HEDGING OF COVERED OPTIONS WITH LINEAR MARKET
IMPACT AND GAMMA CONSTRAINT"*

BRUNO BOUCHARD', GREGROIE LOEPER}, AND YIYI ZOU?

Abstract. Within a financial model with linear price impact, we study the problem of hedging
a covered European option under gamma constraint. Using stochastic target and partial differential
equation smoothing techniques, we prove that the super-replication price is the viscosity solution of
a fully non-linear parabolic equation. As a by-product, we show how e-optimal strategies can be
constructed. Finally, a numerical resolution scheme is proposed.
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1. Introduction. Inspired by [1, 18], authors in [4] considered a financial mar-
ket with permanent price impact, in which the impact function behaves as a linear
function (around the origin) in the number of bought stocks. This class of models is
dedicated to the pricing and hedging of derivatives under situations of non-negligible
delta~hedging. In fact, the number of stocks required for hedging purpose becomes
comparable to the average daily volume traded on the underlying asset. As a con-
sequence, the delta-hedging strategy has an impact on the price dynamics, and also
incurs liquidity costs. The linear impact models studied in [1, 4, 18] incorporate
both effects into the pricing and hedging of the derivative, while maintaining the
completeness of the market (up to a certain extent). These models in turn lead to
exact replication strategies. As in perfect market models, this approach provides an
approximation of the real market conditions and hence can be used by practitioners
to design a suitable hedge in a systematic way. Thus, eliminating the need to rely on
any ad hoc risk criterion.

In [4], the authors considered the hedging of a cash-settled European option: at
inception the option seller builds the initial delta-hedge, and later liquidates the hedge
at maturity to settle the final claim in cash. It is shown therein that the price function
of the optimal super-replicating strategy no longer solves a linear parabolic equation,
as in the classical case, rather a quasi-linear one. The hedging strategy in this case,
essentially follows a modified delta-hedging rule where the delta is computed at the
“unperturbed” value of the underlying, i.e., the one the underlying would have been
if the trader’s position were liquidated immediately.

The approach and the results obtained in [4] thus differ substantially from [1,
18]. While in [1, 18] the impact model considered is the same, the control problem
is different in the sense that it is applied to the hedging of covered options. The
hedging of covered options refers to situations where the buyer of the option delivers
at inception the required initial delta position, and accepts a mix of stocks (at their
current market price) and cash as payment of the final claim. The buyer’s indifference
between stock and cash eliminates the cost incurred by the initial and final hedge.
Quite surprisingly, this is not a genuine approximation of the problem studied in
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2 B. BOUCHARD, G. LOEPER, AND Y. ZOU

[4]. The question of the initial and final hedge is fundamental, to the point that
the structure of the pricing question is completely different: in [4] the equation is
quasi-linear, while it is fully non-linear in [1, 18].

As opposed to [4], authors in [1, 18] use a verification argument to build an exact
replication strategy. Due to the special form of the non-linearity, the equation is ill-
posed when the solution does not satisfy a gamma-type constraint. The aim of the
current paper is to provide a direct characterization via stochastic target techniques,
and to incorporate right from the beginning a gamma constraint on the hedging
strategy.

Note that, in [18], the author establishes, for a particular type of impact function
(see f below), that the fully non-linear pricing equation has a smooth solution which
provides an exact replication strategy. However it is not shown that this (exact
replication) strategy is the cheapest way of super-replicating the final payoff. In the
present paper, we assume a more general form for the market impact, and show that
the weak (viscosity) solution to the pricing equation indeed provides the price of the
cheapest super-replication strategy. Note also that the gamma-constraint is obtained
in [18] as a by product of the regularity, as opposed to the present paper where it has
to be imposed.

In our context, the super-solution property can be proved by essentially following
the arguments of [8]. The sub-solution characterization is much more difficult to ob-
tain. This is a second main difference with [4], in which classical geometric dynamic
programming and viscosity solutions techniques could be used, once an appropriate
change of variable was performed. In the current paper, however unlike in [8], we
could not prove the required geometric dynamic programming principle. The un-
derlying reason being the strong interaction between the hedging strategy and the
underlying price process due to the market impact. Instead, we use the smoothing
technique developed in [5]. We construct a sequence of smooth super-solutions which,
by a verification argument, provide upper-bounds on the super-hedging price. As
they converge to a solution of the targeted pricing equation, a comparison principle
argument implies that their limit is the super-hedging price. A by-product of this
construction is the explicit e-optimal hedging strategies. We also provide the compar-
ison principle and a numerical resolution scheme. To begin with, our analysis takes
a simplified approach by restricting the models to only have permanent price impact.
Later in Section 4, we show why adding a resilience effect does not affect our anal-
ysis. Note that this is because the resilience effect considered here has no quadratic
variation. This is in contrast to [1], in which the resilience can break the parabolicity
of the equation, and renders the exact replication non optimal.

We close this introduction by pointing out some related references. [6] incorpo-
rates liquidity costs but no price impact, the price curve is not affected by the trading
strategy. It can be modified by adding restrictions on admissible strategies as in [7]
and [23]. This leads to a modified pricing equation, which exhibits a quadratic term
in the second order derivative of the solution, and renders the pricing equation fully
non-linear, even not unconditionally parabolic. Other articles focus on the derivation
of the price dynamics through clearing condition, see e.g., [12], [21], [20] in which the
supply and demand curves arise from “reference” and “program” traders (i.e., option
hedgers). This results in a modified price dynamics, but with no liquidity costs taken
into account, see also [17]. Finally, the series of papers [22], [8], [23] addresses the
liquidity issue indirectly by imposing bounds on the “gamma” of admissible trading
strategies, no liquidity cost or price impact are modeled explicitly.
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HEDGING OF COVERED OPTIONS WITH LINEAR MARKET IMPACT AND GAMMA CONSTRAIN'3E

General notations. Throughout this paper, €2 is the canonical space of continuous
functions on R, starting at 0, P is the Wiener measure, W is the canonical process,
and F = (F;)¢>0 is the augmentation of its raw filtration F° = (F});>0. All random
variables are defined on (€2, Foo, P). We denote by |z| the Euclidean norm of z € R”,
the integer n > 1 is given by the context. Unless otherwise specified, inequalities
involving random variables are taken in the P — a.s. sense. We use the convention
x/0 = sign(x) x oo with sign(0) = +.

2. Model and hedging problem. This section is dedicated to the derivation
of the dynamics and the description of the gamma constraint. We also explain in
detail how the pricing equation can be obtained and state our main result.

2.1. Impact rule and discrete time trading dynamics. We consider the
framework studied in [4]. Namely, the impact of a strategy on the price process is
modeled by an impact function f: the price variation due to buying a (infinitesimal)
number § € R of shares is § f (), given that the price of the asset is x before the trade.
The cost of buying the additional § units is

0
ox + %52]”(1‘) = (5/0 %(wﬁ-Lf(gc))dL7

in which
o1
| e+ us@na
0

can be interpreted as the average cost for each additional unit.
Between two trading instances 7,70 with 71 < 75, the dynamics of the stock is
given by the strong solution of the stochastic differential equation

dXt = [L(Xt)dt + O'(Xt)th.
Throughout this paper, we assume that

f € CZ and inf f > 0,
(u,0) is Lipschitz and bounded, inf o > 0.

(1)

The above regularity assumptions are used in [4] to derive the dynamics of Proposition
2.2 below. The lower bound on ¢ is used later on, in particular to express the hedging
policy in terms of a gamma, which is crucial for our analysis, see (8) and the equation
just before. Relaxing these assumptions in the form of local conditions or by only
assuming that f is C' with Lipschitz derivative should be feasible. This however
would significantly increase the complexity of our proofs and we leave this to future
researches.

As in [4], the number of shares the trader would like to hold is given by a contin-
uous Ito6 process Y of the form

(2) Y=Y, +/ bsds—l—/ asdWs.
0 0

We say' that (a,b) belongs to A, if (a,b) is continuous, F-adapted,

a:ao—l—/ ﬂsds—i—/ o dW
0 0

'In [4], (a,b) is only required to be progressively measurable and essentially bounded. The
additional restrictions imposed here will be necessary for our results in Section 3.2.
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4 B. BOUCHARD, G. LOEPER, AND Y. ZOU

where (a, 8) is continuous, F-adapted, and ¢ := (a,b, o, 8) is essentially bounded by
k and such that

Efsup (|G Gl £ <5 <&/ s+ 3 <T}F] < ks

forall 0 <§<1andtel0,T -4
We then define

A = Up LS.

To derive the continuous time dynamics, we first consider a discrete time setting and
then pass to the limit. In the discrete time setting, the position is re-balanced only
at times

tt:=iT/n,i=0,...,n, n>1.
In other words, the trader keeps the position Yir in stocks over each time interval

[t7,t}" 1). Hence, his position in stocks at ¢ is

n—1
(3) Y/ =) Yo lprcic,) + Yolp=ry,
1=0

and the number of shares purchased at ¢! is

noo._ _
tha T }/t?_H Y't?

Given our impact rule, the corresponding dynamics for the stock price process is

(4) X"=Xo+ / w(XMds + / o(XdWs + Z l[tﬂT]égLf( %—)7
0 0 i=1 '
in which Xg is a constant.
The portfolio process is described as the sum V" of the amount of cash held and
the potential wealth Y X" associated to the position in stocks:

V™ = cash position +Y"X™.

It does not correspond to the liquidation value of the portfolio, except when Y = 0.
This is due to the fact that the liquidation of Y™ stocks does not generate a gain equal
to Y X", because of the price impact. However, one can infer the exact composition
in cash and stocks of the portfolio from the knowledge of the couple (V™ Y™).

Throughout this paper, we assume that the risk-free interest rate is zero (for ease
of notations). Then,

(5) V"= V0+/0 Y dX! + E 1[t;L,T]§( t;l)2f( tn_).
i=1

This wealth equation is derived as in [4] following elementary calculations. The last
term of the right-hand side comes from the fact that, at time ¢}, 5;& shares are
bought at the average execution price Xjn_ + %6;% f(X7_), and the stock’s price
ends at X/h_ + 0 f(X[%_), whence the additional proﬁ‘lc term. However, one can
check that a proﬁticible round trip trade can not be built, see [4, Remark 3].
REMARK 2.1. Note that in this work we restrict ourselves to a permanent price

impact, no resilience effect is modeled. We shall explain in Section 4 below why taking
resilience into account does not affect our analysis. See in particular Proposition /.1.
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HEDGING OF COVERED OPTIONS WITH LINEAR MARKET IMPACT AND GAMMA CONSTRAINSE

143 2.2. Continuous time trading dynamics. The continuous time trading dy-
144 mnamics is obtained by passing to the limit n — oo, i.e., by considering strategies with
145 increasing frequency of rebalancement.

146 PROPOSITION 2.2. [/, Proposition 1] Let Z := (X,Y,V) where Y is defined as in
147 (2) for some (a,b) € A°, and (X, V) solves

148 X:X0+/ a(XS)dWS+/ f(Xs)dYs+/ (1(Xs) + as(0 f')(Xs))ds
0 0 0
o (6) = Xo4 / o (X, ) AW, + / 1 (X, )ds
150 0 0
151 with
i‘%% U()I(S = (U+asf) 5 M}S’bs = (M"_bsf"_aso'fl)a
154  and
. .
155 (7) V="V +/ Y,dX, + 5/ a2 f(X,)ds.
0 0

156 Let Z™ = (X™, Y™, V™) be defined as in (4)-(3)-(5). Then, there exists a constant
157 C >0 such that

158 supE [|Z2" - Z|*] < Cn™!
[0,7]

159  for alln > 1.

160 For the rest of the paper, we shall therefore consider (7)-(6) for the dynamics of
161 the portfolio and price processes.

162 REMARK 2.3. As explained in [}], the previous analysis could be extended to a
163 non-linear impact rule in the size of the order. To this end, we note that the continuous
164 time trading dynamics described above would be the same for a more general impact
165 rule 6 — F(x,8) whenever it satisfies F(x,0)= 0%sF (2,0) = 0 and 9sF (z,0) = f(z).
166 For our analysis, we only need to consider the value and the slope of the impact
167 function at the origin.

168 2.3. Hedging equation and gamma constraint. Given ¢ = (y,a,b) € Rx .A°
169 and (¢,z,v) € [0,T] x R x R, we now write (X*®¢ Y%? V4#:v:9) for the solution of
170 (6)-(2)-(7) associated to the control (a,b) with time-¢ initial condition (z,y,v).

In this paper, we consider covered options, in the sense that the trader is given at
the initial time ¢ the number of shares Y; = y required to launch his hedging strategy
and can pay the option’s payoff at T in cash and stocks (evaluated at their time-T'
value). Therefore, he does not exert any immediate impact at time ¢ nor 7" due to the
initial building or final liquidation of his position in stocks. Recalling that V stands
for the sum of the position in cash and the number of held shares multiplied by their
price, the super-hedging price at time ¢ of the option with payoff g(Xé:$’¢) is defined
as

v(t,z) :==inf{lv=c+yz : (c,y) € R? s.t. G(t,z,v,y) # 0},

171 in which G(¢,z,v,y) is the set of elements (a,b) € A° such that ¢ := (y, a,b) satisfies

172 VLT > g(XE50).
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6 B. BOUCHARD, G. LOEPER, AND Y. ZOU

In order to understand what the associated partial differential equation is, let us
first rewrite the dynamics of Y in terms of X:

dy;tytﬁ — ,yg‘/t <X§7$7¢)dX:,%¢ + Mayt,bt (Xf’w’(b)dt

with

a b ab
8 g = d puy’ i=b—guy.
(8) Ty o+ fa and -y Ty Hx
Assuming that the hedging strategy is to track the super-hedging price, as in classical
complete market models, then one should have V4%:%:¢ = v(., X*%%)_ If v is smooth,
recalling (6)-(7) and applying It6’s lemma twice implies

(9) Yo = aérv('v th’d)) ’ 7%/(Xt’$7¢) = agzv('ﬂ Xt’ﬂ’(ﬁ)v
and
1 1
(10) g0 [(X00) = 0, XI00) 4 5 (%)% (X5 9)0, v (- X00).

Then, the right-hand side of (9) combined with the definition of 7§ leads to

002, v(-, Xtm:9) . -
a = 0% = ’
1— fo2,v(-, Xt:»:®) 1— f02,v(-, Xt:5:9)

and (10) simplifies to

1 o2

2(1— f02,v)

This is precisely the pricing equation obtained in [1, 18].

Equation (11) needs to be considered with some precautions due to the singularity
at f02,v = 1. Hence, one needs to enforce that 1 — f02,v does not change sign. We
choose to restrict the solutions to satisfy 1 — f92,v > 0, since having the opposite
inequality would imply that a does not have the same sign as 92,v, so that, having
sold a convex payoff, one would sell when the stock goes up and buy when it goes
down, a very counter-intuitive fact.

In the following, we impose that the constraint

(11) —Oyv — v (X% =0 on [t,T).

(12) —k <AL (XBTP) < F(XBP?) ) on [t,T) P —ae.,
should hold for some k > 0, in which % is a bounded continuous map satisfying
(13) 1<y <1/f -1, forsome.:>0.

We now denote by A 5(t,2) the collection of elements (a,b) € A5 such that (12)
holds. Define
A;Y(t,x) = UkZOAk,f)/(t7x)a

and let vy be defined as v but with
g‘/(t, z,v, y) = g(ta z,v, y) N A’V(tv l‘)
in place of G(t, x,v,y). More precisely,

(14) vyt z) =inf{lv=c+yz : (cy) € R? s.t. G5(t,z,v,y) # 0}.
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HEDGING OF COVERED OPTIONS WITH LINEAR MARKET IMPACT AND GAMMA CONSTRAINTH

Then, the equation (11) has to be modified to take the gamma constraint into account.
This equation needs to impose that the second derivative is lower that the bound 7.
On the other hand, the above informal analysis shows that the pricing function vy
needs at least to be a super-solution of (11) to guarantee that a hedging strategy can
be found. Then, the equation associated to the gamma constraint should read

1 2
15) Flvs] :=min<{ —0yvs — 7 02 v, 7—0%vs =0 on[0,T) xR.
v vy _Txx 'Y xx VY

5 1- fa%xV’Y

As for the T-boundary condition, we know that v5(7,-) = g by definition. How-
ever, as usual, the constraint on the gamma in (15) should propagate up to the
boundary and g has to be replaced by its face-lifted version g, defined as the smallest
function above g that is a viscosity super-solution of the equation ¥ — 92,¢ > 0. It

is obtained by considering any twice continuously differentiable function I' such that

02,T =4, and then setting

§i=(g— Ty 4T,

in which the superscript conc means concave envelope, cf. [22, Lemma 3.1].? Hence,
we expect that

vs(T—,-) =g onR.
From now on, we assume that

¢ is uniformly continuous,

(16) g is lower-semicontinuous, g~ is bounded and g% has linear growth.

We are now in a position to state our main result. In the sequel,

v5(T,x) stands for = lim vs (', a")
(¢ ,mtl) <—>T(T,m)
whenever it is well defined.
THEOREM 2.4. The value function vy is continuous with linear growth. Moreover,
vy 15 the unique viscosity solution with linear growth of
(17) Flolljory + (0 —=3)liry =0 on [0,T] x R.
We conclude this section with additional remarks.

REMARK 2.5. Note that g can be uniformly continuous without g being continu-
ous. Take for instance g(v) = 11,>xy with K € R, and consider the case where y > 0
is a constant. Then, §(z) = [1{y>z,} 2 (x — 20)*] A1 with z, := K — (2/7)=.

REMARK 2.6. The map § inherits the linear growth of g. Indeed, let cy,c1 > 0 be
constants such that |g(x)| < w(x) := co + c1|x|. Since § > g by construction, we have
§~ < w. On the other hand, since ¥ > ¢ > 0, by (13), it follows from the arguments
in [22, Lemma 3.1] that § < (w — T)°°° + T, in which T'(z) = 1z®/2. Now, one can
easily check by direct computations that

(w — f)conc = (w— f‘)<$0)1[71mro] + (w — f)l[fzo,ro]c

with z, == ¢ /1. Hence, (w — ) + T has the same linear growth as w.

20Obviously, adding an affine map to I' does not change the definition of §.
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8 B. BOUCHARD, G. LOEPER, AND Y. ZOU

REMARK 2.7. As will appear in the rest of our analysis, one could very well in-
troduce a time dependence in the impact function f and in 5. Another interesting
question studied by the second author in [18] concerns the smoothness of the solution
and how the constraint on 92,v gets naturally enforced by the fast diffusion arising
when 1 — f02%,v is close to 0.

REMARK 2.8 (Existence of a smooth solution to the original partial differential
equation). When the pricing equation (17) admits smooth solutions (cf. [18] that allow
to use the verification theorem, then one can construct exact replication strategies from
the classical solution. By the comparison principle of Theorem 3.11 below, this shows
that the value function is the classical solution of the pricing equation, and that the
optimal strategy exists and is an exact replication strategy of the option with payoff
function §g. We will explain in Remark 3.18 below how almost optimal super-hedging
strategies can be constructed explicitly even when no smooth solution exists.

REMARK 2.9 (Monotonicity in the impact function). Note that the map A €

R~ 012_(9;)1\]/\[/[ is non-decreasing on {\ : A\AM < 1}, for all (t,x,M) € [0,T] x RxR. Let

us now write vy as vﬁ: to emphasize its dependence on f, and consider another impact

function f satisfying the same requirements as f. We denote by v%c the corresponding
super-hedging price. Then, the above considerations combined with Theorem 2./ and

the comparison principle of Theorem 3.11 below imply that v,i; > vi—; whenever f > f
on R. The same implies that vf—; > v in which v solves the heat-type equation

1
—Oyp — 5028§x<p =0 on[0,T) xR,

with terminal condition (T, -) = g (recall that g > g). See Section 5.2 for a numerical
illustration of this fact.

3. Viscosity solution characterization. In this section, we provide the proof
of Theorem 2.4. Our strategy is the following.

1. First, we adapt the partial differential equation smoothing technique used
in [5] to provide a smooth supersolutions V;’K’é of (17) on [6,T] x R, with
€ > 0, from which super-hedging strategies can be constructed by a standard
verification argument. In particular, \_/%"K’é > vs on [, T] x R. Moreover, this
sequence has a uniform linear growth and converges to a viscosity solution v5
of (17) as §,e — 0 and K — oo. See Section 3.1.

2. Second, we construct a lower bound v for v; that is a supersolution of
(17). Tt is obtained by considering a weak formulation of the super-hedging
problem and following the arguments of [8, Section 5] based on one side of
the geometric dynamic programming principle, see Section 3.2. It is shown
that this function has linear growth as well.

3. We can then conclude by using the above and the comparison principle for
(17) of Theorem 3.11 below: Vs > Vy but vy < vy < V580 that v5 = vy = v,
and vx is a viscosity solution of (17), and has linear growth.

4. Our comparison principle, Theorem 3.11 below, allows us to conclude that
v5 is the unique solution of (17) with linear growth.

As already mentioned in the introduction, unlike [8], we could not prove the
required geometric dynamic programming principle that should directly lead to a
subsolution property (thus avoiding to use the smoothing technique mentioned in
1. above). This is due to the strong interaction between the hedging strategy and the
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underlying price process through the market impact. Such a feedback effect is not
present in [8].

3.1. A sequence of smooth supersolutions. We first construct a sequence
of smooth supersolutions \’/%’K"S of (17) which appears to be an upper bound on the
super-hedging price vy, by a simple verification argument. For this, we adapt the
methodology introduced in [5]: we first construct a viscosity solution of a version of
(17) with shaken coefficients (in the terminology of [15]) and then smooth it out with
a kernel. The main difficulty here is that our terminal condition § is unbounded,
unlike [5]. This requires additional non trivial technical developments.

3.1.1. Construction of a solution for the operator with shaken coeffi-
cients. We start with the construction of the operator with shaken coefficients. Given
€ > 0 and a (uniformly) strictly positive continuous map x with linear growth, that
will be defined later on, let us introduce a family of perturbations of the operator
appearing in (17):

. . . . a?(z"\M .,
Fi(t,z,q, M) := z’elef?(z) min {—q — m,y(m ) — M} ,
where
(18) Dé(z):={2' eR: (z —2")/r(z') € [—¢,¢]}.

For ease of notation, we set

Felp|(t, ) := FE(t, 2, 0pp(t, @), 02, 0(t, 7)),

whenever ¢ is smooth.

REMARK 3.1. For later use, note that the map M € (—o0,%(x)] — %

is non-decreasing and convex, for each x € R, recall (13). Hence, (¢, M) € R x
(=00, ¥(x)] = F(-,q, M) is concave and non-increasing in M, for all € > 0. This is
fundamental for our smoothing approach to go through.

We also modify the original terminal condition ¢ by using an approximating
sequence whose elements are affine for large values of |x|.

LEMMA 3.2. For all K > 0 there exists a uniformly continuous map Jrx and

T > K such that

e i is affine on [xk,00) and on (—oo, —x k]

e jx =g on|[—K, K|

® gk > g

e Gx — I is concave for any C? function T satisfying 02,1 = 7.
Moreover, (i) k>0 s uniformly bounded by a map with linear growth and converges
to g uniformly on compact sets.

Proof. Fix a C? function I'° satisfying 92,T° = 4. By definition, § — I'° is concave.
Let us consider an element AT (resp. A7) of its super-differential at K (resp. —K).
Set

Ik (7)== (@)1 K] (2)
+ [§(K) + (AT + 0,T°(K)) (2 — K)] 1( 00 ()
+ [§(—K) + (A7 + 0T (—K) (@ + K)| L—oo,— ) (@).
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10 B. BOUCHARD, G. LOEPER, AND Y. ZOU

Consider now another C? function I' satisfying 92,' = 4. Since ['® and T differ
only by an affine map, the concavity of 5 — ' is equivalent to that of g3 — I'°.
The concavity of the latter follows from the definition of g%, as the superdiffential
of g5 — I'° is non-increasing by construction. In particular, 0% — I[°>g—TI°and
therefore g3 > g.

We finally define gx by

(19) gx = min{g%, (2co + c1| - | — [°)"¢ 4 T°},
with ¢g > 0 and ¢; > 0 such that
—cp < g(x) < co+calz], x €R,

recall Remark 2.6. The function §x has the same linear growth as 2co + ¢1] - |, by
the same reasoning as in Remark 2.6. Since 2¢o > ¢g, jx = §% = § on [—K, K].
Furthermore, as the minimum of two concave functions is concave, so is g — T for
any C? function T satisfying 02,T = 4. The other assertions are immediate. O

We now set

(20) Jx =gk +¢€
and consider the equation
(21) Felello,r) + (9 — 9% )1y = 0.

We then choose « and €, € (0,1) such that

k € C°° with bounded derivatives of all orders,
(22) infx>0and k = |jg|+ 1 on (—o0, —zx| U [zK,0),
—1/€c < Oyk < 1/eo,

in which zx > K is defined in Lemma 3.2. We omit the dependence of k on K for
ease of notations.

REMARK 3.3. For later use, note that the condition |0zk| < 1/€; ensures that
the map © — x + ex(x) and x — = — ek(x) are uniformly strictly increasing for all
0 < € < €. Also observe that x,, — x and z,, € D%(x,), for all n, imply that
xl, converges to an element ¥’ € D¢ (x), after possibly passing to a subsequence. In
particular, F¢ is continuous.

When £ = 1 and §% = § + ¢, (21) corresponds to the operator in (17) with
shaken coefficients, in the traditional terminology of [15]. The function s will be used
below to handle the potential linear growth at infinity of g. The introduction of the
additional approximation §% is motivated by the fact that the proof of Proposition 3.7
below requires an affine behavior at infinity. As already mentioned, these additional
complications do not appear in [5] because their terminal condition is bounded.

We now prove that (21) admits a viscosity solution that remains above the ter-
minal condition § on a small time interval [T — ¢, T]. As already mentioned, we
will later smooth this solution out with a regular kernel, so as to provide a smooth
supersolution of (17).

PROPOSITION 3.4. For all € € [0,€,] and K > 0, there exists a unique continuous

€

viscosity solution {IW’K of (21) that has linear growth. It satisfies

(23) 95 > g +e/2,  on [T —cK T xR,
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for some cX € (0,T).
Moreover, {[V%’K]+,e € [0,¢e], K > 0} is bounded by a map with linear growth, and

{[X_/%’K]f,e € [0,6], K > 0} is bounded by sup g~ .

Proof. The proof is mainly a modification of the usual Perron’s method, see [10,
Section 4].
a. We first prove that there exists two continuous functions w and w with linear
growth that are respectively super- and subsolution of (21) for any € € [0, €,].

Since §% = gk + € > g by Lemma 3.2, it suffices to set

w :=inf g > —o0,

see (16). To construct a supersolution w, let us fix n € (0,¢ A inf f~1) with ¢ as in
(13), set T'(z) = na?/2 and define § = (5 — I')°°" + T. Then, § > g5, while the
same reasoning as in Remark 2.6 implies that g shares the same linear growth as §32,
see (20) and Lemma 3.2. We then define @ by

w(t,x) = glz) + 1+ (T —t)A

in which )

a7y
A:=sup ——.
2(1-17)
The constant A is finite, and @ has the same linear growth as g, see (1)-(13). Since
a concave function is a viscosity supersolution of —92,¢p > 0, we deduce that g is a
viscosity supersolution of n — 82,4 > 0. Then, w is a viscosity supersolution of

min {—dyp — A, n— 8§$<p} > 0.

Since 4 > ¢ > 7, it remains to use Remark 3.1 to conclude that @ is a supersolution
of (21).

b. We now express (21) as a single equation over the whole domain [0,7T] x R using
the following definitions

Fe:f(tv z,T,q, M) = FI:(t7 z,q, M)l[O,T) + max {F;(t7 Z,q, M), r—= g;((x)}l{T}

K

F,::I_((t,],‘77“7 q, M) = F;(t,.]?, Q7M)1[O,T) + min {F/:(ta z,q, M)a r—= g;{(x)}l{T}

As usual in([cp](t,:c) = ;:f(t,x, o(t, ), 0pp(t,x),02,0(t,z)). Recall that the for-
mulations in terms of F;i( lead to the same viscosity solutions as (21) (see Lemma
6.1 in the Appendix). This is the formulation to which we apply Perron’s method.
In view of a., the functions w and w are sub- and supersolution of F el_( = 0 and

Fef = 0. Define:

K

x’f%’K :=sup{v € USC: w < v <w and v is a subsolution of Félf =0},

in which USC denotes the class of upper-semicontinuous maps. Then, the upper-

. . —6, K\« —e,K —e,K . . .
(resp. lower-)semicontinuous envelope (V5™ )* (resp. (V5™ )«) of V5" is a viscosity
subsolution of F,ilf[go] = 0 (resp. supersolution of F,if[go] = 0) with linear growth,
recall the continuity property of Remark 3.3 and see e.g. [10, Section 4]. The com-
parison result of Theorem 3.11 stated below implies that

@) = @9).,  on[0,T] x R.
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e, K

Hence, v5™ is a continuous viscosity solution of (21), recall Lemma 6.1. By con-
struction, it has linear growth. Uniqueness in this class follows from Theorem 3.11
again.

c. It remains to prove (23). For this, we need a control on the behavior of \’lf—/’K as
t — T. It is enough to obtain it for a lower bound v¢ x that we first construct. Let
@ be a test function such that

(strict) [OI%I;R(\’@’K —) = (V;’K —©)(to, x0)

for some (tg,zo) € [0,T) x R. By the supersolution property,

min {:Y(x/) - agzgp(t()amo)} 2> 0.
' €D¢ (xo)

Recalling (1) and (13), this implies that, for 2’ € D¢ (zg),
1 — f(a")02,p(to, w0) > 1f (@) > vinf f =17 > 0.
Using the supersolution property and the above inequalities yields

o?(x")92,¢(to, To) }
2(1 = f(2")03,¢(to, 20))

o2 (z") [02,¢(to, o) — F(@0)] }

0< min —0pp(to, o) —
_z/eDg(zg){ t‘P(O 0)

2(1 = f(2")02,¢(to, z0))

5-2851330(75071,0) 5’2’_)/(1'0)
2 2

< min —0yp(tg, To) —
_ac’ED;(xg){ tSD(O 0)

S *8&0(1507 :EO) -

where ¢ :=supo.
Denote by v i the unique viscosity solution of

G | T "
(24) {—at@ —— t } 10,7 + (¢ — 9%) 14y = 0.

The comparison principle for (24) and the Feynman-Kac formula imply that

_ /T‘t 525(S7)
0 20

VW’K(t,x) > vek(t,z) =E dr + 95 (S7_4)

where

Vi

It remains to show that (23) holds for v, x in place of \_/;’K. The argument is
standard. Since gy is uniformly continuous, see Lemma 3.2, we can find BX > 0 such
that

SY =x+ W.

|95 (S7—4) = 3% ()| 1yiss_,—wj<Bry <€

for all € > 0. We now consider the case |S%_, —z| > BX. Let C > 0 denote a generic
constant that does not depend on (¢, ) but can change from line to line. Because §x
is affine on [rx, 00) and on (—oo, —x k], see Lemma 3.2,

E |95 (SF-0) = 35(@)| Lis_zei)] < CT = if 2 > ar,
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E {195 (SF—) = 35(@)] Lis_,<-a) | SCT =) if 2 < —ar.

On the other hand, by linear growth of g%, if ¢ < xg, then

and

E {195 (SF—) = 35(@)| Lisg_, zei) Liss_, —ol2m)
ce (V2] p gz 3
<E[|35(S%-) - 35 (@)*] P[IS5_, — o] = lox — | v BE]
(L+[z)(T—% _ C )
< T —t)2
C’|95K—9L‘|\/BK _BEK( )*

The (four) remaining cases are treated similarly, and we obtain

~E T ~E c 1
E [ G (ST_4) — QK(JJ)H < BE (T'—t)2 +¢
€
Since 7 is bounded, this shows that

C 1
< —(T—t)2 +¢
€

Ve, k (£, 2) — 3¢ ()] < BE

for t € [T'—1,T]. Hence the required result for v. x. Since V%’K > e i, this concludes
the proof of (23). O

For later use, note that, by stability, \’/%’K converges to a solution of (17) when
€ — 0and K — oc.

ProPoOSITION 3.5. Ase — 0 and K — oo, X_/f—Y’K converges to a function V5 that

is the unique viscosity solution of (17) with linear growth.

Proof. The family of functions {\’/f—Y’K, e € (0,¢6], K > 0} is uniformly bounded by
a map with linear growth, see Proposition 3.4. In view of the comparison result of
Theorem 3.11 below, it suffices to apply [2, Theorem 4.1]. O

REMARK 3.6. The bounds on vy can be made explicit, which can be useful to
design a numerical scheme, see Section 5.1 below. First, as a by-product of the proof
of Proposition 3.4, V%’K > inf g. Passing to the limit as € — 0 and K — oo leads to

vy 2 inf g =: w.
We have also obtained that
TR < (g —D)" 4T +14+ 4

in which x — T(z) = na?/2 for some n € (0,0 Ainf f~1) with v as in (13), and
A= Tsup(a?y/[2(1 — f7)]). On the other hand, (19) implies

Afo S 1_|_ (260 +Cl| ‘ _ FO)COI}C _|_1—10
for T° such that 9%,1° = 7. Then,
vof < (1+(2c0+c1| .| = Te)cone 4 e —f) +T+1+A

(1—|—(200+01| | —T)ne 4 T — F) +T+14+A4

.\ conc -
= <1+200+61|-|—F) +T+1+A=w
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and

w.

IN

vy
The function w defined above can be computed explicitly by arguing as in Remark 2.6.

Also note that (19) and the arguments of Remark 2.6 imply that there exists a
constant C' > 0 such that

(25) lim sup |\7f—YK(a:)|/(1 +ldx(x)]) < C, for alle € [0,€] and K > 0.

|z] =00

3.1.2. Regularization and verification. Prior to applying our verification
argument, it remains to smooth out the function x_/;’K. This is similar to [5, Section
3], but here again the fact that § may not be bounded incurs additional difficulties.
In particular, we need to use a kernel with a space dependent window.

We first fix a smooth kernel
Ps =0 2Y(-/6)

in which § > 0 and ¥ € C}° is a non-negative function with the closure of its support
[—1,0] x [-1,1] that integrates to 1, and such that

(26) /yw(‘, y)dy = 0.

Let us set

e

\79K’6 ) = \‘;E’K 1+ 1'/ L r_ z / 1,/.
(27) 500t ) /RXR SO, )n(a:)% <t t’T(m) )dtd

We recall that x enters into the definition of F¢ and satisfies (22).

The following shows that V;’K’é is a smooth supersolution of (17) with a space
gradient admitting bounded derivatives. This is due to the space dependent rescaling
of the window by s and will be crucial for our verification arguments.

PRrROPOSITION 3.7. For all0 < € < €, and K > 0 large enough, there exists §, > 0

such that \‘/;’K’é is a C* supersolution of (17) for all 0 < § < d,. It has linear growth

and 873\7%’[{’5 has bounded derivatives of any order.

Proof. a. It follows from (22) and (25) that

limsup [v57 ()] /(1 + | (2)|) < oo.

|| =00

Direct computations and (22) then show that x‘lf—/’K"; has linear growth and that all
derivatives of 896\72’[{’5 are uniformly bounded.

b. We now prove the supersolution property inside the parabolic domain. Since the
proof is very close to that of [5, Theorem 3.3], we only provide the arguments that
require to be adapted, and refer to their proof for other elementary details. Fix £ > 0
and set

velt, ) =550t (—0) vz A D).

We omit the superscripts that are superfluous in this proof. Given k > 1, set

Vg, (2) 1= Z,E[%I}T]XR (ve(2") + klz = 2'?) .
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105 Since vy is bounded and continuous, the infimum in the above is achieved by a point
106 Zop(z) = (f&k(z), %o 1(2)), and vy is bounded, uniformly in & > 1. This implies that
407 we can find Cy > 0, independent of &, such that

408 (28) 2 = 20k(2)|* < Co/k =: (pe)*.

Moreover, a simple change of variables argument shows that, if ¢ is a smooth function
such that vg ;, — ¢ achieves a minimum at z € [0,7) x (—¢,¢), then

(at(P7 81907 aix(p) (Z) € 75_’05(2&16(2))’

109 where P~vy(2,,(2)) denotes the closed parabolic subjet of vy at 21 (2); see e.g. [10]
110 for the definition. Then, Proposition 3.4 implies that vy j is a supersolution of

o?(2")0%, (%)
2(1 = f(2)02,0(2))

411 min o) min {é)tga(z) - (') — 5§zsﬁ(z)} >0,

w’EDZ(igvk

12 2 € [pog, T = pek) X (=0 + pok, £ — pei). We next deduce from (28) that o/ € DY ()
413 implies

414 ——k(2) = Co/k? < @yplt,x) — 2 < —k(a') + Cy/k?.

2 )

N

115 Since inf k£ > 0, this shows that «’ € D¢ (&,4(t, x)) for k large enough with respect to
116 £. Hence, vg, is a supersolution of

o*(2")02, ¢
1— f(2)0Z,¢

417 min min {_atSD Ty )»A_/(x/) - 5£z50} >0

2! ED,:/Q
118 on [pri, T — poi) X (=~ pe, £ — pek)-
We now argue as in [13]. Since vy, is semi-concave, there exist 02,%%%v, ), € L*
and a Lebesgue-singular negative Radon measure 92,59 vg,;; such that
02,00k (dz) = 055550y 1 (2)dz + 02579, 1, (d2) in the distribution sense
and
(B4ve 1, Owve g, 02 ve k) € P vg ae. on [pg, T — pi] X (=€ + pe, £ — pe.r),

419 see [14, Section 3]. Hence, the above implies that

o (') 05 5 vg i

1— f(2")0m" v k)

420 min min {—(%w)k — 2 ,’7(33’) — 853:%811@,1:} >0

z'€DE/?
121 a.e. on [pog, T — pei) X (=0 + pe, £ — pek), or equivalently, by (18),

0_2 (x)ag,xabsve’k

2(1 — f(2)d2 vy 1)

122 min {atw’k - () — 85;117511@7;6} (t',2") >0

123 for all z and for a.e. (¢, 2") € [pok, T — pe.x) X (—C+ pei, £ — pe i) such that 2|z’ —z| <
424 ex(x). Take 0 < § < /2. Integrating the previous inequality with respect to (¢/, ")
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16 B. BOUCHARD, G. LOEPER, AND Y. ZOU

with the kernel function (-, -/k)/k, using the concavity and monotonicity property
of Remark 3.1 and the fact that 929y, is non-positive, we obtain
0202 v
. .k 2
(29) min { —0,v) ), — —— " 5 — 92 Ue sp >0
' 2(1 - faga: E,k)

on [prk +96,T — pri) X (_xe_,kvka)7 in which

1 .
vg,k(tax) = /RXsz,k([tlﬁawl)M% (t' - %) dt' dz’

) -
5/1($Zk) ={—perand —x,, — 5/@(—33@,,9 =—{+ po-
The above are well defined, see Remark 3.3. By Remark 3.3 and (28), :l:xz'fk — £o0

and pgr — 0 as k — oo and then £ — oo. Moreover, UM —>va6 as k — oo and

then ¢ — oo, and the derivatives also converge. Hence, (29) implies that \76 K ig a

supersolution of (17) on [4,T) x R.
c. We conclude by discussing the boundary condition at T'. We know from Proposition
3.4 that

and
+
Ty, +

5 > g +¢/2,  on [T —cf T xR

Since ¢ is uniformly continuous, see (16), so is g, and therefore \_/f{K %(T,-) > gk on

the compact set [—2zk,2x k] for § > 0 small enough with respect to ¢, see Lemma
3.2 for the definition of zx > K. Now observe that © > 2z and |2/ — 2| < dk(x)
imply that @’ > 225 (1 —6¢f) — 6cff in which ¢ and & are constants. This actually
follows from the affine behavior of k on [zx,0), see (22) and Lemma 3.2. For ¢
small enough, we then obtain ' > zx. Since gk is affine on [z, 00), and since 1) is
symmetric in its second argument, see (26), it follows that

.'LJ

TSR (T 2) > /R ngK(x/)ﬁ‘” (t’ ~T, K(;)x) dt'dz’ = g (z)

for all x > 2x k. This also holds for z < —2xk, by the same arguments. O

We can now use a verification argument and provide the main result of this section.

THEOREM 3.8. Let V5 be defined as in Proposition 3.5. It has linear growth.
Moreover, v5 > vy on [0,T] x R.
Proof. The linear growth property has already been stated in Proposition 3.5. We
now show that ¥5 > vs by applying a verification argument to V%’K’J. From now
on 0 < € < ¢ in which €, is as in (22). The parameters K,J > 0 are chosen as in
Proposition 3.7.

Fix (t,z) € (0,T) xR and ¢ € (0,tA€). Let (X,Y,V) be defined as in (6)-(2)-(7)
with (x, 9,5 K5(t,z),vg’K’6( x) — xS K‘s(t,x)x) as initial condition at ¢, and for
the Mark0v1an controls

) 0'82 —6,K,0
() e

(8&62“%%{””( ptaof’) + 16£M-EK5<a+af)2>

b 1_f 7€K5

(aX)
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By definition of F', (13) and (1), the above is well-defined as the denominators are
always bigger than inf fi > 0. All the involved functions being bounded and Lipschitz,
see Proposition 3.7, it is easy to check that a solution to the corresponding stochastic
differential equation exists, and that (@,b) € .A°. Direct computations then show that
Y = 836\7%’&6(-, X). Moreover, the fact that V%’K"S is a supersolution of F[p] = 0 on
[t,T] x R ensures that the gamma constraint (12) holds, for some &k > 1, and that

1
0w 0L X) - 50(X)a >0 on [1.T).
The last inequality combined with the definition of & implies

SFX0 2 550 X) 4 2 (o(X) + f(X)a)a

N =N =

= 9950 (L X) + S (0% (X))?02,95"° (. X) on [t,T).

Hence,

in which the last inequality follows from Proposition 3.7 again.

It remains to pass to the limit §,¢ — 0. By Proposition 3.4, v;’K
that V;’K’é converges pointwise to V;’K as 6 — 0. By Proposition 3.5, \_/;’K converges
pointwise to V5 as € — 0 and K — co. In view of the above this implies the required
result: V5 > vy. O

is continuous, so

REMARK 3.9. Note that, in the above proof, we have constructed a super-hedging
strategy in Ak 5(t,x) and starting with |Y;| < k, for some k > 1 which can be chosen

in a uniform way with respect to (t,x), while \7%’1(’6 has linear growth.

3.1.3. Comparison principle. We provide here the comparison principle that
was used several times in the above. Before stating it, let us make the following
observation, based on direct computations. Recall (1) and (13).

PrROPOSITION 3.10. Fizx p > 0. Consider the map

o%(x)M

(t2, M) € [0.T) x Rx R > W(t,z, M) = 5o

Then, M — ¥ (t,x, M) is continuous, uniformly in (t,x), on
O:={(t,z,M) € [0,T] x R xR: M < e”¥(x)}.

Moreover, there exists L > 0 such that x — U(t,z, M) is L-Lipschitz on O.

THEOREM 3.11. Fiz € € [0,¢,]. Let U (resp. V) be a upper semicontinuous vis-
cosity subsolution (resp. lower semicontinuous supersolution) of FE =0 on [0,T) x R.
Assume that U and V have linear growth and that U <V on {T} X R, then U <V
on [0,T] x R.
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18 B. BOUCHARD, G. LOEPER, AND Y. ZOU

Proof. Set U(t,z) := e”'U(t,z), V(t,z) := 'V (t,x). Then, U and V are respec-
tively sub- and supersolution of

0%(2") 0
et — f(2')Orxp)

on [0,T) x R. For later use, note that the infimum over D¢ is achieved in the above,
by the continuity of the involved functions. o
If supjg ) xr(U—V) > 0, then we can find A € (0, 1) such that supyy 77xr(U—VA) >

0 with Vj := AV + (1 — \)w, in which

(30) Jreurr)lz min {pgp — Oyp — 3 ey (') — 5'm90} =0

L conc L
w(t,z) = (T =HA+(cf +cf'|-| = 7| - )" (@) + 7|2

with ¢5, ¥ two constants such that e?T|U| < ¢ + ¢V - | and

1 )
A:= —sup —
2Ty
where ¢ > 0 is as in (13). Note that
(31) V)\(Tv ) > 0(Ta ')»
and that
(32) w is a viscosity supersolution of (30)

Vi is a viscosity supersolution of Ay 4 (1 — A& — 92,0 >0.

Moreover, by Remark 3.1, Vy is a supersolution of (30). Define for e > 0 and n > 1
5 3 ) € 2 n
(33) ©i=  sup [U(a) = Valty) — (Glel + 5

o —yl?) | =0 >0,
(t,z,y)€[0,T]xR2

in which the last inequality holds for n > 0 large enough and € > 0 small enough.
Denote by (£, x5, yS) the point at which this supremum is achieved. By (31), it must
hold that t5 < T, and, by standard arguments, see e.g., [10, Proposition 3.7],

(34) lim n|zS —y5|* = 0.

n—oo
Moreover, Ishii’s lemma implies the existence of (af, M, N£) € R? such that
(a5, ea® +n(a;, —yp), My) € PPHU(E, 27)
(ae _n(afz - yfl)’ stz) € ,ﬁQV_V/\(tfwyfz%

n’

in which P?* and P?~ denote as usual the closed parabolic super- and subjets, see
[10], and

Mraz 0 e 1 eN2 1 -1 35+% —&
(0 _NJSRHH#&>_%<41)+( R

with
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In particular,

(35) ME — N2 < 65 with 65 == ¢ + %

Then, by (32) and (13),

(36) 0<(1—X= <efny(is) — NE < e’tny() — ME + 62,

L
2
in which g)fL € D;(yi) In view of Remark 3.3, this shows that ef'»5(25) — MS > 0
for some &5, € Dg(xy,), for n large enough and e small enough, recall (34) Hence,
the super- and subsolution properties of Vy and U imply that we can find ué € [—e ]
together with g5 and &7, such that

(37) o+ unk(ln) = Yn » &5 + upk(dy,) = 25,
None
and
p(U(ta ) V)\(te y )) UQ(QZ)ME _ Jz(gi)Ns

T 2(ertn — f(aR)M5)  2(ertn — f(IR)NS)
By Remark 3.1 and (35), this shows that
L GO E) oGNS
T 2(ertn = fEL)(NS +05))  2(ertn — f(95)N5)

It remains to apply Proposition 3.10 together with (36) for n large enough and & small
enough to obtain

DOt 25) — TA(E, 32))
REINE PN s
< St — Ny 2 - sy oW

< L5, — g, + 05,(1)

for some L > 0 and where O%(1) — 0 as n — oo and then € — 0. By continuity and
(34) combined with Remark 3.3 and (37), this contradicts (33) for n large enough. OJ

3.2. Supersolution property for the weak formulation. In this part, we
provide a lower bound v for v; that is a supersolution of (17). It is constructed
by considering a weak formulation of the stochastic target problem (14) in the spirit
of [8, Section 5]. Since our methodology is slightly different, we provide the main
arguments.

On C(R)%, let us now denote by (¢ := (a,b,da, ), W) the coordinate process
and let F° = (.F )s<7 be its raw filtration. We say that a probability measure P
belongs to Ap if W is a P-Brownian motion and if for all 0 < § < 1 and r > 0 it holds
P-a.s. that

(38) i

ao +/ Byds _|_/ a,dW, for some dg € R,
0 0

(39) sup [¢| <k,
Ry
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20 B. BOUCHARD, G. LOEPER, AND Y. ZOU

and

(40) E? [sup{K:s/—g:s\, r§s§5'§5+5} |ﬁ;’} < ko

For ¢ := (y,a, I})7 y € R, we define (X””";J}J’,VL”"E) as in (6)-(2)-(7) associated to
the control (a,b) with time-0 initial condition (z,y,v), and with W in place of W.
For t <T and k > 1, we say that P € Gy, 5(t,z,v,y) if

(1) [ > g5 and —k <43 (X59) <4(X7) onRy| B-as
We finally define

y,’;(t,x) =inf{v=c+yz : (c,y) € R x [k, k] s.t. Ay N Gp~(t,z,v,y) # 0},
and

(42) vo(t, ) = lim inf y,];(t',x’), (t,z) € [0,T] x R.
k, ’,z' — (oo, t, x
((t’t, .7:/))6 [o,(T) ik)

The following is an immediate consequence of our definitions.
PROPOSITION 3.12. v5 > v, on [0,T) x R.

In the rest of this section, we show that v. is a viscosity supersolution of (17).
We start with an easy remark.

REMARK 3.13. Observe that the gamma constraint in (41) implies that we can
find e > 0 such that
€

Tt = oL (X™) <elte? andla|<e ! P—as,
€

for all P € Ay N _C’;k,:y(t,x,v,y) and k > 1. Indeed, if @ > —o/f then —k <& < 7
implies
(- ko o Yo
1+kf f 1—-7f
Then our claim follows from (1)-(13). On the other hand, if o +af < 0, then ¥ < 5
implies a > yo /(1 — f¥) > 0, see (13), while a < —f/o < 0, a contradiction.

)V (=

y<a< and af +o >o/(1+kf).

We then show that y§ has linear growth, for k large enough.

PROPOSITION 3.14. There exists ko > 1 such that {|vE|,k > ko} is uniformly
bounded from above by a continuous map with linear growth.

Proof. a. First note that Remark 3.9 implies that {(v£)", k > k,} is uniformly
bounded from above by a map with linear growth, for some k, large enough.

b. Let us now fix P € A N Gi 5(¢,x,v,y). Using Remark 3.13 combined with (1)
and the condition that (@,b, &, () is P-essentially bounded, one can find P ~ P un-
der which [; Y#dX®? is a martingale on [0,7 — ¢]. Then, the condition Vit >
g(X%ft) P-a.s. implies v + ]EP[% fOTft dﬁf(Xf"z’)ds] > infg > —oo, recall (16). By
Remark 3.13 and (1), v > infg — C > —oo, for some constant C' independent of
P € Up(Ax NG 5(t,2,0,y)). Hence {(v4)~, k > k,} is bounded by a constant. O

We now prove that existence holds in the problem defining yﬁj and that it is
lower-semicontinuous.
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568 PROPOSITION 3.15. For all (t,z) € [0,T] xR and k > 1 large enough, there exists
569 (¢,y) € Rx[—k, k] such that vE(t,2) = c+yx and ApNGy ~(t, c+xy,y) # 0. Moreover,
570 y’% is lower-semicontinuous for each k > 1 large enough.

571 Proof. By [19, Proposition XIII.1.5] and the condition (40) taken for r = 0, the
572 set Ay is weakly relatively compact. Moreover, [16, Theorem 7.10 and Theorem
573  8.1] implies that any limit point (Px, ts, Z«, Cx, Y ) of a sequence (P, ty, Tn, Cn, yn)n>1
574 such that P, € Ak N Gy W(tmxn,cn + ZnYn,yn) for each n > 1 satisfies P, € Ae N
575 gkﬁ(t*,m*,c* + ZyYs, Ys). Since y,? is locally bounded, by Proposition 3.14 when
576k > k,, the announced existence and lower-semicontinuity readily follow. (]
577

578 We can finally prove the main result of this section.

579 THEOREM 3.16. The function v+ is a viscosity supersolution of (17). It has linear
5

580  growth.
581 Proof. The linear growth property is an immediate consequence of the uniform
582 linear growth of {|y§|, k > k,} stated in Proposition 3.14. To prove the supersolution
583 property, it suffices to show that it holds for each yg, with k > k,, and then to apply
584 standard stability results, see e.g. [2].
a. We first prove the supersolution property on [0,7) x R. We adapt the arguments
of [8] to our context. Let us consider a Cg° test function ¢ and (¢p,z¢) € [0,T) x R
such that

(strict) [O%%I;R(yg —p) = (yg —¢)(to,z0) = 0.

585 Recall that v’f is lower-semicontinuous by Proposition 3.15.
Because the infimum is achieved in the definition of v- by the afore-mentioned
proposition, there exists |yo| < k and Pe A, N Qk(to,xo,vo,yo) such that vy :=
co + Yoo = V& (to, o) for some ¢y € R. Let us set (X,Y,V):= (X“"ls VER LK )

where ¢ = (y07a,b). Let 8, be a stopping time for the augmentation of the raw
filtration [F°, and define

0 := 60, A0 with 01 := inf{s: |)~(S — x| > 1}.
Then, it follows from Proposition 3.17 below that
Vo, = vh(to + 00, Xo,) > ¢(to + 6o, Xo,),

586 in which here and hereafter inequalities are taken in the P-a.s. sense. After applying
587 Itd’s formula twice, the above inequality reads:

6 0 s s
588 (43) / lyds + / (yo — Oz(to, zo) + mydr +/ nrdf(r> dX, > 0.
0 0 0 0

589 where

1 3 i . _— i .
590 £ = §~2f(X) —Lo(tg+ X)), m:=pSP(X) = L2%p(to + -, X.)

with
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22 B. BOUCHARD, G. LOEPER, AND Y. ZOU

For the rest of the proof, we recall (39). Together with (1) and Remark 3.13, this im-
plies that 0% (X), 0% (X)~! and /g{’b (X) are P-essentially bounded. After performing

an equivalent change of measure, we can thus find P ~ P and a P-Brownian motion
W such that:

(44) X = /0 | o (Xg)dW.

Clearly, both P and W depend on (a, b, Yo)-
1. We first show that yo = 9,¢(to, zo), and therefore

(45) /f ds—i—/ / mydrdX, —|—/ / nydX,dX, > 0.

Let P* ~ P be the measure under which
WA= Wt [ No% (2] o~ iplto, o)) ds
0

is a PA-Brownian motion. Consider the case 6, := n > 0. Since all the coefficients are
bounded, taking expectation under P* and using (43) imply

C'n > Myo — Oap(to, 0))°EE” [6)

. 0 s s B
+EIP”\ / ( mydr + / nrdXT> Ayo — Oup(to, zo))ds
0 0 0

for some C” > 0. We now divide both sides by 7 and use the fact that (n A61)/n — 1
P*-a.s. as 7 — 0 to obtain

C’ > Myo — Oxp(to, 70))>.

Then, we send A — oo to deduce that yo = 9,¢(to, xo)-
2. We now prove that

(46) 82, (to, w0) < WP (wo) < V(o).
We first consider the time change

h(t) = inf{r >0 /0 ' (0% (X)) 10.0)(5) + L1 (5)] ds > 1}

Again, 0% (X) and 0% (X)~! are essentially bounded by Remark 3.13, so that h is
absolutely continuous and its density h satisfies

(47) 0. < bt < b(t) = [(o% (X)L (6) + Lo ()] <t

for some constants h and b, for all ¢t > 0. Moreover, W := X, is a Brownian motion

in the time changed filtration. Let us now take 6, := h=!(n) for some 0 < n < 1.
Then, (45) reads

nART1(61) nAhTH(01)  ps R
0< / ﬁh(s)b(s) ds + / / mh(T)h(r)drdWS
0 0 0

nARTH(01) s . .
(48) +/O /0 nh(r)dWrdWs.
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Since all the involved processes are continuous and bounded, and since (nAh=1(01))/n — |}
1 a.s. as 7 — 0, the above combined with [8, Theorem A.1 b. and Proposition A.3]
implies that

a 2 : .
7 (20) — Oppp(to, xo) = I:ignh(r) = lrlﬁ)lnr > 0.

618 Since 7&(X) < 7(X), this proves (46).

619 3. It remains to show that the first term in the definition of F[p](tg,xo) is also
620 non-negative, recall (15). Again, let us take 6, := h™!(n) and recall from 2. that
621 lim,—o(nAh™Y(61))/n = 1 P-a.s. Note that @ being of the form (38) with the condition
622 (39), it satisfies [8, Condition (A.2)], and so does n. Using [8, Theorem A.2 and
623 Proposition A.3] and (48), we then deduce that {oh(0) — $no > 0. Hence, (47) and
624 direct computations based on (8) imply

1. a 1 ao ao
625 0 < Sagf(zo0) = L (to, w0) — 5 (15 (w0) — Fuiplto, 20)) (05 (w0))*
1. 13 ao
626 = §a§ (xo) — Orp(to, o) — §7y° (w0) (0% (w0))?
1 o (zo) p
627 = —0yp(to, o) — = = ¥ (o)
t 21— f(zo)y (xo)
1 2
628 < —6t<p(t0, 1‘0) — g (Jfo) 82$g0(t0,$0),

21— f(w0)92,¢(to, o)

620 in which we use the facts that 92, ¢(to, 20) < ¥4 (z0) < F(20) and z — 2/(1— f(z0)z)

630 in non-decreasing on (—oo,%¥(zg)] C (—00,1/f(x0)), for the last inequality.
k

b. We now consider the boundary condition at 7. Since v3 is a supersolution of

v — 8;1,90 > 0 on [0,T) X R, the same arguments as in [11, Lemma 5.1] imply that

yg — T is concave for any twice differentiable function T' such that 92,T' = 5. The

function v¥ being lower-semicontinuous, the map

x> G(z):= liminf  vE(¢2')
t! — T, L

t<T

631 is such that G > g and G —T is concave. Hence, G = (G —T)*°" 4T > (g—T)®°"+T

632 =g. O
633 It remains to state the dynamic programming principle used in the above proof.
634 PROPOSITION 3.17. Fiz (t,z,v,y) € [0,T] x R? x [—k, k] and let § be a stopping

635 time for the P-augmentation of F° that takes P-a.s. values in [0,T —t]. Assume that
636 Pe Ay NGrs(t,z,v,y). Then,

637 %x’”’(z’ > y,’;(t +0, X’g’d)) P—as.,

638 in which ¢ := (y,a,b).
Proof. Since gﬁj is lower-semicontinuous and all the involved processes have contin-
uous paths, up to approximating 6 by a sequence of stopping times valued in finite
time grids, it suffices to prove our claim in the case § = r € [0,T — ¢]. Let P, be a
regular conditional probability given F2 for P. It coincides with P[-|F2](w) outside a
set N of P-measure zero. Then, for all w ¢ N, 0 < 6 < 1 and r > 0 the conditions
(38)-(39)-(40) hold for P”, defined on C (R, ) by

Prw € Al = P,[wl,. € Al
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Moreover, [9, Theorem 3.3] ensures that, after possibly modifying N,

pr (760 (@)0r(@).6(w) Er(@).d@)] _
Fo [VT—<t+r) Z 97 (i) )} =1

and B" M( X6 @)@y < (X6 @@ on R 4 —1,
for w ¢ N, in which
(6r.0r.0) := (X2, V00, (V07 4.5).
This shows that ¥,.(w) > vE(t 47, &.(w)) outside the null set N, which is the required
result. g

3.3. Conclusion of the proof and construction of almost optimal strate-
gies. We first conclude the proof of Theorem 2.4.
Proof of Theorem 2.4. Proposition 3.5 and Theorem 3.8 imply that v5 > v5 in
which v5 has linear growth and is a continuous viscosity solution of (17). On the
other hand, Proposition 3.12 and Theorem 3.16 imply that v < v5 on [0,7) x R in
which v has linear growth and is a viscosity supersolution of (17). By the comparison
result of Theorem 3.11 applied with € =0, v5 > V5. Hence,

(49) Vy =V, =75 on [0,7) x R and v, = ¥5 on [0,T] x R

Since V5 is continuous, this shows that

By 1) =T (2) = 5 (T )
th <T

Hence, v is a viscosity solution of (17), with linear growth. O

REMARK 3.18 (Almost optimal controls). In the proof of Theorem 3.8, we have

constructed a super-hedging strategy starting from V%’K"S(t,x). Since V%’K"s(t,x) —

V5(t,x) = vy(t,z) as 6,€ — 0 and K — oo, this provides a way to construct super-
hedging strategies associated to any initial wealth v > v5(t, ).

4. Adding a resilience effect. In this section, we explain how a resilience
effect can be added to our model. In the discrete rebalancement setting, we replace
the dynamics (4) by

X" =Xy +/ w(X3)ds +/ o(X!)dWs+ R",
0 0
in which R" is defined by
Rn — RO + Z 1[t;L,T]5tn?‘f(Xt?‘—) — / pR?dS,
i=1 0
for some p > 0 and Ry € R. The process R™ models the impact of past trades on the

price, the last term in its dynamics is the resilience effect. Then, the continuous time
dynamics becomes

X = Xo+ /0 o (X,)dW, + /0 F(X,)dYs + /0.(,u(XS) +a,(of)(X,) — pRy)ds
R=Ry+ /0 F(X,)dYs + A.(as(af’)(Xs) — pR,)ds

V=" +/ Y,dX, +%/ a?f(X,)ds.
0 0
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This is obtained as a straightforward extension of [4, Proposition 1.1].

Let V?(t,m) be defined as the super-hedging price vs(t,z) but for these new
dynamics and for R; = 0. The following states that v§ = vy, i.e. adding a resilience
effect does not affect the super-hedging price.

PROPOSITION 4.1. vy = v£ on [0,T] x R.

Proof. 1. To show that v > V;I?, it suffices to reproduce the arguments of the proof
of Theorem 3.8 in which the drift part of the dynamics of X does not play any role.
More precisely, these arguments show that v5 > V,I;’. Then, one uses the fact that
V5 =V, by (49)

2. As for the opposite inequality, we use the weak formulation of Section 3.2 and a
simple Girsanov’s transformation. For ease of notations, we restrict to ¢t = 0. Fix
v > V?(O,x), for some x € R. Then, one can find k > 1, (¢,y) € R x [—k, k] satisfying
v =c+yz, and (a,b) € Ak 5(0,z) such that Vp > g(Xr), with (V,X,Y, R) defined
by the corresponding initial data and controls. We let

a:ao—l—/ ﬂsds—i—/ o dW
0 0

be the decomposition of a into an Ité process, see Section 2.1. Let QF ~ P be the
probability measure under which W := W — [/ (pR,/o(X,))ds is a QF-Brownian
motion, recall (1). Then,

X = Xo+ [ogaws+ [ Feegavos [ +ato s
Y =Yy + /‘(bs +aspRs/a(Xs))ds + / a,dWE
0 0

a=ag+ / (Bs + aspRs/o(X,))ds + / a,dWE
0 0

. 1
Vvt [ Vx| atroeds
0 0

Upon seeing (a,b + apR/o(X), o, 8 + apR/o(X), WF) as a generic element of the
canonical space C([0,T])® introduced in Section 3.2, then QF belongs to A, N Gy 5(t,
r,v,y), and therefore v > v.(0,z). Hence, V,?(O,.’I?) > v5(0,z), and thus vE(0,z) >
v5(0,z) by (49). O

5. Numerical approximation and examples. In this section, we provide an
example of numerical schemes that converges towards the unique continuous viscos-

ity solution of (17) with linear growth. The scheme is then exemplified using two
numerical applications in the case of constant market impact and gamma constraint.

5.1. Finite difference scheme. Given a map ¢ and h := (hy, h,) € (0,1)2,
define

h o (b(t + htvx) - Y UQ(m)Gh(t,x,y,@
Lit e, y.0) = = =~ S f @) (. )

Li(t,x,y,¢) == 5(z) — G"(t,2,y,0)

where

This manuscript is for review purposes only.



691
692
693
694

695

696
697
698
699

26 B. BOUCHARD, G. LOEPER, AND Y. ZOU

The numerical scheme is set on the grid m, = {(¢;,z;) = (thy,z + jhy) 1 @ <
ng,j < ng}, with nghy = T for some ny € N, and nyh, = T — z, for some real numbers
x < 7. To paraphrase, V;];” is defined on 7, as the solution of

(50)  S(h,ti, @y, vE (L, 25),vE) =0 for i<my,1<j<ng—1
vh =g onm N {({T} xR)U([0,T] N {z,z})}
where
S(hit.2,y,9) == (@ = y) V (y —w) A min {L} (t, 2y, 9)}
with w and w as in Remark 3.6.

THEOREM b5.1. The equation (50) admits a unique solution vg, for all h := (hy,
h.) € (0,1)2. Moreover, if hy/h2 — 0 and h2 — 0, then Vf-/‘ converges locally uniformly
to the unique continuous viscosity solution of (17) that has linear growth.
Proof. The existence of a solution, that is bounded by the map with linear growth
|o| + |w|, is obvious. We now prove uniqueness. First observe that L} is strictly
increasing in its y-component, and that

oLh o?(x)

1
a—y(t,x,y,@ T T ROty )2 ’

on the domain {y : L% (t;,z;,y,$) > 0}. Uniqueness of the solution follows.

It is easy to see that ¢ — S(-, ¢) is non-decreasing, so that our scheme is mono-
tone. Consistency is clear. Moreover, it is not difficult to check that the comparison
result of Theorem 3.11 extends to this equation (there is an equivalence of the notions
of super- and subsolutions in the class of functions w such that w < w < @). It
then follows from [3, Theorem 2.1] that vg converges locally uniformly to the unique
continuous viscosity solution with linear growth of

(W =)V (p—w)AFlpl| 1o + (¢ —§)liry = 0.

In view of (49), Remark 3.6 and Theorem 2.4, v5 is the unique viscosity solution of
the above equation. O

5.2. Numerical examples: the fixed impact case. To illustrate the above
numerical scheme, we place ourselves in the simpler case where f =X > 0 and 7 > 0
are constant. The dynamics of the stock is given by the Bachelier model

dXt =0 th,
with ¢ := 0.2. In the following, T = 2.
First, we consider a European Butterfly option with three strikes K3 = —1 <

Ky =0< K3 =1, where K1 +1/(2%) < Ky < K3 — 1/(2%). Its pay-off is
9(z) = (v — K1)" = 2(x = K3)" + (z — K3)™,

and the corresponding face-lifted function ¢ can be computed explicitly:

g9(x) =

N |21

(:17 — xl_)zl[m;,xf) + (I - Kl)l[xir’lg)
Tz — Ky —2(z — K2))1 g, .-

+ (%(ZE — .’L';)Q + 2K2 — (K1 + K3)) 1[z;

2K — (K1 + K3) s o),

3)

This manuscript is for review purposes only.



HEDGING OF COVERED OPTIONS WITH LINEAR MARKET IMPACT AND GAMMA CONSTRATIZTH

709 where 2 = K; +1/(27) and 25 = K3 +1/(27).

710 In Figure 1, we separately show the effect of the gamma constraint and of the
711  market impact. As observed in Remark 2.9, the price is non-decreasing with respect
712 to the impact parameter A\ and bounded from below by the hedging price obtained in
713 the model without impact nor gamma constraint. On the left and right tails of the
714 curves, we observe the effect of the gamma constraint. It does not operate around
715 x = 0 where the gamma is non-positive. The effect of the market impact operates
716 only in areas of high convexity (around z = —1.5 and = = 1.5) or of high concavity
717 (around x = 0).

0.15
L

Price Difference
0.10
L

Value Function

0.05
I

0.00
L

Fic. 1. Left: Super-hedging price of the Butterfly option. Dashed line: X\ = 0.5, ¥ = 1.75; solid
line: A =0, ¥ = 1.75; dotted line: A\ = 0, ¥ = +o00. Right: Difference with the price associated to
A =0, ¥ = 40c0. Dashed line: A = 0.5, ¥ = 1.75; solid line: A =0, ¥y = 1.75 .

In Figure 2, we perform similar computations but for a call spread option, where

9(x) = (z = K1) — (2 — K3) ",

with K7 = —1 < K3 = 1 such that K + 1/(2%) < Ks. The face-lifted function g is
given by

g(w) = (x — x_)21[$_7z+) + (.%' — Kl)l[x*—,K?) + (KQ — Kl)l[K2,+oo)

N |21

718 with % = K; +1/(27).
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20
L
0.07
L

15
0.05 0.06
I I

0.04
L

Value Function
1.0
Price Difference

0.5

L

0.02 0.03
I I

0.01
L

0.0
L

0.00
I

F1a. 2. Left: Super-hedging price of the Call Spread option. Dashed line: X = 0.5, ¥ = 1.75;
solid line: X =0, ¥ = 1.75; dotted line: A =0, ¥ = +o00. Right: Difference with the price associated
to A =0, ¥ = 40co. Dashed line: A = 0.5, ¥ = 1.75; solid line: A=0, §y = 1.75 .

6. Appendix. The following is very standard, we prove it for completeness.

LEMMA 6.1. A upper-semicontinuous (resp. lower-semicontinuous) map is a vis-
cosity subsolution (resp. supersolution) of

Flellor) + (¢ — gx)liry =0

if and only if it is a viscosity subsolution (resp. supersolution) of FE’I_([cp] =0 (resp.
e, K ’

Foylel=0)

Proof. The equivalence on [0,T) is evident, we only consider the parabolic boundary

{T} x R. Since F,jf > F¢ and F;lf < F¥, only one implication is not completely

trivial.

a. Let v be a viscosity supersolution of F;f[(p] =0, and ¢ € C? be a test function

such that
(strict) mijl%rle(v —¢)=(v—9)(T,x0) =0,

for some o € R. We define a new test function ¢ € C?,
d)(tv .’L‘) = @<t7 SC) - C(T - t)’
so that 0;¢ = Oy + C. For C' > 0 large enough,

02(2")0prp 5
(1 - f(x/)azz(b),

min min {—&qﬁ ~ 3

! p—
r’'eD¢ (‘T ) axibd)} <0
at (T, xzp). Since,

(strict) min (v —¢) = (v — ¢)(T,zg) = 0,

[0,T]xR
it must hold that sz[gb](ﬂ xo) > 0, and therefore

o(T,x0) — G (w0) = (T, 20) — §i (20) = &(T, 20) — G (20) > 0.
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b. Let now v be a viscosity subsolution of F| ,:I_{[<p] =0, and ¢ € C? be a test function

such t

hat
(strict) max (v — ) = (u— ¢)(T, zo),

[0,T]xXR

for some xg € R. Then, F;If[go] (T, z9) < 0. By replacing ¢ by ¢, defined for o > 0

as

o(t,x) == p(t,xo + alz — z9)) + C(T — 1),

we obtain a new test function at (T, x). Since inf#% > 0, recall (1), we can take «
small enough so that

min {¥(z") — 00 d(T, z0)} > 0.

z’'€Dg,

As in the previous step, we can now choose C' > 0 such that

at (T,

=
4 d w =

[9] J.

min {—8t¢ ~

' €D,

o2(2")0prth }

o). Since F¥[¢](T,x) < 0, we conclude that v(T, z) = ¢(T,z0) < g (wo).
O
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