij (Yt )dZ j
t 1 ≤ i ≤ d

dY i
t =bi (Yt )dt +

k∑
j=1

aij (Yt )dW j
t 1 ≤ i ≤ k

d〈Z i ,W j〉t =ρij (Yt )dt 1 ≤ i ≤ d ,1 ≤ j ≤ k

• Z , W Brownian Motions.
• Σ(y) = (σσ′)(y), Υ(y) = (σρa′)(y), A(y) = (aa′)(y).

Assumption

r ∈ Cγ(E ,R), b ∈ C1,γ(E ,Rk ), µ ∈ C1,γ(E ,Rn), A ∈ C2,γ(E ,Rk×k ),
Σ ∈ C2,γ(E ,Rn×n) and Υ ∈ C2,γ(E ,Rn×k ). The symmetric matrices A and Σ
are strictly positive definite for all y ∈ E. Set Σ̄ = Σ−1
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State Variables

• Investment opportunities:
safe rate r , excess returns µ, volatilities σ, and correlations ρ.

• State variables: anything on which investment opportunities depend.
• Example with predictable returns:

dRt =Ytdt + σdZt

dYt =− λYtdt + dWt

• State variable is expected return. Oscillates around zero.
• Example with stochastic volatility:

dRt =νYtdt +
√

YtdZt

dYt =κ(θ − Yt )dt + a
√

YtdWt

• State variable is squared volatility. Oscillates around positive value.
• State variables are generally stationary processes.
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(In)Completeness

• Υ′Σ−1Υ: covariance of hedgeable state shocks:
Measures degree of market completeness.

• A = Υ′Σ−1Υ: complete market.
State variables perfectly hedgeable, hence replicable.

• Υ = 0: fully incomplete market.
State shocks orthogonal to returns.

• Otherwise state variable partially hedgeable.
• One state: Υ′Σ−1Υ/a2 = ρ′ρ.

Equivalent to R2 of regression of state shocks on returns.
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Well Posedness

Assumption

There exists unique solution
(
P(r ,y))

)
r∈Rn,y∈E to martingale problem:

L =
1
2

n+k∑
i,j=1

Ãi,j (x)
∂2

∂xi∂xj
+

n+k∑
i=1

b̃i (x)
∂

∂xi
Ã =

(
Σ Υ
Υ′ A

)
b̃ =

(
µ
b

)

• Ω = C([0,∞),Rn+k ) with uniform convergence on compacts.
• B Borel σ-algebra, (Bt )t≥0 natural filtration.

Definition
(Px )x∈Rn×Eon (Ω,B) solves martingale problem if, for all x ∈ Rn × E :
• Px (X0 = x) = 1
• Px (Xt ∈ Rn × E ,∀t ≥ 0) = 1

• f (Xt )− f (X0)−
∫ t

0 (Lf )(Xu)du is Px -martingale for all f ∈ C2
0 (Rn × E)
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Trading and Payoffs

Definition
Trading strategy: process (πi

t )
1≤i≤d
t≥0 , adapted to Ft = Bt+, the right-continuous

envelope of the filtration generated by (R,Y ), and R-integrable.

• Investor trades without frictions. Wealth dynamics:

dXπ
t

Xπ
t

= r(Yt )dt + π′t dRt

• In particular, Xπ
t ≥ 0 a.s. for all t .

Admissibility implied by R-integrability.
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Equivalent Safe Rate
• Maximizing power utility E

[
(Xπ

T )1−γ] /(1− γ) equivalent to maximizing the

certainty equivalent E
[
(Xπ

T )1−γ] 1
1−γ .

• Observation: in most models of interest, wealth grows exponentially with
the horizon. And so does the certainty equivalent.

• Example: with r , µ,Σ constant, the certainty equivalent is exactly
exp

(
(r + 1

2γµ
′Σ−1µ)T

)
. Only total Sharpe ratio matters.

• Intuition: an investor with a long horizon should try to maximize the rate at
which the certainty equivalent grows:

β = max
π

lim inf
T→∞

1
T

log E
[
(Xπ

T )1−γ] 1
1−γ

• Imagine a “dream” market, without risky assets, but only a safe rate ρ.
• If β > ρ, an investor with long enough horizon prefers the dream.
• If β < ρ, he prefers to wake up.
• At β = ρ, his dream comes true.
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Equivalent Annuity

• Exponential utility U(x) = −e−αx leads to a similar, but distinct idea.
• Suppose the safe rate is zero.
• Then optimal wealth typically grows linearly with the horizon, and so does

the certainty equivalent.
• Then it makes sense to consider the equivalent annuity:

β = max
π

lim inf
T→∞

− 1
αT

log E
[
e−αXπ

T

]
• The dream market now does not offer a higher safe rate, but instead a

stream of fixed payments, at rate ρ. The safe rate remains zero.
• The investor is indifferent between dream and reality for β = ρ.
• For positive safe rate, use definition with discounted quantities.
• Undiscounted equivalent annuity always infinite with positive safe rate.
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Solution Strategy

• Duality Bound.
• Stationary HJB equation and finite-horizon bounds.
• Criteria for long-run optimality.
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Stochastic Discount Factors
Definition
Stochastic discount factor: strictly positive adapted M = (Mt )t≥0, such that:

Ey
P

[
MtSi

t

∣∣Fs
]

= MsSi
s for all 0 ≤ s ≤ t ,0 ≤ i ≤ d

Martingale measure: probability Q, such that Q|Ft and Py |Ft equivalent for all
t ∈ [0,∞), and discounted prices Si/S0 Q-martingales for 1 ≤ i ≤ d .

• Martingale measures and stochastic discount factors related by:

dQ
dPy

∣∣
Ft

= exp
(∫ t

0 r(Ys)ds
)

Mt

• Local martingale property: all stochastic discount factors satisfy

Mη
t = exp

(
−
∫ t

0 rdt
)
E
(
−
∫ ·

0(µ′Σ−1 + η′Υ′Σ−1)σdZ +
∫ ·

0 η
′adW

)
t

for some adapted, Rk -valued process η.
• η represents the vector of unhedgeable risk premia.
• Intuitively, the Sharpe ratios of shocks orthogonal to dR.
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Duality Bound
• For any payoff X = Xπ

T and any discount factor M = Mη
T , E [XM] ≤ x .

Because XM is a local martingale.
• Duality bound for power utility:

E
[
X 1−γ] 1

1−γ ≤ xE
[
M1−1/γ

] γ
1−γ

• Proof: exercise with Hölder’s inequality.
• Duality bound for exponential utility:

−1
α

log E
[
e−αX ] ≤ x

E [M]
+

1
α

E
[

M
E [M]

log
M

E [M]

]
• Proof: Jensen inequality under risk-neutral densities.
• Both bounds true for any X and for any M.

Pass to sup over X and inf over M.
• Note how α disappears from the right-hand side.
• Both bounds given in terms of certainty equivalents.
• As T →∞, bounds for equivalent safe rate and annuity follow.
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Long Run Optimality
Definition (Power Utility)

An admissible portfolio π is long run optimal if it solves:

max
π

lim inf
T→∞

1
T

log E
[
(Xπ

T )1−γ] 1
1−γ

The risk premia η are long run optimal if they solve:

min
η

lim sup
T→∞

1
T

log E
[
(Mη

T )1−1/γ
] γ

1−γ

Pair (π, η) long run optimal if both conditions hold, and limits coincide.

• Easier to show that (π, η) long run optimal together.
• Each η is an upper bound for all π and vice versa.

Definition (Exponential Utility)

Portfolio π and risk premia η long run optimal if:

max
π

lim inf
T→∞

− log E
[
e−αXπ

T

]
min
η

lim sup
T→∞

E
[

M
E [M] log M

E [M]

]
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HJB Equation
• V (t , x , y) depends on time t , wealth x , and state variable y .
• Itô’s formula:

dV (t ,Xt ,Yt ) = Vtdt + Vx dXt + Vy dYt +
1
2

(Vxx d〈X 〉t + Vxy d〈X ,Y 〉t + Vyy d〈Y 〉t )

• Vector notation. Vy ,Vxy k -vectors. Vyy k × k matrix.
• Wealth dynamics:

dXt = (r + π′tµt )Xtdt + Xtπ
′
tσtdZt

• Drift reduces to:

Vt + xVx r + Vy b +
1
2

tr(Vyy A) + xπ′ (µVx + ΥVxy ) +
x2

2
Vxxπ

′Σπ

• Maximizing over π, the optimal value is:

π = − Vx

xVxx
Σ−1µ−

Vxy

xVxx
Σ−1Υ

• Second term is new. Interpretation?
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Intertemporal Hedging

• π = − Vx
xVxx

Σ−1µ− Σ−1Υ
Vxy
xVxx

• First term: optimal portfolio if state variable frozen at current value.
• Myopic solution, because state variable will change.
• Second term hedges shifts in state variables.
• If risk premia covary with Y , investors may want to use a portfolio which

covaries with Y to control its changes.
• But to reduce or increase such changes? Depends on preferences.
• When does second term vanish?
• Certainly if Υ = 0. Then no portfolio covaries with Y .

Even if you want to hedge, you cannot do it.
• Also if Vy = 0, like for constant r , µ and σ.

But then state variable is irrelevant.
• Any other cases?
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HJB Equation

• Maximize over π, recalling max(π′b + 1
2π
′Aπ = − 1

2 b′A−1b).
HJB equation becomes:

Vt + xVx r + Vy b +
1
2

tr(Vyy A)− 1
2

(µVx + ΥVxy )′
Σ−1

Vxx
(µVx + ΥVxy ) = 0

• Nonlinear PDE in k + 2 dimensions. A nightmare even for k = 1.
• Need to reduce dimension.
• Power utility eliminates wealth x by homogeneity.
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Homogeneity
• For power utility, V (t , x , y) = x1−γ

1−γ v(t , y).

Vt =
x1−γ

1− γ
vt Vx = x−γv Vxx = −γx−γ−1v

Vxy = x−γvy Vy =
x1−γ

1− γ
vy Vyy =

x1−γ

1− γ
vyy

• Optimal portfolio becomes:

π =
1
γ

Σ−1µ+
1
γ

Σ−1Υ
vy

v

• Plugging in, HJB equation becomes:

vt + (1− γ)

(
r +

1
2γ
µ′Σ−1µ

)
v +

(
b +

1− γ
γ

Υ′Σ−1µ

)
vy

+
1
2

tr(vyy A) +
1− γ
γ

v ′y Υ′Σ−1Υvy

2v
= 0

• Nonlinear PDE in k + 1 variables. Still hard to deal with.
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Long Run Asymptotics
• For a long horizon, use the guess v(t , y) = e(1−γ)(β(T−t)+w(y)).
• It will never satisfy the boundary condition. But will be close enough.
• Here β is the equivalent safe, to be found.
• We traded a function v(t , y) for a function w(y), plus a scalar β.
• The HJB equation becomes:(

−β + r +
1

2γ
µ′Σ−1µ

)
+

(
b +

1− γ
γ

Υ′Σ−1µ

)
wy

+
1
2

tr(wyy A) +
1− γ

2
w ′y

(
A− 1− γ

γ
Υ′Σ−1Υ

)
wy = 0

• And the optimal portfolio:

π =
1
γ

Σ−1µ+
(

1− 1
γ

)
Σ−1Υwy

• Stationary portfolio. Depends on state variable, not horizon.
• HJB equation involved gradient wy and Hessian wyy , but not w .
• With one state, first-order ODE.
• Optimality? Accuracy? Boundary conditions?
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Example
• Stochastic volatility model:

dRt =νYtdt +
√

YtdZt

dYt =κ(θ − Yt )dt + ε
√

YtdWt

• Substitute values in stationary HJB equation:(
−β + r +

ν2

2γ
y
)

+

(
κ(θ − y) +

1− γ
γ

ρενy
)

wy

+
ε2

2
wyy + (1− γ)

ε2y
2

w2
y

(
1− 1− γ

γ
ρ2
)

= 0

• Try a linear guess w = λy . Set constant and linear terms to zero.
• System of equations in β and λ:

−β + r + κθλ =0

λ2(1− γ)
ε2

2

(
1− 1− γ

γ
ρ2
)

+ λ

(
1− γ
γ

ενρ− κ
)

+
ν2

2γ
=0

• Second equation quadratic, but only larger solution acceptable.
Need to pick largest possible β.
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Example (continued)
• Optimal portfolio is constant, but not the usual constant.

π =
1
γ

(ν + βρε)

• Hedging component depends on various model parameters.
• Hedging is zero if ρ = 0 or ε = 0.
• ρ = 0: hedging impossible. Returns do covary with state variable.
• ε = 0: hedging unnecessary. State variable deterministic.
• Hedging zero also if β = 0, which implies logarithmic utility.
• Logarithmic investor does not hedge, even if possible.
• Lives every day as if it were the last one.
• Equivalent safe rate:

β =
θν2

2γ

(
1−

(
1− 1

γ

)
νρ

κ
ε

)
+ O(ε2)

• Correction term changes sign as γ crosses 1.
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Martingale Measure

• Many martingale measures. With incomplete market, local martingale
condition does not identify a single measure.

• For any arbitrary k -valued ηt , the process:

Mt = E
(
−
∫ ·

0
(µ′Σ−1 + η′Υ′Σ−1)σdZ +

∫ ·
0
η′adW

)
t

is a local martingale such that MR is also a local martingale.
• Recall that MT = yU ′(Xπ

T ).
• If local martingale M is a martingale, it defines a stochastic discount factor.
• π = 1

γΣ−1(µ+ Υ(1− γ)wy ) yields:

U ′(Xπ
T ) = (Xπ

T )−γ =x−γe−γ
∫ T

0 (π′µ− 1
2π
′Σπ)dt−γ

∫ T
0 π′σdZt

=e−
∫ T

0 (µ′+(1−γwy )Υ′)Σ−1σdZt +
∫ T

0 (... )dt

• Mathing the two expressions, we guess η = (1− γ)wy .
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Risk Neutral Dynamics

• To find dynamics of R and Y under Q, recall Girsanov Theorem.
• If Mt has previous representation, dynamics under Q is:

dRt =σdZ̃t

dYt =(b −Υ′Σ−1µ+ (A−Υ′Σ−1Υ)η)dt + adW̃t

• Since η = (1− γ)wy , it follows that:

dRt =σdZ̃t

dYt =
(
b −Υ′Σ−1µ+ (A−Υ′Σ−1Υ)(1− γ)wy

)
dt + adW̃t

• Formula for (long-run) risk neutral measure for a given risk aversion.
• For γ = 1 (log utility) boils down to minimal martingale measure.
• Need to find w to obtain explicit solution.
• And need to check that above martingale problem has global solution.
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Exponential Utility
• Instead of homoheneity, recall that wealth factors out of value function.
• Long-run guess: V (x , y , t) = e−αx+αβt+w(y).
β is now equivalent annuity.

• Set r = 0, otherwise safe rate wipes out all other effects.
• The HJB equation becomes:(

−β +
1
2
µ′Σ−1µ

)
+
(

b −Υ′Σ−1µ
)

wy +
1
2

tr(wyy A)−1
2

w ′y
(

A−Υ′Σ−1Υ
)

wy = 0

• And the optimal portfolio:

xπ =
1
α

Σ−1µ− Σ−1Υwy

• Rule of thumb to obtain exponential HJB equation:
write power HJB equation in terms of w̃ = γw , then send γ ↑ ∞.
Then remove the˜

• Exponential utility like power utility with “∞” relative risk aversion.
• Risk-neutral dynamics is minimal entropy martingale measure:

dYt =
(
b −Υ′Σ−1µ− (A−Υ′Σ−1Υ)wy

)
dt + adW̃t
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HJB Equation

Assumption

w ∈ C2 (E ,R) and β ∈ R solve the ergodic HJB equation:

r +
1

2γ
µ′Σ̄µ+

1− γ
2
∇w ′

(
A− (1− 1

γ
)Υ′Σ̄Υ

)
∇w+

∇w ′
(

b − (1− 1
γ

)Υ′Σ̄µ

)
+

1
2

tr
(
AD2w

)
= β

• Solution must be guessed one way or another.
• PDE becomes ODE for a single state variable
• PDE becomes linear for logarithmic utility (γ = 1).
• Must find both w and β
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Myopic Probability
Assumption

There exists unique solution (P̂r ,y )r∈Rn,y∈Rk to to martingale problem

L̂ =
1
2

n+k∑
i,j=1

Ãi,j (x)
∂2

∂xi∂xj
+

n+k∑
i=1

b̂i (x)
∂

∂xi

b̂ =

( 1
γ (µ+ (1− γ)Υ∇w)

b − (1− 1
γ )Υ′Σ̄µ+

(
A− (1− 1

γ )Υ′Σ̄Υ
)

(1− γ)∇w

)

• Under P̂, the diffusion has dynamics:

dRt = 1
γ (µ+ (1− γ)Υ∇w) dt + σdẐt

dYt =
(

b − (1− 1
γ )Υ′Σ̄µ+ (A− (1− 1

γ )Υ′Σ̄Υ)(1− γ)∇w
)

dt + adŴt

• Same optimal portfolio as a logarithmic investor living under P̂.
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Finite horizon bounds

Theorem
Under the previous assumptions:

π =
1
γ

Σ̄ (µ+ (1− γ)Υ∇w) , η = (1− γ)∇w

satisfy the equalities:

Ey
P

[
(Xπ

T )1−γ] 1
1−γ = eβT +w(y)Ey

P̂

[
e−(1−γ)w(YT )

] 1
1−γ

Ey
P

[
(Mη

T )
γ−1
γ

] γ
1−γ

= eβT +w(y)Ey
P̂

[
e−

1−γ
γ w(YT )

] γ
1−γ

• Bounds are almost the same. Differ in Lp norm.
• Long run optimality if expectations grow less than exponentially.
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Path to Long Run solution

• Find candidate pair w , β that solve HJB equation.
• Different β lead to to different solutions w .
• Must find w corresponding to the lowest β that has a solution.

You look for the lowest certeinty equivalent rate.
• Using w , check that myopic probabiity is well defined.

Y does not explode under dynamics of P̂.
• Then finite horizon bounds hold.
• To obtain long run optimality, show that:

lim sup
T→∞

1
T

log Ey
P̂

[
e−

1−γ
γ w(YT )

]
= 0

lim sup
T→∞

1
T

log Ey
P̂

[
e−(1−γ)w(YT )

]
= 0
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Proof of wealth bound (1)

• Define Dt = dP̂
dP |Ft , which equals to E(M), where:

Mt =

∫ t

0

(
−qΥ′Σ̄µ+

(
A− qΥ′Σ̄Υ

)
∇v
)′

(a′)−1dWt

−
∫ t

0
q
(
Σ̄µ+ Σ̄Υ∇v

)′
σρ̄dBt

• For the portfolio bound, it suffices to show that:

(Xπ
T )p = ep(βT +w(y)−w(YT ))DT

which is the same as log Xπ
T −

1
p log DT = βT + w(y)− w(YT ).

• The first term on the left-hand side is:

log Xπ
T =

∫ T

0

(
r + π′µ− 1

2
π′Σπ

)
dt +

∫ T

0
π′σdZt
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Proof of wealth bound (2)
• Set π = 1

1−p Σ̄ (µ+ pΥ∇w), Z = ρW + ρ̄B. log Xπ
T becomes:

∫ T
0

(
r + 1−2p

2(1−p)µ
′Σ̄µ− p2

(1−p)2µ
′Σ̄Υ∇w − 1

2
p2

(1−p)2∇w ′Υ′Σ̄Υ∇w
)

dt

+ 1
1−p

∫ T
0 (µ+ pΥ∇w)′ Σ̄σρdWt − 1

1−p

∫ T
0 (µ+ pΥ∇w)′ Σ̄σρ̄dBt

• Similarly, log DT/p becomes:∫ T
0

(
− p

2(1−p)2µ
′Σ̄µ− p

(1−p)2µ
′Σ̄Υ∇w − p

2∇w ′
(

A + p(2−p)
(1−p)2 Υ′Σ̄Υ

)
∇w

)
dt+∫ T

0

(
∇w ′a + 1

1−p (µ+ pΥ∇w)′ Σ̄σρ
)

dWt + 1
1−p

∫ T
0 (µ+ pΥ∇w) Σ̄σρ̄dBt

• Subtracting yields for log Xπ
T − log DT/p∫ T

0

(
r + 1

2(1−p)µ
′Σ̄µ+ p

1−pµ
′Σ̄Υ∇w + p

2∇w ′
(

A + p
1−p Υ′Σ̄Υ

)
∇w

)
dt

−
∫ T

0 ∇w ′adWt
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Proof of wealth bound (3)

• Now, Itô’s formula allows to substitute:

−
∫ T

0
∇w ′adWt = w(y)− w(YT ) +

∫ T

0
∇w ′bdt +

1
2

∫ T

0
tr(AD2w)dt

• The resulting dt term matches the one in the HJB equation.
• log Xπ

T − log DT/p equals to βT + w(y)− w(YT ).
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Proof of martingale bound (1)

• For the discount factor bound, it suffices to show that:

1
p−1 log Mη

T −
1
p log DT = 1

1−p (βT + w(y)− w(YT ))

• The term 1
p−1 log Mη

T equals to:

1
1−p

∫ T
0

(
r + 1

2µ
′Σ̄µ+ p2

2 ∇w ′
(
A−Υ′Σ̄Υ

)
∇w

)
dt+

1
p−1

∫ T
0

(
p∇w ′a− (µ+ pΥ∇w)′ Σ̄σρ

)
dWt + 1

1−p

∫ T
0 (µ+ pΥ∇w) Σ̄σρ̄dBt

• Subtracting 1
p log DT yields for 1

p−1 log Mη
T −

1
p log DT :

1
1−p

∫ T
0

(
r + 1

2(1−p)µ
′Σ̄µ+ p

1−pµ
′Σ̄Υ∇w + p

2∇w ′
(

A + p
1−p Υ′Σ̄Υ

)
∇w

)
dt

− 1
1−p

∫ T
0 ∇w ′adWt



Long Run and Stochastic Investment Opportunities

Proof of martingale bound (2)

• Replacing again
∫ T

0 ∇w ′adWt with Itô’s formula yields:

1
1−p

∫ T
0 (r + 1

2(1−p)µ
′Σ̄µ+ ( p

1−pµ
′Σ̄Υ + b′)∇w+

1
2 tr(AD2w) + p

2∇w ′
(

A + p
1−p Υ′Σ̄Υ

)
∇w)dt

+ 1
1−p (w(y)− w(YT ))

• And the integral equals 1
1−pβT by the HJB equation.



Long Run and Stochastic Investment Opportunities

Exponential Utility
Theorem
If r = 0 and w solves equation:

1
2
µ′Σ̄µ− 1

2
∇w ′

(
A−Υ′Σ̄Υ

)
∇w +∇w ′

(
b −Υ′Σ̄µ

)
+

1
2

tr
(
AD2w

)
= β

and myopic dynamics is well posed:
dRt =σdẐt

dYt =
(
b −Υ′Σ̄µ− (A−Υ′Σ̄Υ)∇w

)
dt + adŴt

Then for the portfolio and risk premia (π, η) given by:

xπ =
1
α

Σ−1µ− Σ−1Υ∇w η = −∇w

finite-horizon bounds hold as:

−1
α

log Ey
P

[
e−α(Xπ

T −x)
]

=βT +
1
α

log Ey
P̂

[
ew(y)−w(YT )

]
1
2

Ey
P [Mη log Mη] =βT +

1
α

Ey
P̂

[w(y)− w(YT )]

• Myopic probability is minimal entropy martingale measure!



Long Run and Stochastic Investment Opportunities

Long-Run Optimality

Theorem
If, in addition to the assumptions for finite-horizon bounds,
• the random variables (Yt )t≥0 are P̂y -tight in E for each y ∈ E;
• supy∈E (1− γ)F (y) < +∞, where F ∈ C(E ,R) is defined as:

F =


(

r − β + µ′Σ−1µ
2γ − (1−γ)2

2γ ∇w ′Υ′Σ−1Υ∇w
)

e−(1−γ)w γ > 1(
r − β + µ′Σ−1µ

2γ − (1−γ)2

2 ∇w ′
(
A−Υ′Σ−1Υ

)
∇w

)
e−

1−γ
γ w γ < 1

Then long-run optimality holds.

• Straightforward to check, once w is known.
• Tightness checked with some moment condition.
• Does not require transition kernel for Y under any probability.



Long Run and Stochastic Investment Opportunities

Proof of Long-Run Optimality (1)
• By the duality bound:

0 ≤ lim inf
T→∞

1
p

(
1
T

log Ey
P

[
(Mη

T )q]1−p − 1
T

log Ey
P [(Xπ

T )p]

)
≤ lim sup

T→∞

1
pT

log Ey
P

[
(Mη

T )q]1−p − lim inf
T→∞

1
pT

log Ey
P [(Xπ

T )p]

= lim sup
T→∞

1− p
pT

log Ey
P̂

[
e−

1
1−p v(YT )

]
− lim inf

T→∞

1
pT

log Ey
P̂

[
e−v(YT )

]
• For p < 0 enough to show lower bound

lim inf
T→∞

1
T

log Ey
P̂

[
exp

(
− 1

1−p v(YT )
)]
≥ 0

and upper bound:

lim supT→∞
1
T log Ey

P̂
[exp (−v(YT ))] ≤ 0

• Lower bound follows from tightness.
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Proof of Long-Run Optimality (2)
• For upper bound, set:

Lf = ∇f ′
(
b − qΥ′Σ−1µ+

(
A− qΥ′Σ−1Υ

)
∇v
)

+ 1
2 tr
(
AD2f

)
• Then, for α ∈ R, the HJB equation implies that L (eαv ) equals to:

αeαv
(
∇v ′

(
b − qΥ′Σ−1µ+

(
A− qΥ′Σ−1Υ

)
∇v
)

+ 1
2 tr
(
AD2v

)
+ 1

2α∇v ′A∇v
)

= αeαv
( 1

2∇v ′
(
(1 + α)A− qΥ′Σ−1Υ

)
∇v + pβ − pr + q

2µ
′Σ−1µ

)
• Set α = −1, to obtain that:

L
(
e−v) = e−v

(q
2
∇v ′Υ′Σ−1Υ∇v − λ+ pr − q

2
µ′Σ−1µ

)
• The boundedness hypothesis on F allows to conclude that:

Ey
P̂

[
e−v(YT )

]
≤ e−v(y) + (K ∨ 0) T

whence
lim sup
T→∞

1
T

log Ey
P̂

[
e−v(YT )

]
≤ 0

• 0 < p < 1 similar. Reverse inequalities for upper and lower bounds.
Use α = − 1

1−p for upper bound.
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Two

Shortfall Aversion



Shortfall Aversion

Outline

• Motivation:
Endowment Management. Universities, sovereign funds, trust funds.
Retirement planning?

• Model:
Constant investment opportunities.
Constant Relative Risk and Shortfall Aversion.

• Result:
Optimal spending and investment.



Shortfall Aversion

Tobin (1974)

• "The trustees of an endowed institution are the guardians of the future
against the claims of the present.

• "Their task is to preserve equity among generations.
• "The trustees of an endowed university like my own assume the institution

to be immortal.
• "They want to know, therefore, the rate of consumption from endowment

which can be sustained indefinitely.
• "Sustainable consumption is their conception of permanent endowment

income.
• "In formal terms, the trustees are supposed to have a zero subjective

rate of time preference."



Shortfall Aversion

Endowment Management

• How to invest? How much to withdraw?
• Major goal: keep spending level.
• Minor goal: increasing it.
• Increasing and then decreasing spending is worse than not increasing in

the first place.
• How to capture this feature?
• Heuristic rule among endowments and private foundations:

spend a constant proportion of the moving average of assets.



Shortfall Aversion

Theory

• Classical Merton model: maximize

E

[∫ ∞
0

e−βt c1−γ
t

1− γ
dt

]

over spending rate ct and wealth in stocks Ht .
• Optimal ct and Ht are constant fractions of current wealth Xt :

c
X

=
1
γ
β +

(
1− 1

γ

)(
r +

µ2

2γσ2

)
H
X

=
µ

γσ2

with interest rate r , equity premium µ, and stocks volatility σ.
• Spending as volatile as wealth.
• Want stable spending? Hold nearly no stocks. But then ct ≈ rXt .
• Not easy with interest rates near zero. Not used by financial planners.



Shortfall Aversion

The Four-Percent Rule

• Bengen (1994). Popular with financial planners.
• When you retire, spend in the first year 4% of your savings.

Keep same amount for future years. Invest 50% to 75% in stocks.
• Historically, savings will last at least 30 years.
• Inconsistent with theory.

Spending-wealth ratio variable, but portfolio weight fixed.
Bankruptcy possible.

• Time-inconsistent.
With equal initial capital, consume more if retired in Dec 2007 than if
retired in Dec 2008. But savings will always be lower.

• How to embed preference for stable spending in objective?



Shortfall Aversion

Related Literature

• Consumption ratcheting: allow only increasing spending rates...
Dybvig (1995), Bayraktar and Young (2008), Riedel (2009).

• ...or force maximum drawdown on consumption from its peak.
Thillaisundaram (2012).

• Consume less than interest, or bankruptcy possible.
No solvency with zero interest.

• Habit formation: utility from consumption minus habit.
Sundaresan (1989), Constantinides (1990), Detemple and Zapatero
(1992), Campbell and Cochrane (1999), Detemple and Karatzas (2003).

max E
[∫ ∞

0
e−βt (ct − xt )

1−γ

1− γ
dt
]

where dxt = (bct − axt )dt

• Infinite marginal utility at habit level. Like zero consumption.
No solution if habit too high relative to wealth (x0 > X0(r + a− b)).

• Habit transitory. Time heals.



Shortfall Aversion

This Model

• Inputs
• Risky asset follows geometric Brownian motion. Constant interest rate.
• Constant relative risk aversion.

Constant relative shortfall aversion by new parameter α.
• Outputs

• Spending constant between endogenous boundaries, bliss and gloom.
Increases in small amounts at bliss.
Declines smoothly at gloom.

• Portfolio weight varies between high and low bounds.
• Features

• Solution solvent for any initial capital. Even with zero interest.
• Spending target permanent. You never forget.



Shortfall Aversion

Shortfall Aversion and Prospect Theory

• Kanheman and Tversky (1979,1991). Precursor: Markowitz (1952).
• Reference dependence:

utility is from gains and losses relative to reference level.
• Loss Aversion:

marginal utility lower for gains than for losses.
• Prospect theory focuses on wealth gambles.
• We bring these features to spending instead.

Shortfall aversion as loss aversion for spending.



Shortfall Aversion

Model
• Safe rate r . Risky asset price follows geometric Brownian motion:

dSt

St
= µdt + σdWt

for Brownian Motion (Wt )t≥0 with natural filtration (Ft )t≥0.
• Utility from consumption rate ct :

E

[∫ ∞
0

(ct/hαt )1−γ

1− γ
dt

]
where ht = sup

0≤s≤t
cs

• Risk aversion γ > 1 to make the problem well posed.
• α ∈ [0,1) relative loss aversion.

Strict monotonicity in c implies that α < 1 and strict concavity that α ≥ 0.
• If you could forget the past you would be happier. But you can’t.
• More is better today... but makes less worse tomorrow.
• No loss aversion with ct increasing... or decreasing.



Shortfall Aversion

Sliding Kink
• Because ct ≤ ht , utility effectively has a kink at ht :

h
c

UHc,hL

• Optimality: marginal utilities of spending and wealth equal.
• Spending ht optimal for marginal utility of wealth between left and right

derivative at kink.
• State variable: ratio ht/Xt between reference spending and wealth.
• Investor rich when ht/Xt low, and poor when ht/Xt high.



Shortfall Aversion

The Merton Solution in 1926-2012 with γ = 2



Shortfall Aversion

Spending, Saving with Shortfall Aversion, 1926-2012



Shortfall Aversion

Control Argument
• Value function V (x ,h) depends on wealth x = Xt and target h = ht .

• Set Jt =
∫ t

0 U(cs,hs)ds + V (Xt ,ht ). By Itô’s formula:

dJt = L(Xt , πt , ct ,ht )dt + Vh(Xt ,ht )dht + Vx (Xt ,ht )Xtπ
>
t σdWt

where drift L(Xt , πt , ct ,ht ) equals

U(ct ,ht ) + (Xt rt − ct + Xtπ
>
t µ)Vx (Xt ,ht ) +

Vxx (Xt ,ht )

2
X 2

t π
>
t Σπt

• Jt supermartingale for any c, and martingale for optimizer ĉ. Hence:

max(sup
π,c

L(x , π, c,h),Vh(x ,h)) = 0

• That is, either supπ,c L(x , π, c,h) = 0, or Vh(x ,h) = 0.

• Optimal portfolio has usual expression π̂ = − Vx
xVxx

Σ−1µ.
• Free-boundaries:

When do you increase spending? When do you cut it below ht?



Shortfall Aversion

Duality
• Setting Ũ(y ,h) = supc≥0[U(c,h)− cy ], HJB equation becomes

Ũ(Vx ,h) + xrVx (x ,h)− V 2
x (x ,h)

2Vxx (x ,h)
µ>Σ−1µ = 0

• Nonlinear equation. Linear in dual Ṽ (y ,h) = supx≥0[V (x ,h)− xy ]

Ũ(y ,h)− ryṼy +
µ>Σ−1µ

2
y2Ṽyy = 0

• Plug U(c,h) = (c/hα)1−γ

1−γ . Kink spawns two cases:

Ũ(y ,h) =


h1−γ∗

1− γ
− hy if (1− α)h−γ

∗ ≤ y ≤ h−γ
∗

(yhα)1−1/γ

1−1/γ if y > h−γ
∗

where γ∗ = α + (1− α)γ.



Shortfall Aversion

Homogeneity

• V (λx , λh) = λ1−γ∗V (x ,h) implies that Ṽ (y ,h) = h1−γ∗q(z), where
z = yhγ

∗
.

• HJB equation reduces to:

µ>Σ−1µ
2 z2q′′(z)− rzq′(z) =

{
z − 1

1−γ 1− α ≤ z ≤ 1
z1−1/γ

1−1/γ z > 1

• Condition Vh(x ,h) = 0 holds when desired spending must increase:

(1− γ∗)q(z) + γ∗zq′(z) = 0 for z ≤ 1− α

• Agent “rich” for z ∈ [1− α,1].
Consumes at desired level, and increases it at bliss point 1− α.

• Agent becomes “poor” at gloom point 1.
For z > 1, consumes below desired level.



Shortfall Aversion

Solving it

• For r 6= 0, q(z) has solution:

q(z) =

{
C21 + C22z1+ 2r

µ>Σ−1µ − z
r + 2 log z

(1−γ)(2r+µ>Σ−1µ)
if 0 < z ≤ 1,

C31 + γ
(1−γ)δ0

z1−1/γ if z > 1,

where δα defined shortly.
• Neumann condition at z = 1− α: (1− γ∗)q(z) + γ∗zq′(z) = 0.
• Value matching at z = 1: q(z−) = q(z+).
• Smooth-pasting at z = 1: q′(z−) = q′(z+).
• Fourth condition?
• Intuitively, it should be at z =∞.
• Marginal utility z infinite when wealth x is zero.
• Since q′(z) = −x/h, the condition is limz→∞ q′(z) = 0.



Shortfall Aversion

Main Quantities
• Ratio between safe rate and half squared Sharpe ratio:

ρ =
2r

(µ/σ)2

In practice, ρ is small ≈ 8%.
• Gloom ratio g (as wealth/target). 1/g coincides with Merton ratio:

1
g

=

(
1− 1

γ

)(
r +

µ2

2γσ2

)
• Bliss ratio:

b = g
(γ − 1)(1− α)ρ+1 + (γρ+ 1)(α(γ − 1)(ρ+ 1)− γ(ρ+ 1) + 1)

(α− 1)γ2ρ(ρ+ 1)

• For ρ small, limit:

g
b
≈ 1− α

1− α + α
γ2 − 1

γ (1− 1
γ )(1− α) log(1− α)

Ratio insensitive to market parameters, for typical investment
opportunities.



Shortfall Aversion

Main Result
Theorem
For r 6= 0, the optimal spending policy is:

ĉt =


Xt/b if ht ≤ Xt/b
ht if Xt/b ≤ ht ≤ Xt/g
Xt/g if ht ≥ Xt/g

(1)

The optimal weight of the risky asset is the Merton risky asset weight when the
wealth to target ratio is lower than the gloom point, Xt/ht ≤ g. Otherwise, i.e.,
when Xt/ht ≥ g the weight of the risky asset is

π̂t =
ρ
(
γρ+ (γ − 1)zρ+1 + 1

)
(γρ+ 1)(ρ+ (γ − 1)(ρ+ 1)z)− (γ − 1)zρ+1

µ

σ2 (2)

where the variable z satisfies the equation:

(γρ+ 1)(ρ+ (γ − 1)(ρ+ 1)z)− (γ − 1)zρ+1

(γ − 1)(ρ+ 1)rz(γρ+ 1)
=

x
h

(3)
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Spending Region 1 - Merton
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Shortfall Aversion

Spending Region 2 - Gloom Point
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Spending Region 3 - Target
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Shortfall Aversion

Spending Region 4 - Bliss Point
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Bliss and Gloom – α
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Shortfall Aversion

Bliss and Gloom

• Gloom ratio independent of the shortfall aversion α, and its inverse equals
the Merton consumption rate.

• Bliss ratio increases as the shortfall aversion α increases.
• Within the target region, the optimal investment policy is independent of

the shortfall aversion α.
• At α = 0 the model degenerates to the Merton model and b = g, i.e., the

bliss and the gloom points coincide. At α = 1 the bliss point is infinity, i.e.,
shortfall aversion is so strong that the solution calls for no spending
increases at all.



Shortfall Aversion

Spending and Investment as Target/Wealth Varies
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Spending and Investment as Wealth/Target Varies
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Shortfall Aversion

Investment – α

a = .25

a = 0.5
a = 0.75

a = 0

20 40 60 80 100
90

100

110

120

130

140

WealthêTarget

P
o

rt
fo

li
o



Shortfall Aversion

Steady State
Theorem

• The long-run average time spent in the target zone is a fraction
1− (1− α)1+ρ of the total time. This fraction is approximately α because
reasonable values of ρ are close to zero.

• Starting from a point z0 ∈ [0,1] in the target region, the expected time
before reaching gloom is

Ex,h[τgloom] =
ρ

(ρ+ 1)r

log(z0)−
(1− α)−ρ−1

(
zρ+1

0 − 1
)

ρ+ 1


In particular, starting from bliss (z0 = 1− α) and for small ρ,

Ex,h[τgloom] =
ρ

r

(
α

1− α
+ log(1− α)

)
+ O(ρ2)



Shortfall Aversion

Time Spent at Target – α
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Shortfall Aversion

Time from Bliss to Gloom – α
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Shortfall Aversion

Under the Hood

• With
∫∞

0 U(ct ,ht )dt , first-order condition is:

Uc(ct ,ht ) = yMt

where Mt = e−(r+µ>Σ−1µ/2)t−µ>Σ−1Wt is stochastic discount factor.
• Candidate ct = I(yMt ,ht ) with I(y ,h) = U−1

c (y ,h). But what is ht?
• ht increases only at bliss. And at bliss Uc independent of past maximum:

ht = c0 ∨ y−1/γ
(

inf
s≤t

Ms

)−1/γ



Shortfall Aversion

Duality Bound

• For any spending plan ct :

E
[∫ ∞

0

(ct/ht
α)1−γ

1− γ
dt
]
≤ x1−γ

1− γ
E
[∫ ∞

0
Z∗

1−1/γ
t ũ

(
Zt

Z∗t

)
dt
]γ

where Zt = Mt and Z∗t = infs≤t Zs, and Ũ(y ,h) = − h1−1/γ

1−1/γ ũ(yhγ).

• Show that equality holds for candidate optimizer.

Lemma
For γ > 1, limT↑∞ Ex,h

[
Ṽ (yMT , ĥt (y))

]
= 0 for all y ≥ 0.

• Estimates on Brownian motion and its running maximum.
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Three

Consumption, Investment, and Healthcare



Consumption, Investment, and Healthcare Model Results Heuristics Under the Hood

Mortality Increases with Age, Decreases with Time

45 50 55 60 65 70 75

1

10

• Approximate exponential increase in age (Gompertz’ law). Then as now.
• Secular decline across adult ages. More income? Better healthcare?

Deaton (2003), Cutler et al. (2006)
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Longer Life with More Healthcare...
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...across Countries and over Time
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Literature

• Mortality risk as higher discount rate (Yaari, 1965).
High annuitization even with incomplete markets (Davidoff et al., 2005).
Medical costs?

• Exogenous Mortality (Richard, 1975). Healthcare?
• Health as Capital, Healthcare as Investment (Grossman, 1972).

Demand for Longevity (Ehrlich and Chuma, 1990).
Predictable death?

• Mortality rates that decline with health capital. (Ehrlich, 2000), (Hall and
Jones, 2007), (Yogo, 2009), (Hugonnier et al., 2012).

• Gompertz’ law?
• Challenge:

Combine endogenous mortality and healthcare with Gompertz’ law. Does
healthcare availability explain decline in mortality rates?
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This Model

• Idea
• Household maximizes utility from lifetime consumption.
• Using initial wealth only. (Wealth includes value of future income.)
• Constant risk-free rate. No risky assets.
• Without healthcare, mortality increases exponentially.
• Money can buy...
• ...consumption, which generates utility...
• ...or healthcare, which reduces mortality growth...
• ...thereby buying time for more consumption.

• Assumptions
• Constant Relative Risk Aversion.
• Constant Relative Loss at Death.
• Gompertz’ Mortality without Healthcare.
• Isoelastic Efficacy in Relative Healthcare Spending.

• Questions
• Mortality law under optimal behavior?
• Consistent with evidence?
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To be, or not to be?
• Maximize expected utility from future consumption. Naïve approach:

E
[∫ τ

0
e−δtU(ctXt )dt

]
where τ is lifetime, Xt wealth, and ct consumption-wealth ratio.

• Not so fast. Result not invariant to utility translation. U + k yields

E
[∫ τ

0
e−δtU(ct )dt

]
+ kE

[
1− e−δτ

δ

]
Irrelevant if τ exogenous. Problematic if endogenous. (Shepard and
Zeckhauser, 1984; Rosen, 1988; Bommier and Rochet, 2006)

• U negative? Preference for death!
• Quick fix: add constant to make U positive.
• Works only with U bounded from below and...
• ...results are still sensitive to translation.
• Death as preference change? (From x 7→ U(x) alive to x 7→ 0 dead.)
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Household Utility
• Our approach: death scales household wealth by factor ζ ∈ [0,1].

Estate and inheritance tax, pension and annuity loss, foregone income...
• After death, household carries on with same mortality as before.

E

[ ∞∑
n=1

∫ τn

τn−1

e−δtU(ζnX̄tct )dt

]
where τ0 = 0.

where X̄t is wealth without accounting for losses.
• Surviving spouse in similar age group.

Indefinite household size simplifies problem.
Most weight carried by first two lifetimes.

• ζ = 1: Immortality.
ζ = 0: 0 consumption and U(0) utility in afterlife.

• Translation Invariant.
• Isoelastic utility:

U(x) =
x1−γ

1− γ
0 < γ 6= 1
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Mortality Dynamics
• Without healthcare, mortality Mt grows exponentially. Gompertz’ law:

dMt = βMtdt

• Healthcare slows down mortality growth

dMt = (βMt − g(ht ))dt

where ht is the healthcare-wealth ratio, and g(h) measures its efficacy.
• g(0) = 0, g positive, increasing, and concave.
• Diminishing returns from healthcare spending.
• Simplification: effect only depends on healthcare-wealth ratio.
• Lost income: proportional to wealth if proxy for future income.
• Means-tested subsidies.
• Life-expectancy correlated with health behaviors but not with access to

care. (Chetty et al, 2016)
• Isoelastic efficacy:

g(h) =
a
q

hq a > 0,q ∈ (0,1)
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Wealth Dynamics

• Household wealth grows at rate r , minus consumption and health
spending, and death losses:

dXt

Xt
= (r − ct − ht )dt − (1− ζ)dNt

• Nt counting process for number of deaths. N0 = 0, and jumps at rate Mt :

P(Nt+dt − Nt = 1) = Mtdt

• Household chooses processes c,h to maximize expected utility.
• Bequest motive embedded in preferences.
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Four Settings

• Two new features: Aging and Healthcare.
• To understand effects, consider four settings.

1 Immortality.
2 Neither Aging nor Healthcare (exponential death).
3 Aging without Healthcare (Gompertz death).
4 Aging with Healthcare.

• Sample parameters:
r = 1% , δ = 1% , γ = 0.67 , β = 7.7% , m0 = 0.019% ,
ζ = 50% , q = 0.46 , a = 0.1
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Immortality (β = 0, g = 0, M0 = 0)

• Special case of Merton model.
• Optimal consumption-wealth ratio constant:

c =
1
γ
δ +

(
1− 1

γ

)
r ≈ 1%

• No randomness. Risk aversion irrelevant.
• But ψ = 1/γ is elasticity of intertemporal substitution.
• Consumption increases with time preference δ.

Increases with r for γ > 1 (income), decreases for γ < 1 (substitution).
• With logarithmic utility γ = 1, ct = δ for any rate r .
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Neither Aging nor Healthcare (β = 0, g = 0)
• Deaths arrive at exponential times. Poisson process with rate m = M0.

Forever young, but not younger.
• Optimal consumption-wealth ratio constant:

c =
1
γ

(
δ + (1− ζ)1−γm

)
+

(
1− 1

γ

)
r ≈ 1% + 31% ·m

• With total loss (ζ = 0), mortality m adds one-to-one to time preference δ.
• Partial loss adds less than the mortality rate for γ < 1, more for γ > 1.
• Income and substitution again.
• Death brings lower wealth and lower consumption.
• Before the loss, more wealth can be spent.
• After the loss, remaining wealth is more valuable.
• γ > 1: reduce present consumption to smooth it over time.

(Income: if you expect to be poor tomorrow, start saving today.)
• γ < 1: increase present consumption to enjoy wealth before it vanishes.

(Substitution: if you expect to be poor tomorrow, spend while you can.)
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Aging without Healthcare (β > 0, g = 0)
• This is non-standard (cf. Huang, Milevsky, and Salisbury, 2012).
• Optimal consumption-wealth ratio depends on age t through mortality mt :

cβ(mt ) =

(∫∞
0 e−

(1−ζ1−γ )v
γ mt (βv + 1)−(1+ δ+(γ−1)r

βγ )dv
)−1

• As β ↓ 0, the previous case recovers:

c0(mt ) = 1
γ

(
δ + (1− ζ)1−γmt

)
+
(

1− 1
γ

)
r

• Asymptotics for small β:

cβ(mt ) = c0(mt ) + mt
c0(mt )

1−ζ1−γ

γ β + O(β2)

• Asymptotics for old age (large m):

cβ(mt ) = 1
γ

(
δ + (1− ζ)1−γmt

)
+
(

1− 1
γ

)
r + β + O( 1

m )

• Correction term large. Aging matters.
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Immortal, Forever Young, and Aging

Aging

Forever Young

Forever Young + β

Immortal
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• Mortality and aging have large impacts on consumption-wealth ratios.
• β upper bound on consumption increase from aging.
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Healthcare
• Solve control problem

max
c,h

E
[∫ ∞

0
e−δtU(Xtct )dt

]
subject to state dynamics

dXt = Xt (r − ct − ht )dt − (1− ζ)XtdNt

dmt =

(
βmt −

a
q

hq
t

)
dt

• Value function V (x ,m) depends on wealth x and mortality m.
• Isoelastic preferences imply solution of the type

V (x ,m) =
x1−γ

1− γ
u(m)−γ

for some function u(m) of mortality alone.
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Main Result
Theorem
Let γ ∈ (0,1), c̄ := δ

γ +
(

1− 1
γ

)
r > 0, and let g : R+ 7→ R+ be concave,

g(0) = 0, with

g
(

I
(

1− γ
γ

))
< β with I := (g′)−1,

then the value function satisfies V (x ,m) = x1−γ

1−γ u∗(m)−γ where u∗ : R+ 7→ R+

is the unique nonnegative, strictly increasing solution to the equation

u2(m)− c0(m)u(m) + mu′(m)

(
sup
h≥0

{
g(h)− 1− γ

γ

u(m)

mu′(m)
h
}
− β

)
= 0.

Furthermore, u∗ is strictly concave, and (ĉ, ĥ) defined by

ĉt := u∗(Mt ) and ĥt := I
(

1− γ
γ

u∗(Mt )

Mt (u∗)′(Mt )

)
, for all t ≥ 0,

is optimal.
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Estimates

Theorem
Assume 0 < γ < 1, δγ +

(
1− 1

γ

)
r > 0, and set

βg := β − sup
h≥0

{
g(h)− 1− γ

γ
h
}
∈ (0, β],

Defines ug
0 (m) analogously with βg in place of β. Then, for any m > 0,

ug
0 (m) ≤ u∗(m) ≤ min{u0(m), c0(m) + βg}

and
lim

m→∞
(c0(m)− u∗(m)) = βg
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Aging and Healthcare

u0
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Longer Lives

1900 cohort without healthcare

1940 cohort with healthcare
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• Model explains in part decline in mortality at old ages.
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Senectus Ipsa Morbus

Consumption

Healthcare
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• Healthcare negligible in youth.
• Increases faster than consumption. (In log scale!)
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Healthcare as Fraction of Spending
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• Convex, then concave.
• Rises quickly to contain mortality.
• Slows down when cost-benefit declines.
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Risky Assets

• Risky assets S following geometric Brownian motion

dSi
t = Si

t (µ
i + r)dt + Si

t

d∑
j=1

σijdW j
t ,

with µ ∈ R, σσ′ =: Σ ∈ Rd×d positive definite.
• W standard Brownian motion independent of deaths {Zn}n∈N.
• Constant optimal portfolio:

π =
1
γ

Σ−1µ

• Mortality does not explain lower stock allocations in old age.

• Same solution as before, with r replaced by r + µΣ−1µ′

2γ in consumption
formula.

• Risky assets equivalent to increase in equivalent safe rate.
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HJB Equation

• Usual control arguments yield the HJB equation for u

u(m)2−c0(m)u(m)−βmu′(m)+
(

1
γ − 1

)(
1
q − 1

)
a

1
1−q u(m)

q
1−q u′(m)

1
1−q = 0

• First-order ODE.
• a = 0 recovers aging without healthcare (Gompertz law).
• Factor ζ embedded in c0(m).
• Local condition with jumps?
• Boundary condition?
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Derivation
• Evolution of value function:

dV (Xt ,mt ) = (−δV (Xt ,mt ) + U(ctXt ) + Vx (Xt ,mt )Xt (r − ct − ht ))dt
+ (V (ζXt ,mt )− V (Xt ,mt ))dNt

+ Vm(Xt ,mt )(β − g(ht ))mtdt

• Process Nt jumps at rate mt . Martingale condition:

sup
c

(U(cx)− hxVx (x ,m)) + sup
h

(−g(h)mVm(x ,m)− hxVx (x ,m))

−δV (x ,m) + rxVx (x ,m) + (V (ζx ,m)− V (x ,m))m + βmVm(x ,m) = 0

• Includes value function before V (x ,m) and after V (ζx ,m) jump.
Non-local condition.

• Homogeneity with isoelastic U. V (x ,m) = x1−γ

1−γ v(m).

supc

(
c1−γ

1−γ − hv(m)
)

+ suph

(
−g(h) mv ′(m)

1−γ − hv(m)
)

−δ v(m)

1− γ
+ r

v(m)

1− γ
+ (ζ1−γ − 1)

v(m)

1− γ
m + β

mv ′(m)

1− γ
= 0
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Derivation (2)

• Calculating suprema with g(h) = ahq/q and substituting v(m) = u(m)−γ

yields HJB equation

u(m)2−c0(m)u(m)−βmu′(m)+
(

1
γ − 1

)(
1
q − 1

)
a

1
1−q u(m)

q
1−q u′(m)

1
1−q = 0

• Optimal policies:

ĉ =
Vx (x ,m)−

1
γ

x
= u(m) ĥ =

(
xVx (x ,m)

amVm(x ,m)

) 1
q−1

=

(
aγmu′(m)

(1− γ)u(m)

) 1
1−q

• Unknown u(m) is consumption-wealth ratio itself.
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Probability Setting

• (Ω,F ,P) probability space.
• {Zn}n∈N IID exponential: P(Zn > z) = e−z for all z ≥ 0 and n ∈ N.
• G0 := {∅,Ω} and Gn := σ(Z1, · · · ,Zn) for all n ∈ N.
• g : R+ 7→ R+ nonnegative, nondecreasing, and concave. g(0) = 0.
• M t,x,h deterministic process satisfying dynamics

dM t,m,h
s = M t,m,h

s [β − g(h(s))] ds, M t,m,h
t = m, (1)

• Set θn = (m,h0,h1, · · · ,hn−1) for n ∈ N and θ = (m, h).
• Define recursively a sequence {τθn}n≥0 of random times.
• Set τθ0 := 0 and m0 := m.
• For each n ∈ N, define

τθn := inf
{

t ≥ τθn−1

∣∣∣ ∫ t
τθn−1 Mτθn−1 ,mn−1,hn−1

s ds ≥ Zn

}
,mn := Mτθn−1 ,mn−1,hn−1

τθn
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Probability Setting (2)

• Set Fθ = {Fθt }t≥0 as P-augmentation of the filtration{ ∨
n∈N

σ
(
1{τθn≤s} | 0 ≤ s ≤ t

)}
t≥0

.

• Introduce counting process {Nt}t≥0:

Nθ
t := n for t ∈ [τθn , τθn+1 ),

• By construction of {τθn}n≥0,

P
(
Nθ

t = n
∣∣ Fθτθn

)
=

P
(
τθn ≤ t < τθn+1

∣∣ Fθτθn

)
= exp

(
−
∫ t
τθn Mτθn ,mn,hn

s ds
)

1{t≥τθn}.
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Verification
Theorem
Let w ∈ C1,1(R+ × R+) satisfy the HJB equation. If, for any (x ,m) and (c, h),

limt→∞ E
[
exp

(
−
∫ t
τθn (δ + M0,m,hθn

s )ds
)

w
(

X 0,x,cθn ,hθn

t ,M0,m,hθn

t

) ∣∣∣ Fθτθn

]
= 0 ∀n ≥ 0,

limn→∞ E
[
e−δτ

θn w
(
ζnX 0,x,cθ,hθ

τθn ,M0,m,hθ

τθn

)]
= 0.

(i) w(x ,m) ≥ V (x ,m) on R+ × R+.

(ii) If ĉ, ĥ : R2
+ 7→ R+ such that ĉ(x ,m) and ĥ(x ,m) maximize

sup
c≥0
{U(cx)− cxwx (x ,m)} and sup

h≥0
{−wm(x ,m)g(h)− hxwx (x ,m)} ,

Let X̂ and M̂ denote the solutions to the ODEs

dXs = Xs[r − (ĉ(Xs,Ms) + ĥ(Xs,Ms))]ds X0 = x ,

dMs =
[
βMs − g(ĥ(Xs,Ms))

]
ds M0 = m.

Then w(x ,m) = V (x ,m) on R+ × R+, and the policy (ĉ, ĥ) is optimal.
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Forever Young

Proposition

Suppose
δ + (1− ζ1−γ)m − (1− γ)+r > 0.

Then, V (x ,m) = x1−γ

1−γ ĉ0(m)−γ for all x ≥ 0, and ĉ := {ĉ0(m)}n≥0 is optimal.

• Check two conditions of verification theorem.
• Works also for γ > 1. Up to a point.
• Parametric restrictions!
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Aging without Healthcare

Proposition

Assume either one of the conditions:
(i) γ, ζ ∈ (0,1) and δ + m + (γ − 1)r > 0.
(ii) γ, ζ > 1.

Then, for any (x ,m) ∈ R2
+, V (x ,m) = x1−γ

1−γ u0(m)−γ , where

u0(m) :=

[
1
β

∫ ∞
0

e−
(1−ζ1−γ )mu

βγ (u + 1)−(1+ δ+(γ−1)r
βγ )du

]−1

> 0.

Moreover, ĉ := {u0(meβt )}n≥0 is optimal.

• Works with γ > 1... if ζ > 1!
• With γ > 1 and ζ < 1, household worries too much.
• Extreme savings. Problem ill-posed.
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Aging with Healthcare
• Aging without healthcare policy cβ supersolution.
• Forever young policy c0 subsolution.
• S denotes collection of f : [0,∞) 7→ R such that

1. c0 ≤ f ≤ cβ .
2. f is a continuous viscosity supersolution on (0,∞).
3. f is concave and nondecreasing.

• Define u∗ : R+ 7→ R by
u∗(m) := inf

f∈S
f (m).

Proposition

The function u∗ belongs to S. Moreover, if

sup
h≥0

{
g(h)− 1−γ

γ h
}
≤ β,

then u∗ is continuously differentiable on (0,∞).

• Well-posedeness if healthcare cannot defeat aging.
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Conclusion

• Model for optimal consumption and healthcare spending.
• Natural mortality follows Gompertz’ law.
• Isoelastic utility and efficacy.
• Reduced mortality growth under optimal policy.
• Share of spending for healthcare rises with age.
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Outline

• Motivation:
Commodity Futures as an Asset Class.
Mean Reversion. Fund Separation?

• Model:
Portfolio Choice in Commodity Indexes.
Constant relative risk aversion.

• Results:
Policy and Performance: Index vs. Price Observations.
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Commodity Futures Investing

• Commodity Futures:
“No trade deserves more the full protection of the law, and no trade
requires it so much; because no trade is so much exposed to popular
odium.” (Adam Smith, 1776)

• Commodity Futures as an Asset Class:
Inflation hedges (Bodie, 1983)
Similar return as equities (Bodie and Rosansky, 1980)
Negative correlation with equities (Gorton and Rouwenhorst, 2006)
Individual commodities uncorrelated (Erb and Harvery, 2006)
Positive, predictable returns (Levine, Ooi, and Richardson, 2016)

• Commodity Futures in Practice:
Rising popularity since 2004 (Singleton, 2014)
Financialization? (Tang and Xiong, 2012)
Investment through commodity index ETFs (Basak and Pavlova, 2016)

• Fund separation?
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No Fund Separation

• (k + 2)-fund separation (Merton, 1973).
If k predictors are available, k + 2 funds span optimal portfolios.
Usual two-fund separation with constant returns (k = 0).

• Commodities returns mean-reverting and uncorrelated?
Forget two-fund separation.

• A priori, prices of all commodities are states.
• But investment is in index only.
• Prices of individual commodities worth observing?



Commodities and Stationary Risks

Related Models

• Enlargement of filtrations.
• Logarithmic utility:

Karatzas and Pikovsky (1996), Grorud and Pontier (1998), Amendinger,
Imkeller, Schweizer (1998), Corcuera et al. (2004), Guasoni (2006)

• Power and exponential utilities in complete markets:
Amendinger, Becherer, Schweizer (2003)

• Filtering theory.
• Portfolio choice with partial information.

Lakner (1995, 1998), Brennan (1998), Brennan and Xia (2001), Rogers
(2001), Brendle (2006), Cvitanic et al (2006).

• Asset Pricing with learning:
Detemple (1986), Dothan and Feldman (1986), Veronesi (2000).
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This Model

• Portfolio choice for a commodity index
• With or Without observing commodities’ prices.
• Power utility and long horizon.
• Commodities: transitory price shocks
• Myopic policies far from optimal. Large intertemporal demand.
• Additional price information large even for risk-averse investors.
• Gains in equivalent safe rate of about 0.5%.
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Commodity Futures
• Pt spot price of commodity at time t . Cannot be held like financial asset.
• F T

t futures price at time t for expiration T . Zero cost.
• At time t , buy contracts expiring at t + ∆t equal to portfolio amount at t .
• At time t + ∆t , liquidate contract (and buy new contracts expiring at

t + 2∆t equal to portfolio amount at t + ∆t)
• Return on [t , t + ∆t ], assuming zero safe rate:

F t+∆t
t+∆t−F t+∆t

t

F t+∆t
t

= Qt+∆t
t

Pt+∆t
Pt
− 1 = Qt+∆t

t
Pt+∆t − Pt

Pt︸ ︷︷ ︸
spot return

+
(
Qt+∆t

t − 1
)︸ ︷︷ ︸

roll return

where Qt+∆t
t = Pt/F t+∆t

t is the spot-futures ratio at time t .
• With roll-return of order dt , dynamics for rolled-over futures portfolio St is:

dSt

St
= µtdt +

dPt

Pt

• Key difference: Pt is stationary.
Empirically and theoretically.
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Commodity Index Model
• n commodities. Return on futures portfolio of i-th commodity:

dSi
t

Si
t

= µidt + σidU i
t dU i

t = −λiU i
t dt + dW i

t

W i
t independent Brownian motions.

• Commodity index with weights w i :

dSt

St
=

n∑
i=1

w i dSi
t

Si
t

=

(
µ−

n∑
i=1

w iσiλiU i
t

)
dt + σdW̃t

where µ =
∑n

i=1 w iµi and σW̃t =
∑n

i=1 w iσiW i
t (W Brownian motion).

• Spot returns depend on spot prices P i
t = P i

0eσi U i
t ...

• ...and so do optimal investment strategies. Notation:

dSt

St
= µdt + σdYt Yt =

n∑
i=1

piU i
t pi = w iσi/σ

n∑
i=1

p2
i = 1
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One Asset Prelude

• One commodity only, n = 1. Compare Föllmer and Schachermayer (2008)
• Constant relative risk aversion. Utility U(x) = x1−R/(1− R).
• Wealth Xt satisfies budget equation dXt

Xt
= πt

dSt
St

. πt portfolio weight.

• Maximize equivalent safe rate limT→∞
1
T log E [X 1−R

T ]
1

1−R

• Optimal policy:

πt =
µ

σ2 −
λ1

σ
√

R
U1

t

• No R in the denominator! Interpretation?
• Equivalent safe rate:

δ =
µ2

2σ2 +
λ1

2(1 +
√

R)

• Risk-premium, plus market timing. Risk premium without risk aversion!
• Why?
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Intertemporal Balance

• Myopic and intertemporal hedging decomposition:

πt =
µ− σλ1U1

t

Rσ2︸ ︷︷ ︸
myopic

+
(R − 1)µ+ (1−

√
R)σλ1U1

t

Rσ2︸ ︷︷ ︸
intertemporal

=
µ

σ2 −
λ1

σ
√

R
U1

t

• Myopic demand offset by terms in intertemporal component.
• Transitory risks are not like permanent risks.
• They are “less risky”, so more risk averse investors take more such risks

(than it they were permanent).
• Discontinuity for λ ↓ 0, as transitory becomes permanent in the limit.
• Strategic vs. tactical exposures.

Strategic independent of risk aversion and state: captures risk premium.
Tactical independent of risk premium, captures imbalance in state.
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Dynamics and Information
• Dynamics with observation of commodities prices:

dSt

St
=

(
µ−

n∑
i=1

w iσiλiU i
t

)
dt + σdW̃t

dU i
t =− λiU i

t dt + dW i
t

• Dynamics with observation of index price only (Kalman filter):

dSt

St
=

(
µ−

n∑
i=1

w iσiλi Ũ i
t

)
dt + σdW̃t

dŨ i
t =− λi Ũ i

t dt + (p′ − γtb′)dW̃t

dγt

dt
=− λγt − γtλ+ I − (p′ − γtb′)(p′ − γtb′)′

p = (p1, . . . ,pn), λ as diagonal matrix, γt n × n matrix.
• Time-dependent Kalman filter. A non-starter for (interesting) formulas.
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Long Term Filter
Proposition

For any initial γ0, the solution γt to the Riccati differential equation converges:

lim
t→+∞

γt = γ,

where the matrix γ satisfies the Riccati algebraic equation

−λγ − γλ′ + I − [p′ − γb′][p′ − γb′]′ = 0.

The dynamics of the filters Ũ i
t becomes

dŨ i
t = −λi Ũ i

t dt + αidW̃t where α′i = pi −
n∑

k=1

pkλkγik .

• Convergence relies on results on controllable and stabilizable systems.
• Bad news: Riccati matrix equation has no explicit solution in general.
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Observing Commodities

Theorem
If an investor trades the index by observing the prices of all commodities:

πC∗
t =

µ

σ2 −
p
(
λ− AC

)
Ut

Rσ
(Optimal Portfolio)

EsRC =
µ2

2σ2 +
tr
(
AC
)

2(1− R)
(Equivalent Safe Rate)

AC = λ− C−
1
2

(
C

1
2
λ2

2
C

1
2

) 1
2

C−
1
2 and C =

I
2

+
(1− R)p′p

2R

• Explicit solution to Riccati equation.
• Strategic vs. Tactical as with one-asset.
• Long-run verification theorem.
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Observing Index
Theorem
If an investor trades the index observing only the index:

πI∗
t =

µ

Rσ2 +
(1− R)βI′α

Rσ
−
(
pλ− α′AI

)
Ũt

Rσ
EsRI = µ2

2Rσ2 + (1−R)2(βIα)2

2R + (1−R)µβIα
Rσ + tr(αα′AI )

2(1−R) + (1−R) tr(αα′βI′βI )
2

where

βI = −
µ
(
pλ− α′AI

)
Rσ

(
λ+

(1− R)αpλ
R

− αα′AI

R

)−1

,

and AI is the symmetric, definite-positive solution of the matrix Riccati equation

AIλ+λAI

2 + 1
2Rλp′pλ+ (1−R)

2R AIαα′AI − (1−R)
R

λp′α′AI +AIαpλ
2 = 0

• No explicit solution. Easy to solve numerically.
• Qualitative structure similar. Quantitative differences?
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Example

Filtered Shocks Correlation (%)

n 2 3 4

100 100 100
-100 100 -66.92 100 -54.41 100

-50.01 -30.88 100 -40.41 -25.42 100
-33.18 -21.74 -18.46 100

• λi = i , σi = 1, pi = 1/
√

n
• With two states, one filter is perfectly negatively correlated with the other.

Their sum is observed.
• With more states, more shock ascribed to more persistent states (lower λ).
• Imperfect correlations, higher among more persistent states.
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Commodities

• S&P GSCI Index.
• 6 commodities explain about 85% of index return variance.
• Rolled-over commodity futures:

Each month, invest in two-month contract. Sell month afterwards.
• Understand optimal portfolios and equivalent safe rates.

With or without observing commodities.
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Commodities: Mean-Reverting

Calibrated Parameters

Commodity Symbol pi λi ωi (%) σi (%)
Wheat W 0.07 0.11 9.2% 31.6%

Soybeans S 0.08 0.21 6.8% 24.9%
Sugar SB 0.04 0.12 2.5% 33.0%

Feeder Cattle FC 0.05 0.17 7.6% 14.2%
Brent Crude Oil B 0.85 0.12 58.9% 31.1%

Gold GC 0.06 0.12 8.4% 16.0%
Residual RE 0.51 0.01

GSCI µ(%) σ(%)
2.4 19.84

• Monthly Returns 1993:05-2018:02
• Weights estimated from sensitivities. Do not have to add to one.
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Commodities: Uncorrelated Returns

Colors = Correlations. Numbers = p-values.



Commodities and Stationary Risks

Commodities: Equivalent Safe Rate

0.5 1 2 3 4 5 6 7 8 9 10
R

1

4

6

E
S

R
 (%

)

All Commodities
Index only

• Difference minimal near logarithmic utility (R = 1)



Commodities and Stationary Risks

Commodities: Optimal Portfolio
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• Sensitivities of optimal portfolios with respect to each commodity.
• Sensitivity is driven by...
• ...intertemporal component for with full information.
• ...myopic component with partial information
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HJB Equation
• Denote by Z vector of state variables.

Zt = Ut with full information, Zt = Ũt with partial information.
• Write HJB equation for finite-horizon problem

Vt −VZλZt + tr(VZZ )
2 + sup

π

[
VXπtXt (µ− σpλZt ) +

VXX (πt )
2X 2

t σ
2

2 + VXZπtXtσp′
]

= 0

• Use exponential-quadratic ansatz

V (x , t , z) =
x1−R

1− R
e(1−R)[δ(T−t)+β(t)z+ 1

2 z′A(t)z]

• With full information, obtain system of equations for δ, β,A

−δ + 1
2 tr (A) + µ2

2Rσ2 + (1−R)
2 tr (β′β) + (1−R)2

2R (βp′)2 + µ(1−R)
Rσ βp′ = 0

−βλ+ (1− R)βA− µ
Rσpλ+ µ(1−R)

Rσ pA− 1−R
R βp′pλ+ (1−R)2

R βp′pA = 0

−Aλ+λA
2 + 1−R

2 A2 + 1
2Rλp′pλ+ (1−R)2

2R Ap′pA− 1−R
R

Ap′pλ+λp′pA
2 = 0

• Bottom-up solution. Find matrix A, vector β, then scalar δ.
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Explicit Solution with Full Information

• With full information, matrix equation if of the form

ACCAC − ACCD− DCAC + F = 0

• Set ÃC = C
1
2 ACC

1
2 , D̃ = C

1
2 DC

1
2 , F̃ = C

1
2 FC

1
2 , which yields

ÃCÃC − ÃCD̃− D̃ÃC + F̃ = 0

• whence
ÃC = D̃ + (D̃2 − F̃)

1
2

• and thus

AC =
λ

1− R
+

1
|1− R|

C−
1
2

(
C

1
2
λ2

2
C

1
2

) 1
2

C−
1
2

• Resulting AC is symmetric and definite-positive.
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Verification

• Find Lyapunov-type function G.
• Define new measure P̂ under which

dSt

St
=

1
R

(µ− σpλ+ σ∇υ) + σdŴ I
t

dZt =

(
λ+

1− R
Rσ

λ+
1
R

(
−µ
σ

p + z ′AC
))

dt + dŴt

• (Zt )t≥0 is P̂-tight.

• Z is a multivariate Ornstein-Uhlenbeck also under P̂.
• Under P̂ finite-horizon duality bounds hold.
• Estimate transitory terms using Gaussian distribution and conclude.
• Similar argument for partial information, but no explicit matrix A.
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Conclusion

• Should Commodity Investors Follow Commodities’ Prices?
• Long term investors should, even the more risk averse.
• Mean exposure to commodities insensitive to risk aversion...
• ...and optimal strategies benefit from the extra information.
• Gains similar to earning an extra risk-free 0.5% on wealth.
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Outline

• Motivation:
Leveraged Exchange-Traded Funds: Tracking Error vs. Excess Return.

• Model:
Optimal Tracking with Trading Costs.
Volatility process stationary.

• Results:
Optimal Tracking Policy.
Optimal Tradeoff between Tracking Error and Excess Return.
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Leveraged and Inverse ETFs

• Funds that attempt to replicate multiple of daily return on an index.
• Multiple either positive (leveraged) or negative (inverse).
• On equities, bonds, commodities, currencies, real estate, volatility.
• In the United States, since 2006 multiples of -2, -1, 2.
• Since 2009, multiples of -3 and 3.
• What next?
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6, 8, 10, 15 since 2015 in Germany
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Simple – In principle
• If index follows

dSt

St
− rtdt = µtdt + σtdWt

• Then leveraged or inverse ETF is portfolio with constant proportion Λ

dwt

wt
− rtdt = Λµtdt + ΛσtdWt

• Fund price

wt = w0 exp

(∫ t

0
rsds + Λ

∫ t

0
µsds − Λ2

2

∫ t

0
σ2

s ds + Λ

∫ t

0
σsdWs

)
• Compounding implies Volatility decay: when the multiple Λ is high, the

fund loses value regardless of the index’s return.
• High expected value, but almost surely going to zero.
• Annual or monthly returns are not multiplied.
• From a frictionless viewpoint, risky but simple products.
• But when the multiple is high also rebalancing costs are high...
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Literature

• Compounding:
Avellaneda and Zhang (2010), Jarrow (2010), Lu, Wang, Zhang (2009)

• Rebalancing and Market Volatility:
Cheng and Madhavan (2009), Charupat and Miu (2011).

• Underexposure:
Tang and Xu (2013): “LETFs show an underexposure to the index that
they seek to track.”

• Underperformance:
Jiang and Yan (2012), Avellaneda and Dobi (2012), Guo and Leung
(2014), Wagalath (2014).

• Many authors attribute deviations to frictions. Model?
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Dilemma

• With costless rebalancing, keep constant leverage. Perfect tracking:

dDt =
dwt

wt
− Λ

dSt

St
+ (Λ− 1)rtdt = 0

• Excess return DT/T and tracking error
√
〈D〉T/T both zero.

• With costly rebalancing, dream is broken.
• Rebalancing reduces tracking error but makes deviation more negative.
• Questions:
• What are the optimal rebalancing policies?
• How to compare funds differing in excess return and tracking error?
• Implications:
• Underexposure consistent with optimality?
• Underperformance significant?
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This Model

• Model of Optimal Tracking with Trading Costs.
• Excess Return vs. Tracking Error.
• Underlying index follows Itô process. Zero drift in basic model.
• Robust tracking policy: independent of volatility process at first order.
• Excess return and tracking error depend only on average volatility.
• Explains underexposure puzzle.
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Basic Model
• Filtered probability space (Ω, (Ft )t≥0,F ,P) with Brownian motion W and

its augmented natural filtration.
• Safe asset with adapted, integrable rate rt .
• Index with ask (buying) price St :

dSt

St
= rtdt + σtdWt ,

where σ2
t is adapted and integrable, i.e. St is well defined.

• Proportional costs: bid price equals (1− ε)St .
• Zero excess return assumption:

no incentive to outperform index through extra exposure.
• Main results robust to typical risk premia.
• Stationary volatility: for some σ̄ > 0,

lim
T→∞

1
T

∫ T

0
σ2

t dt = σ̄2
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Objective
• Trading strategy:

Number of shares ϕt = ϕ↑t − ϕ
↓
t as purchases minus sales. Fund value:

dXt =rtXtdt − Stdϕ
↑
t + (1− ε)Stdϕ

↓
t (cash)

dYt =Stdϕ
↑
t − Stdϕ

↓
t + ϕtdSt (index)

wt = Xt + Yt . Admissibility: wt ≥ 0 a.s. for all t .
• (Annual) Excess Return:

ExR =
1
T

∫ T

0

(
dwt

wt
− Λ

dSt

St
+ (Λ− 1)rtdt

)
=

DT

T

• (Annual) Tracking Error:

TrE =

√
〈D〉T

T
• Maximize long term excess return given tracking error:

max
ϕ

lim sup
T→∞

1
T

(
DT −

γ

2
〈D〉T

)
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Main Result
Theorem (Exact)

Assume Λ 6= 0,1.
i) For any γ > 0 there exists ε0 > 0 such that for all ε < ε0, the system

1
2ζ

2W ′′(ζ) + ζW ′(ζ)− γ
(1+ζ)2

(
Λ− ζ

1+ζ

)
= 0,

W (ζ−) = 0, W ′(ζ−) = 0,

W (ζ+) = ε
(1+ζ+)(1+(1−ε)ζ+) , W ′(ζ+) = ε(ε−2(1−ε)ζ+−2)

(1+ζ+)2(1+(1−ε)ζ+)2

has a unique solution (W , ζ−, ζ+) for which ζ− < ζ+.
ii) The optimal policy is to buy at π− := ζ−/(1 + ζ−) and sell at
π+ := ζ+/(1 + ζ+) to keep πt = ζt/(1 + ζt ) within the interval [π−, π+].

iii) The maximum performance is

lim sup
T→∞

(
DT −

γ

2
〈D〉T

)
= −γσ

2

2
(π− − Λ)2,
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Main Result (continued)

Theorem (Exact)

iv) Excess return and tracking error:

ExR =
σ2

2
π−π+(π+ − 1)2

(π+ − π−)(1/ε− π+)
TrE = σ

√
π−π+ + Λ(Λ− 2β̄)

where β̄ is the average exposure

β̄ := lim
T→∞

〈
∫ · dw

w ,
∫ · dS

S 〉T
〈
∫ · dS

S 〉T
= lim

T→∞

∫ T
0 σ2

t πtdt∫ T
0 σ2

t dt
= log(π+/π−)

π+π−
π+ − π−

• ODE depends only on multiple Λ and trading cost ε. So do π−, π+.
• ExR and TrE depend also on σ̄.
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Main Result

Theorem (Robust Approximation)

• Trading boundaries:

π± = Λ±
(

3
4γ

Λ2(Λ− 1)2
)1/3

ε1/3 + O(ε2/3)

• Excess return:

ExR = −3σ2

γ

(
γΛ(Λ− 1)

6

)4/3

ε2/3 + O(ε)

• Tracking error:

TrE = σ
√

3
(

Λ(Λ− 1)

6
√
γ

)2/3

ε1/3 + O(ε)
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The Tradeoff

• Previous formulas imply that

ExR = −31/2

12
σ3Λ2(Λ− 1)2 ε

TrE
+ O(ε4/3)

• Maximum excess return for given tracking error.
• Equality for optimal policy, otherwise lower excess return. In general:

ExR ·TrE ≤ −31/2

12
σ3Λ2(Λ− 1)2ε+ O(ε4/3)

• Robust formula. Depends on model only through average volatility.
Dynamic irrelevant.

• If ε is observed, theoretical upper bound on replication performance.
• Want less negative excess return? Accept more tracking error.
• In practice, ε hard to observe. Swaps, futures...
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Implied Spread

• Instead, use equation to derive the implied spread

ε̃ :=
12

31/2

(−ExR) · TrE
σ3Λ2(Λ− 1)2

• Scalar summary of fund performance.
• Compares funds with different ExR, TrE, and factor.
• Similar to using Black-Scholes formula to find implied volatility.
• Interpretation: suppose investor could swap Ft for F̃t which satisfies

dF̃t

F̃t
− rtdt = Λ

(
dSt

St
− rtdt

)
− φdt ,

• No tracking error or trading cost, but fee φ. Better Ft or F̃t?
• F̃t better if φ < ε̃. Indifference level.
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Trading Boundaries

• Trading boundaries (vertical) vs.tracking error (horizontal) for leveraged
(solid) and inverse (dashed) funds, for 4 (top), 3, 2, −1, −2, −3 (bottom).
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Selected American ETFs
Ticker X Track. Excess Implied Beta T-stat R Volatility

Error Return Spread (Beta) Squared
(bp) (%) (bp) (%) (%)

S&P SPXU -3 8.43 -1.96 2.02 -2.99 2.39 99.52 47.32
500 SDS -2 3.74 -1.42 2.58 -2.00 -0.92 99.79 31.68

SH -1 2.38 -1.18 12.31 -1.00 -1.85 99.66 15.87
(SPY) SSO 2 3.79 -1.00 16.65 2.00 -0.57 99.78 31.62

UPRO 3 8.32 -1.22 4.95 2.99 -2.83 99.53 47.29
MSCI EDZ -3 8.11 -4.59 1.51 -2.97 7.94 99.78 67.90

Emerging EEV -2 5.28 -3.40 2.91 -1.99 4.21 99.80 45.47
Markets EUM -1 4.66 -2.06 14.00 -1.00 1.63 99.37 22.82
(EEM) EET 2 17.95 -1.44 37.70 1.95 -6.67 97.60 45.00

EDC 3 11.52 -3.65 6.80 2.93 -13.73 99.55 67.04
Nasdaq SQQQ -3 8.60 -3.47 2.70 -2.97 6.89 99.59 51.65

100 QID -2 3.61 -2.41 3.16 -1.98 8.00 99.84 34.64
PSQ -1 2.54 -1.60 13.25 -1.00 2.57 99.68 17.41

(QQQ) QLD 2 4.27 -0.66 9.20 1.98 -7.72 99.77 34.61
TQQQ 3 7.16 -0.53 1.37 2.96 -10.16 99.71 51.48

Russell TZA -3 6.71 -6.90 2.40 -2.98 6.30 99.83 62.73
2000 TWM -2 4.90 -3.63 3.68 -2.00 1.43 99.80 42.04

RWM -1 3.82 -2.19 15.54 -1.00 0.30 99.51 21.07
(IWM) UWM 2 5.29 -0.69 6.84 1.99 -4.69 99.76 41.87

TNA 3 6.36 -1.45 1.91 2.97 -8.55 99.84 62.60
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German DAX Certificates

Index X Track. Excess Implied Beta T-stat R2 Volat. Years
Error Return Spread (Beta) Data
(bp) (%) (bp) (%) (%)

-12 196.27 -47.76 3.96 -11.67 3.93 97.90 273.87 1.62
-10 96.27 -11.54 0.94 -9.82 3.89 98.65 207.55 2.50
-8 69.05 -19.58 2.68 -7.71 8.32 98.40 154.41 3.17
-6 43.71 -5.30 1.35 -5.90 4.15 98.50 112.90 3.99
-5 32.46 -14.84 5.50 -5.07 -4.81 99.47 108.88 2.36
-4 21.24 -4.39 2.40 -4.03 -2.48 99.09 76.72 4.74
-3 16.02 -4.07 4.65 -3.03 -3.82 99.63 64.68 2.38

DAX -2 15.18 -1.58 6.85 -1.99 0.65 98.14 38.27 4.70
3 20.75 -1.53 9.05 3.02 2.19 99.39 64.73 2.37
4 21.71 -1.64 2.54 4.02 2.14 99.04 76.78 4.75
5 43.40 1.45 -1.62 5.09 4.67 99.06 109.39 2.36
6 36.07 -7.81 3.22 6.10 5.00 99.00 115.36 4.05
8 61.74 -19.15 3.88 8.11 3.39 98.78 160.06 3.26
10 101.16 -24.55 3.15 9.90 -1.99 98.52 208.81 2.51
12 210.88 -30.98 3.86 11.64 -3.89 96.99 266.39 1.91
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Underexposure Explained

• Average exposure:

β̄ = Λ− 2Λ− 1
γ

(
γΛ(Λ− 1)

6

)1/3

ε2/3 + O(ε),

• 0 < β̄ < Λ for leveraged funds.
• Λ < β̄ < 0 for inverse funds.
• Underexposure results from optimal rebalancing.
• Effect increases with multiple and illiquidity.
• Decreases with tracking error.
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Excess Return vs. Tracking Error

• −ExR (vertical) against TrE (horizontal) for leveraged (solid) and inverse
(dashed) funds, for -3, +4 (top), -2, +3 (middle), -1, +2 (bottom).
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Robustness to Risk Premium
• Basic model assumes asset with zero risk premium. Does it matter?
• Not at the first order. Not for typical risk premia.
• Extended model. Index price

dSt

St
= (rt + κσ2

t )dt + σtdWt ,

• Manager can generate positive excess return through overexposure.
• But investor observes and controls for overexposure. Objective

lim sup
T→∞

1
T

(
DT − κβ̄

〈∫ ·
0

dS
S

〉
T
− γ

2
〈D〉T

)
• Effect of κ remains only in state dynamics, not in objective.
• Trading boundaries:

π± = Λ±
(

3
4γ

Λ2(Λ− 1)2
)1/3

ε1/3− (Λ− κ/2)

γ

(
γΛ(Λ− 1)

6

)1/3

ε2/3 +O(ε).
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Robust Boundaries

• Trading boundaries for 3 and -2. Robust approximation (Red).
• Exact for κ = 0 (Black), κ = 1.5625 (Blue), κ = 3.125 (Green).
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Robustness to Finite Horizon
• Basic model assumes long horizon. Does it matter?
• Compare by simulation excess returns and tracking errors to

Black-Scholes and Heston models. (µ = 0 (top), 4%, 8% bottom.)
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Value Function
•

max
ϕ∈Φ

E

[∫ T

0

(
γσ2

t Λπt −
γσ2

t

2
π2

t

)
dt − ε

∫ T

0
πt

dϕ↓t
ϕt

]
•

Fϕ(t) =
∫ t

0

(
γσ2

s Λ ζs
1+ζs
− γσ2

s
2

ζ2
s

(1+ζs)2

)
ds − ε

∫ t
0

ζs
1+ζs

dϕ↓
s

ϕs
+ V (t , ζt )

• Dynamics of Fϕ by Itô’s formula

dFϕ(t) =

(
γΛσ2

t
ζt

1 + ζt
− γσ2

t

2
ζ2

t

(1 + ζt )2

)
dt − ε ζt

1 + ζt

dϕ↓t
ϕt

+ Vt (t , ζt )dt + Vζ(t , ζt )dζt +
1
2

Vζζ(t , ζt )d〈ζ〉t ,

• Self-financing condition yields

dζt

ζt
= σtdWt + (1 + ζt )

dϕt

ϕt
+ εζt

dϕ↓t
ϕt

,

• Whence

dFϕ(t) =

(
γΛσ2

t
ζt

1 + ζt
− γσ2

t

2
ζ2

t

(1 + ζt )2 + Vt +
σ2

t

2
ζ2

t Vζζ

)
dt

−ζt

(
Vζ(1 + (1− ε)ζt ) +

ε

1 + ζt

)
dϕ↓t
ϕt

+ ζt (1 + ζt )Vζ
dϕ↑t
ϕt

+ σtζtVζdWt .
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Control Argument
• Fϕ(t) supermartingale for any policy ϕ, martingale for optimal policy.
• ϕ↑ and ϕ↓ increasing processes. Supermartingale condition implies

− ε

(1 + ζ)(1 + (1− ε)ζ)
≤ Vζ ≤ 0,

• Likewise,

γσ2
t Λ

ζ

1 + ζ
− γσ2

t

2
ζ2

(1 + ζ)2 + Vt +
σ2

t

2
ζ2Vζζ ≤ 0

• For stationary solution, suppose residual value function

V (t , ζ) = λ

∫ T

t
σ2

s ds −
∫ ζ

W (z)dz

• λ to be determined, represents optimal performance over a long horizon

λ

T

∫ T

0
σ2

t dt ≈ λ× σ2
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Identifying System
• Above inequalities become

0 ≤W (ζ) ≤ ε

(1 + ζ)(1 + (1− ε)ζ)
,

γΛ
ζ

1 + ζ
− γ

2
ζ2

(1 + ζ)2 − λ−
1
2
ζ2W ′(ζ) ≤ 0,

• Optimality conditions

1
2
ζ2W ′(ζ)− γΛ

ζ

1 + ζ
+
γ

2
ζ2

(1 + ζ)2 + λ =0 for ζ ∈ [ζ−, ζ+],

W (ζ−) =0,

W (ζ+) =
ε

(ζ+ + 1)(1 + (1− ε)ζ+)
,

• Boundaries identified by the smooth-pasting conditions

W ′(ζ−) =0,

W ′(ζ+) =
ε(ε− 2(1− ε)ζ+ − 2)

(1 + ζ+)2(1 + (1− ε)ζ+)2 .

• Four unknowns and four equations.
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Conclusion

• Optimal tracking of leveraged and inverse funds.
• Excess Return vs. Tracking Error with Frictions.
• Optimal tracking policy independent of volatility dynamics.
• Robust to risk premia and finite horizons.
• Performance depends on volatility only through its average value.
• Sufficient performance statistic: excess return times tracking error.
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