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1. Introduction. Inspired by [1, 18], authors in [4] considered a financial mar-11

ket with permanent price impact, in which the impact function behaves as a linear12

function (around the origin) in the number of bought stocks. This class of models is13

dedicated to the pricing and hedging of derivatives under situations of non-negligible14

delta-hedging. In fact, the number of stocks required for hedging purpose becomes15

comparable to the average daily volume traded on the underlying asset. As a con-16

sequence, the delta-hedging strategy has an impact on the price dynamics, and also17

incurs liquidity costs. The linear impact models studied in [1, 4, 18] incorporate18

both effects into the pricing and hedging of the derivative, while maintaining the19

completeness of the market (up to a certain extent). These models in turn lead to20

exact replication strategies. As in perfect market models, this approach provides an21

approximation of the real market conditions and hence can be used by practitioners22

to design a suitable hedge in a systematic way. Thus, eliminating the need to rely on23

any ad hoc risk criterion.24

In [4], the authors considered the hedging of a cash-settled European option: at25

inception the option seller builds the initial delta-hedge, and later liquidates the hedge26

at maturity to settle the final claim in cash. It is shown therein that the price function27

of the optimal super-replicating strategy no longer solves a linear parabolic equation,28

as in the classical case, rather a quasi-linear one. The hedging strategy in this case,29

essentially follows a modified delta-hedging rule where the delta is computed at the30

“unperturbed” value of the underlying, i.e., the one the underlying would have been31

if the trader’s position were liquidated immediately.32

The approach and the results obtained in [4] thus differ substantially from [1,33

18]. While in [1, 18] the impact model considered is the same, the control problem34

is different in the sense that it is applied to the hedging of covered options. The35

hedging of covered options refers to situations where the buyer of the option delivers36

at inception the required initial delta position, and accepts a mix of stocks (at their37

current market price) and cash as payment of the final claim. The buyer’s indifference38

between stock and cash eliminates the cost incurred by the initial and final hedge.39

Quite surprisingly, this is not a genuine approximation of the problem studied in40
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2 B. BOUCHARD, G. LOEPER, AND Y. ZOU

[4]. The question of the initial and final hedge is fundamental, to the point that41

the structure of the pricing question is completely different: in [4] the equation is42

quasi-linear, while it is fully non-linear in [1, 18].43

As opposed to [4], authors in [1, 18] use a verification argument to build an exact44

replication strategy. Due to the special form of the non-linearity, the equation is ill-45

posed when the solution does not satisfy a gamma-type constraint. The aim of the46

current paper is to provide a direct characterization via stochastic target techniques,47

and to incorporate right from the beginning a gamma constraint on the hedging48

strategy.49

Note that, in [18], the author establishes, for a particular type of impact function50

(see f below), that the fully non-linear pricing equation has a smooth solution which51

provides an exact replication strategy. However it is not shown that this (exact52

replication) strategy is the cheapest way of super-replicating the final payoff. In the53

present paper, we assume a more general form for the market impact, and show that54

the weak (viscosity) solution to the pricing equation indeed provides the price of the55

cheapest super-replication strategy. Note also that the gamma-constraint is obtained56

in [18] as a by product of the regularity, as opposed to the present paper where it has57

to be imposed.58

In our context, the super-solution property can be proved by essentially following59

the arguments of [8]. The sub-solution characterization is much more difficult to ob-60

tain. This is a second main difference with [4], in which classical geometric dynamic61

programming and viscosity solutions techniques could be used, once an appropriate62

change of variable was performed. In the current paper, however unlike in [8], we63

could not prove the required geometric dynamic programming principle. The un-64

derlying reason being the strong interaction between the hedging strategy and the65

underlying price process due to the market impact. Instead, we use the smoothing66

technique developed in [5]. We construct a sequence of smooth super-solutions which,67

by a verification argument, provide upper-bounds on the super-hedging price. As68

they converge to a solution of the targeted pricing equation, a comparison principle69

argument implies that their limit is the super-hedging price. A by-product of this70

construction is the explicit ε-optimal hedging strategies. We also provide the compar-71

ison principle and a numerical resolution scheme. To begin with, our analysis takes72

a simplified approach by restricting the models to only have permanent price impact.73

Later in Section 4, we show why adding a resilience effect does not affect our anal-74

ysis. Note that this is because the resilience effect considered here has no quadratic75

variation. This is in contrast to [1], in which the resilience can break the parabolicity76

of the equation, and renders the exact replication non optimal.77

We close this introduction by pointing out some related references. [6] incorpo-78

rates liquidity costs but no price impact, the price curve is not affected by the trading79

strategy. It can be modified by adding restrictions on admissible strategies as in [7]80

and [23]. This leads to a modified pricing equation, which exhibits a quadratic term81

in the second order derivative of the solution, and renders the pricing equation fully82

non-linear, even not unconditionally parabolic. Other articles focus on the derivation83

of the price dynamics through clearing condition, see e.g., [12], [21], [20] in which the84

supply and demand curves arise from “reference” and “program” traders (i.e., option85

hedgers). This results in a modified price dynamics, but with no liquidity costs taken86

into account, see also [17]. Finally, the series of papers [22], [8], [23] addresses the87

liquidity issue indirectly by imposing bounds on the “gamma” of admissible trading88

strategies, no liquidity cost or price impact are modeled explicitly.89
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HEDGING OF COVERED OPTIONS WITH LINEAR MARKET IMPACT AND GAMMA CONSTRAINT3

General notations. Throughout this paper, Ω is the canonical space of continuous90

functions on R+ starting at 0, P is the Wiener measure, W is the canonical process,91

and F = (Ft)t≥0 is the augmentation of its raw filtration F◦ = (F◦t )t≥0. All random92

variables are defined on (Ω,F∞,P). We denote by |x| the Euclidean norm of x ∈ Rn,93

the integer n ≥ 1 is given by the context. Unless otherwise specified, inequalities94

involving random variables are taken in the P − a.s. sense. We use the convention95

x/0 = sign(x)×∞ with sign(0) = +.96

2. Model and hedging problem. This section is dedicated to the derivation97

of the dynamics and the description of the gamma constraint. We also explain in98

detail how the pricing equation can be obtained and state our main result.99

2.1. Impact rule and discrete time trading dynamics. We consider the
framework studied in [4]. Namely, the impact of a strategy on the price process is
modeled by an impact function f : the price variation due to buying a (infinitesimal)
number δ ∈ R of shares is δf(x), given that the price of the asset is x before the trade.
The cost of buying the additional δ units is

δx+
1

2
δ2f(x) = δ

∫ δ

0

1

δ
(x+ ιf(x))dι,

in which ∫ δ

0

1

δ
(x+ ιf(x))dι

can be interpreted as the average cost for each additional unit.100

Between two trading instances τ1, τ2 with τ1 ≤ τ2, the dynamics of the stock is
given by the strong solution of the stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt.

Throughout this paper, we assume that101

(1)
f ∈ C2

b and inf f > 0,
(µ, σ) is Lipschitz and bounded, inf σ > 0.

102

The above regularity assumptions are used in [4] to derive the dynamics of Proposition103

2.2 below. The lower bound on σ is used later on, in particular to express the hedging104

policy in terms of a gamma, which is crucial for our analysis, see (8) and the equation105

just before. Relaxing these assumptions in the form of local conditions or by only106

assuming that f is C1 with Lipschitz derivative should be feasible. This however107

would significantly increase the complexity of our proofs and we leave this to future108

researches.109

As in [4], the number of shares the trader would like to hold is given by a contin-110

uous Itô process Y of the form111

Y = Y0 +

∫ ·
0

bsds+

∫ ·
0

asdWs.(2)112

We say1 that (a, b) belongs to A◦k if (a, b) is continuous, F-adapted,

a = a0 +

∫ ·
0

βsds+

∫ ·
0

αsdWs

1In [4], (a, b) is only required to be progressively measurable and essentially bounded. The
additional restrictions imposed here will be necessary for our results in Section 3.2.

This manuscript is for review purposes only.



4 B. BOUCHARD, G. LOEPER, AND Y. ZOU

where (α, β) is continuous, F-adapted, and ζ := (a, b, α, β) is essentially bounded by113

k and such that114

E [sup {|ζs′ − ζs|, t ≤ s ≤ s′ ≤ s+ δ ≤ T} |F◦t ] ≤ kδ115

for all 0 ≤ δ ≤ 1 and t ∈ [0, T − δ].116

We then define117

A◦ := ∪kA◦k.118

To derive the continuous time dynamics, we first consider a discrete time setting and
then pass to the limit. In the discrete time setting, the position is re-balanced only
at times

tni := iT/n, i = 0, . . . , n, n ≥ 1.

In other words, the trader keeps the position Ytni in stocks over each time interval119

[tni , t
n
i+1). Hence, his position in stocks at t is120

Y nt :=

n−1∑
i=0

Ytni 1{tni ≤t<tni+1} + YT1{t=T},(3)121

and the number of shares purchased at tni+1 is

δntni+1
:= Ytni+1

− Ytni .

Given our impact rule, the corresponding dynamics for the stock price process is122

Xn = X0 +

∫ ·
0

µ(Xn
s )ds+

∫ ·
0

σ(Xn
s )dWs +

n∑
i=1

1[tni ,T ]δ
n
tni
f(Xn

tni −),(4)123

in which X0 is a constant.124

The portfolio process is described as the sum V n of the amount of cash held and125

the potential wealth Y nXn associated to the position in stocks:126

V n = cash position + Y nXn.127

It does not correspond to the liquidation value of the portfolio, except when Y n = 0.128

This is due to the fact that the liquidation of Y n stocks does not generate a gain equal129

to Y nXn, because of the price impact. However, one can infer the exact composition130

in cash and stocks of the portfolio from the knowledge of the couple (V n, Y n).131

Throughout this paper, we assume that the risk-free interest rate is zero (for ease132

of notations). Then,133

(5) V n = V0 +

∫ ·
0

Y ns−dX
n
s +

n∑
i=1

1[tni ,T ]
1

2
(δntni )2f(Xn

tni −).134

This wealth equation is derived as in [4] following elementary calculations. The last135

term of the right-hand side comes from the fact that, at time tni , δntni shares are136

bought at the average execution price Xn
tni −

+ 1
2δ
n
tni
f(Xn

tni −
), and the stock’s price137

ends at Xn
tni −

+ δntni f(Xn
tni −

), whence the additional profit term. However, one can138

check that a profitable round trip trade can not be built, see [4, Remark 3].139

Remark 2.1. Note that in this work we restrict ourselves to a permanent price140

impact, no resilience effect is modeled. We shall explain in Section 4 below why taking141

resilience into account does not affect our analysis. See in particular Proposition 4.1.142
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2.2. Continuous time trading dynamics. The continuous time trading dy-143

namics is obtained by passing to the limit n→∞, i.e., by considering strategies with144

increasing frequency of rebalancement.145

Proposition 2.2. [4, Proposition 1] Let Z := (X,Y, V ) where Y is defined as in146

(2) for some (a, b) ∈ A◦, and (X,V ) solves147

X = X0 +

∫ ·
0

σ(Xs)dWs +

∫ ·
0

f(Xs)dYs +

∫ ·
0

(µ(Xs) + as(σf
′)(Xs))ds148

= X0 +

∫ ·
0

σasX (Xs)dWs +

∫ ·
0

µas,bsX (Xs)ds(6)149
150

with151

σasX := (σ + asf) , µas,bsX := (µ+bsf + asσf
′),152153

and154

(7) V = V0 +

∫ ·
0

YsdXs +
1

2

∫ ·
0

a2
sf(Xs)ds.155

Let Zn := (Xn, Y n, V n) be defined as in (4)-(3)-(5). Then, there exists a constant156

C > 0 such that157

sup
[0,T ]

E
[
|Zn − Z|2

]
≤ Cn−1

158

for all n ≥ 1.159

For the rest of the paper, we shall therefore consider (7)-(6) for the dynamics of160

the portfolio and price processes.161

Remark 2.3. As explained in [4], the previous analysis could be extended to a162

non-linear impact rule in the size of the order. To this end, we note that the continuous163

time trading dynamics described above would be the same for a more general impact164

rule δ 7→ F (x, δ) whenever it satisfies F (x, 0)= ∂2
δδF (x, 0) = 0 and ∂δF (x, 0) = f(x).165

For our analysis, we only need to consider the value and the slope of the impact166

function at the origin.167

2.3. Hedging equation and gamma constraint. Given φ = (y, a, b) ∈ R×A◦168

and (t, x, v) ∈ [0, T ]×R×R, we now write (Xt,x,φ, Y t,φ , V t,x,v,φ) for the solution of169

(6)-(2)-(7) associated to the control (a, b) with time-t initial condition (x, y, v).170

In this paper, we consider covered options, in the sense that the trader is given at
the initial time t the number of shares Yt = y required to launch his hedging strategy
and can pay the option’s payoff at T in cash and stocks (evaluated at their time-T
value). Therefore, he does not exert any immediate impact at time t nor T due to the
initial building or final liquidation of his position in stocks. Recalling that V stands
for the sum of the position in cash and the number of held shares multiplied by their
price, the super-hedging price at time t of the option with payoff g(Xt,x,φ

T ) is defined
as

v(t, x) := inf{v = c+ yx : (c, y) ∈ R2 s.t. G(t, x, v, y) 6= ∅},

in which G(t, x, v, y) is the set of elements (a, b) ∈ A◦ such that φ := (y, a, b) satisfies171

V t,x,v,φT ≥ g(Xt,x,φ
T ).172
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6 B. BOUCHARD, G. LOEPER, AND Y. ZOU

In order to understand what the associated partial differential equation is, let us
first rewrite the dynamics of Y in terms of X:

dY t,φt = γatY (Xt,x,φ
t )dXt,x,φ

t + µat,btY (Xt,x,φ
t )dt

with173

γaY :=
a

σ + fa
and µa,bY := b− γaY µ

a,b
X .(8)174

175

Assuming that the hedging strategy is to track the super-hedging price, as in classical176

complete market models, then one should have V t,x,v,φ = v(·, Xt,x,φ). If v is smooth,177

recalling (6)-(7) and applying Itô’s lemma twice implies178

(9) Y t,φ = ∂xv(·, Xt,x,φ) , γaY (Xt,x,φ) = ∂2
xxv(·, Xt,x,φ),179

and180

(10)
1

2
a2f(Xt,x,φ) = ∂tv(·, Xt,x,φ) +

1

2
(σaX)2(Xt,x,φ)∂2

xxv(·, Xt,x,φ).181

Then, the right-hand side of (9) combined with the definition of γaY leads to

a =
σ∂2

xxv(·, Xt,x,φ)

1− f∂2
xxv(·, Xt,x,φ)

, σaX =
σ

1− f∂2
xxv(·, Xt,x,φ)

,

and (10) simplifies to182

(11)

[
−∂tv −

1

2

σ2

(1− f∂2
xxv)

∂2
xxv

]
(·, Xt,x,φ) = 0 on [t, T ).183

This is precisely the pricing equation obtained in [1, 18].184

Equation (11) needs to be considered with some precautions due to the singularity185

at f∂2
xxv = 1. Hence, one needs to enforce that 1− f∂2

xxv does not change sign. We186

choose to restrict the solutions to satisfy 1 − f∂2
xxv > 0, since having the opposite187

inequality would imply that a does not have the same sign as ∂2
xxv, so that, having188

sold a convex payoff, one would sell when the stock goes up and buy when it goes189

down, a very counter-intuitive fact.190

In the following, we impose that the constraint191

(12) −k ≤γaY (Xt,x,φ) ≤ γ̄(Xt,x,φ) , on [t, T ] P− a.e.,192

should hold for some k ≥ 0, in which γ̄ is a bounded continuous map satisfying193

(13) ι ≤ γ̄ ≤ 1/f − ι, for some ι > 0.194

We now denote by Ak,γ̄(t, x) the collection of elements (a, b) ∈ A◦k such that (12)
holds. Define

Aγ̄(t, x) := ∪k≥0Ak,γ̄(t, x),

and let vγ̄ be defined as v but with

Gγ̄(t, x, v, y) := G(t, x, v, y) ∩ Aγ̄(t, x)

in place of G(t, x, v, y). More precisely,195

(14) vγ̄(t, x) := inf{v = c+ yx : (c, y) ∈ R2 s.t. Gγ̄(t, x, v, y) 6= ∅}.196
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Then, the equation (11) has to be modified to take the gamma constraint into account.197

This equation needs to impose that the second derivative is lower that the bound γ̄.198

On the other hand, the above informal analysis shows that the pricing function vγ̄199

needs at least to be a super-solution of (11) to guarantee that a hedging strategy can200

be found. Then, the equation associated to the gamma constraint should read201

(15) F [vγ̄ ] := min

{
−∂tvγ̄ −

1

2

σ2

1− f∂2
xxvγ̄

∂2
xxvγ̄ , γ̄ − ∂2

xxvγ̄

}
= 0 on [0, T )× R.202

As for the T -boundary condition, we know that vγ̄(T, ·) = g by definition. How-203

ever, as usual, the constraint on the gamma in (15) should propagate up to the204

boundary and g has to be replaced by its face-lifted version ĝ, defined as the smallest205

function above g that is a viscosity super-solution of the equation γ̄ − ∂2
xxϕ ≥ 0. It206

is obtained by considering any twice continuously differentiable function Γ̄ such that207

∂2
xxΓ̄ = γ̄, and then setting208

ĝ := (g − Γ̄)conc + Γ̄,209

in which the superscript conc means concave envelope, cf. [22, Lemma 3.1].2 Hence,210

we expect that211

vγ̄(T−, ·) = ĝ on R.212

From now on, we assume that213

ĝ is uniformly continuous,
g is lower-semicontinuous, g− is bounded and g+ has linear growth.

(16)214
215

We are now in a position to state our main result. In the sequel,

vγ̄(T, x) stands for lim
(t′, x′) → (T, x)

t′ < T

vγ̄(t′, x′)

whenever it is well defined.216

Theorem 2.4. The value function vγ̄ is continuous with linear growth. Moreover,217

vγ̄ is the unique viscosity solution with linear growth of218

F [ϕ]1[0,T ) + (ϕ− ĝ)1{T} = 0 on [0, T ]× R.(17)219

We conclude this section with additional remarks.220

Remark 2.5. Note that ĝ can be uniformly continuous without g being continu-221

ous. Take for instance g(x) = 1{x≥K} with K ∈ R, and consider the case where γ̄ > 0222

is a constant. Then, ĝ(x) = [1{x≥xo}
γ̄
2 (x− xo)2] ∧ 1 with xo := K − (2/γ̄)

1
2 .223

Remark 2.6. The map ĝ inherits the linear growth of g. Indeed, let c0, c1 ≥ 0 be
constants such that |g(x)| ≤ w(x) := c0 + c1|x|. Since ĝ ≥ g by construction, we have
ĝ− ≤ w. On the other hand, since γ̄ ≥ ι > 0, by (13), it follows from the arguments
in [22, Lemma 3.1] that ĝ ≤ (w − Γ̃)conc + Γ̃, in which Γ̃(x) = ιx2/2. Now, one can
easily check by direct computations that

(w − Γ̃)conc = (w − Γ̃)(xo)1[−xo,xo] + (w − Γ̃)1[−xo,xo]c

with xo := c1/ι. Hence, (w − Γ̃)conc + Γ̃ has the same linear growth as w.224

2Obviously, adding an affine map to Γ̄ does not change the definition of ĝ.
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Remark 2.7. As will appear in the rest of our analysis, one could very well in-225

troduce a time dependence in the impact function f and in γ̄. Another interesting226

question studied by the second author in [18] concerns the smoothness of the solution227

and how the constraint on ∂2
xxv gets naturally enforced by the fast diffusion arising228

when 1− f∂2
xxv is close to 0.229

Remark 2.8 (Existence of a smooth solution to the original partial differential230

equation). When the pricing equation (17) admits smooth solutions (cf. [18] that allow231

to use the verification theorem, then one can construct exact replication strategies from232

the classical solution. By the comparison principle of Theorem 3.11 below, this shows233

that the value function is the classical solution of the pricing equation, and that the234

optimal strategy exists and is an exact replication strategy of the option with payoff235

function ĝ. We will explain in Remark 3.18 below how almost optimal super-hedging236

strategies can be constructed explicitly even when no smooth solution exists.237

Remark 2.9 (Monotonicity in the impact function). Note that the map λ ∈238

R 7→ σ2(x)M
1−λM is non-decreasing on {λ : λM < 1}, for all (t, x,M) ∈ [0, T ]×R×R. Let239

us now write vγ̄ as vfγ̄ to emphasize its dependence on f , and consider another impact240

function f̃ satisfying the same requirements as f . We denote by vf̃γ̄ the corresponding241

super-hedging price. Then, the above considerations combined with Theorem 2.4 and242

the comparison principle of Theorem 3.11 below imply that vf̃γ̄ ≥ vfγ̄ whenever f̃ ≥ f243

on R. The same implies that vfγ̄ ≥ v in which v solves the heat-type equation244

−∂tϕ−
1

2
σ2∂2

xxϕ = 0 on [0, T )× R,245

with terminal condition ϕ(T, ·) = g (recall that ĝ ≥ g). See Section 5.2 for a numerical246

illustration of this fact.247

3. Viscosity solution characterization. In this section, we provide the proof248

of Theorem 2.4. Our strategy is the following.249

1. First, we adapt the partial differential equation smoothing technique used250

in [5] to provide a smooth supersolutions v̄ε,K,δγ̄ of (17) on [δ, T ] × R, with251

ε > 0, from which super-hedging strategies can be constructed by a standard252

verification argument. In particular, v̄ε,K,δγ̄ ≥ vγ̄ on [δ, T ]×R. Moreover, this253

sequence has a uniform linear growth and converges to a viscosity solution v̄γ̄254

of (17) as δ, ε→ 0 and K →∞. See Section 3.1.255

2. Second, we construct a lower bound vγ̄ for vγ̄ that is a supersolution of256

(17). It is obtained by considering a weak formulation of the super-hedging257

problem and following the arguments of [8, Section 5] based on one side of258

the geometric dynamic programming principle, see Section 3.2. It is shown259

that this function has linear growth as well.260

3. We can then conclude by using the above and the comparison principle for261

(17) of Theorem 3.11 below: vγ̄ ≥ v̄γ̄ but vγ̄ ≤ vγ̄ ≤ v̄γ̄ so that vγ̄ = v̄γ̄ = vγ̄262

and vγ̄ is a viscosity solution of (17), and has linear growth.263

4. Our comparison principle, Theorem 3.11 below, allows us to conclude that264

vγ̄ is the unique solution of (17) with linear growth.265

As already mentioned in the introduction, unlike [8], we could not prove the266

required geometric dynamic programming principle that should directly lead to a267

subsolution property (thus avoiding to use the smoothing technique mentioned in268

1. above). This is due to the strong interaction between the hedging strategy and the269
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underlying price process through the market impact. Such a feedback effect is not270

present in [8].271

3.1. A sequence of smooth supersolutions. We first construct a sequence272

of smooth supersolutions v̄ε,K,δγ̄ of (17) which appears to be an upper bound on the273

super-hedging price vγ̄ , by a simple verification argument. For this, we adapt the274

methodology introduced in [5]: we first construct a viscosity solution of a version of275

(17) with shaken coefficients (in the terminology of [15]) and then smooth it out with276

a kernel. The main difficulty here is that our terminal condition ĝ is unbounded,277

unlike [5]. This requires additional non trivial technical developments.278

3.1.1. Construction of a solution for the operator with shaken coeffi-
cients. We start with the construction of the operator with shaken coefficients. Given
ε > 0 and a (uniformly) strictly positive continuous map κ with linear growth, that
will be defined later on, let us introduce a family of perturbations of the operator
appearing in (17):

F εκ(t, x, q,M) := min
x′∈Dεκ(x)

min

{
−q − σ2(x′)M

2(1− f(x′)M)
, γ̄(x′)−M

}
,

where279

Dε
κ(x) := {x′ ∈ R : (x− x′)/κ(x′) ∈ [−ε, ε]}.(18)280

For ease of notation, we set

F εκ[ϕ](t, x) := F εκ(t, x, ∂tϕ(t, x), ∂2
xxϕ(t, x)),

whenever ϕ is smooth.281

Remark 3.1. For later use, note that the map M ∈ (−∞, γ̄(x)] 7→ σ2(x)M
2(1−f(x)M)282

is non-decreasing and convex, for each x ∈ R, recall (13). Hence, (q,M) ∈ R ×283

(−∞, γ̄(x)] 7→ F εκ(·, q,M) is concave and non-increasing in M , for all ε ≥ 0. This is284

fundamental for our smoothing approach to go through.285

We also modify the original terminal condition ĝ by using an approximating286

sequence whose elements are affine for large values of |x|.287

Lemma 3.2. For all K > 0 there exists a uniformly continuous map ĝK and288

xK ≥ K such that289

• ĝK is affine on [xK ,∞) and on (−∞,−xK ]290

• ĝK = ĝ on [−K,K]291

• ĝK ≥ ĝ292

• ĝK − Γ̄ is concave for any C2 function Γ̄ satisfying ∂2
xxΓ̄ = γ̄.293

Moreover, (ĝK)K>0 is uniformly bounded by a map with linear growth and converges294

to ĝ uniformly on compact sets.295

Proof. Fix a C2 function Γ̄◦ satisfying ∂2
xxΓ̄◦ = γ̄. By definition, ĝ − Γ̄◦ is concave.296

Let us consider an element ∆+ (resp. ∆−) of its super-differential at K (resp. −K).297

Set298

ĝ◦K(x) := ĝ(x)1[−K,K](x)299

+
[
ĝ(K) + (∆+ + ∂xΓ̄◦(K))(x−K)

]
1(K,∞)(x)300

+
[
ĝ(−K) + (∆− + ∂xΓ̄◦(−K))(x+K)

]
1(−∞,−K)(x).301
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10 B. BOUCHARD, G. LOEPER, AND Y. ZOU

Consider now another C2 function Γ̄ satisfying ∂2
xxΓ̄ = γ̄. Since Γ̄◦ and Γ̄ differ302

only by an affine map, the concavity of ĝ◦K − Γ̄ is equivalent to that of ĝ◦K − Γ̄◦.303

The concavity of the latter follows from the definition of ĝ◦K , as the superdiffential304

of ĝ◦K − Γ̄◦ is non-increasing by construction. In particular, ĝ◦K − Γ̄◦ ≥ ĝ − Γ̄◦ and305

therefore ĝ◦K ≥ ĝ.306

We finally define ĝK by307

ĝK = min{ĝ◦K , (2c0 + c1| · | − Γ̄◦)conc + Γ̄◦},(19)308

with c0 > 0 and c1 ≥ 0 such that

−c0 ≤ ĝ(x) ≤ c0 + c1|x|, x ∈ R,

recall Remark 2.6. The function ĝK has the same linear growth as 2c0 + c1| · |, by309

the same reasoning as in Remark 2.6. Since 2c0 > c0, ĝK = ĝ◦K = ĝ on [−K,K].310

Furthermore, as the minimum of two concave functions is concave, so is ĝK − Γ̄ for311

any C2 function Γ̄ satisfying ∂2
xxΓ̄ = γ̄. The other assertions are immediate. �312

313

We now set314

ĝεK := ĝK + ε(20)315

and consider the equation316

F εκ[ϕ]1[0,T ) + (ϕ− ĝεK)1{T} = 0.(21)317

We then choose κ and ε◦ ∈ (0, 1) such that318

κ ∈ C∞ with bounded derivatives of all orders,
inf κ > 0 and κ = |ĝK |+ 1 on (−∞,−xK ] ∪ [xK ,∞),

−1/ε◦ < ∂xκ < 1/ε◦,
(22)319

in which xK ≥ K is defined in Lemma 3.2. We omit the dependence of κ on K for320

ease of notations.321

Remark 3.3. For later use, note that the condition |∂xκ| < 1/ε◦ ensures that322

the map x 7→ x + εκ(x) and x 7→ x − εκ(x) are uniformly strictly increasing for all323

0 ≤ ε ≤ ε◦. Also observe that xn → x and x′n ∈ Dε
κ(xn), for all n, imply that324

x′n converges to an element x′ ∈ Dε
κ(x), after possibly passing to a subsequence. In325

particular, F εκ is continuous.326

When κ ≡ 1 and ĝεK ≡ ĝ + ε, (21) corresponds to the operator in (17) with327

shaken coefficients, in the traditional terminology of [15]. The function κ will be used328

below to handle the potential linear growth at infinity of ĝ. The introduction of the329

additional approximation ĝεK is motivated by the fact that the proof of Proposition 3.7330

below requires an affine behavior at infinity. As already mentioned, these additional331

complications do not appear in [5] because their terminal condition is bounded.332

We now prove that (21) admits a viscosity solution that remains above the ter-333

minal condition ĝ on a small time interval [T − cKε , T ]. As already mentioned, we334

will later smooth this solution out with a regular kernel, so as to provide a smooth335

supersolution of (17).336

Proposition 3.4. For all ε ∈ [0, ε◦] and K > 0, there exists a unique continuous337

viscosity solution v̄ε,Kγ̄ of (21) that has linear growth. It satisfies338

v̄ε,Kγ̄ ≥ ĝK + ε/2, on [T − cKε , T ]× R,(23)339
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for some cKε ∈ (0, T ).340

Moreover, {[v̄ε,Kγ̄ ]+, ε ∈ [0, ε◦],K > 0} is bounded by a map with linear growth, and341

{[v̄ε,Kγ̄ ]−, ε ∈ [0, ε◦],K > 0} is bounded by sup g−.342

Proof. The proof is mainly a modification of the usual Perron’s method, see [10,343

Section 4].344

a. We first prove that there exists two continuous functions w̄ and w with linear345

growth that are respectively super- and subsolution of (21) for any ε ∈ [0, ε◦].346

Since ĝεK = ĝK + ε ≥ g by Lemma 3.2, it suffices to set

w := inf g > −∞,

see (16). To construct a supersolution w̄, let us fix η ∈ (0, ι ∧ inf f−1) with ι as in
(13), set Γ̃(x) = ηx2/2 and define g̃ = (ĝε◦K − Γ̃)conc + Γ̃. Then, g̃ ≥ ĝε◦K , while the
same reasoning as in Remark 2.6 implies that g̃ shares the same linear growth as ĝε◦K ,
see (20) and Lemma 3.2. We then define w̄ by

w̄(t, x) = g̃(x) + 1 + (T − t)A

in which

A := sup
σ2γ̄

2(1− fγ̄)
.

The constant A is finite, and w̄ has the same linear growth as g̃, see (1)-(13). Since
a concave function is a viscosity supersolution of −∂2

xxϕ ≥ 0, we deduce that g̃ is a
viscosity supersolution of η − ∂2

xxϕ ≥ 0. Then, w̄ is a viscosity supersolution of

min
{
−∂tϕ−A , η − ∂2

xxϕ
}
≥ 0.

Since γ̄ ≥ ι ≥ η, it remains to use Remark 3.1 to conclude that w̄ is a supersolution347

of (21).348

b. We now express (21) as a single equation over the whole domain [0, T ]× R using349

the following definitions350

F ε,Kκ,+ (t, x, r, q,M) := F εκ(t, x, q,M)1[0,T ) + max
{
F εκ(t, x, q,M), r − ĝεK(x)

}
1{T}351

F ε,Kκ,− (t, x, r, q,M) := F εκ(t, x, q,M)1[0,T ) + min
{
F εκ(t, x, q,M), r − ĝεK(x)

}
1{T}.352

As usual F ε,Kκ,± [ϕ](t, x) := F ε,Kκ,± (t, x, ϕ(t, x), ∂tϕ(t, x), ∂2
xxϕ(t, x)). Recall that the for-

mulations in terms of F ε,Kκ,± lead to the same viscosity solutions as (21) (see Lemma
6.1 in the Appendix). This is the formulation to which we apply Perron’s method.

In view of a., the functions w and w̄ are sub- and supersolution of F ε,Kκ,− = 0 and

F ε,Kκ,+ = 0. Define:

v̄ε,Kγ̄ := sup{v ∈ USC : w ≤ v ≤ w̄ and v is a subsolution of F ε,Kκ,− = 0},

in which USC denotes the class of upper-semicontinuous maps. Then, the upper-
(resp. lower-)semicontinuous envelope (v̄ε,Kγ̄ )∗ (resp. (v̄ε,Kγ̄ )∗) of v̄ε,Kγ̄ is a viscosity

subsolution of F ε,Kκ,− [ϕ] = 0 (resp. supersolution of F ε,Kκ,+ [ϕ] = 0) with linear growth,
recall the continuity property of Remark 3.3 and see e.g. [10, Section 4]. The com-
parison result of Theorem 3.11 stated below implies that

(v̄ε,Kγ̄ )∗ = (v̄ε,Kγ̄ )∗, on [0, T ]× R.
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12 B. BOUCHARD, G. LOEPER, AND Y. ZOU

Hence, v̄ε,Kγ̄ is a continuous viscosity solution of (21), recall Lemma 6.1. By con-353

struction, it has linear growth. Uniqueness in this class follows from Theorem 3.11354

again.355

c. It remains to prove (23). For this, we need a control on the behavior of v̄ε,Kγ̄ as
t → T . It is enough to obtain it for a lower bound vε,K that we first construct. Let
ϕ be a test function such that

(strict) min
[0,T )×R

(v̄ε,Kγ̄ − ϕ) = (v̄ε,Kγ̄ − ϕ)(t0, x0)

for some (t0, x0) ∈ [0, T )× R. By the supersolution property,

min
x′∈Dεκ(x0)

{γ̄(x′)− ∂2
xxϕ(t0, x0)} ≥ 0.

Recalling (1) and (13), this implies that, for x′ ∈ Dε
κ(x0),

1− f(x′)∂2
xxϕ(t0, x0) ≥ ιf(x′) ≥ ι inf f =: ι̃ > 0.

Using the supersolution property and the above inequalities yields356

0 ≤ min
x′∈Dεκ(x0)

{
−∂tϕ(t0, x0)− σ2(x′)∂2

xxϕ(t0, x0)

2(1− f(x′)∂2
xxϕ(t0, x0))

}
357

≤ min
x′∈Dεκ(x0)

{
−∂tϕ(t0, x0)−

σ2(x′)
[
∂2
xxϕ(t0, x0)− γ̄(x0)

]
2(1− f(x′)∂2

xxϕ(t0, x0))

}
358

≤ −∂tϕ(t0, x0)− σ̃2∂2
xxϕ(t0, x0)

2ι̃
+
σ̃2γ̄(x0)

2ι̃
359

where σ̃ := supσ.360

Denote by vε,K the unique viscosity solution of361 {
−∂tϕ−

σ̃2∂2
xxϕ

2ι̃
+
σ̃2γ̄

2ι̃

}
1[0,T ) + (ϕ− ĝεK)1{T} = 0.(24)362

The comparison principle for (24) and the Feynman-Kac formula imply that363

v̄ε,Kγ̄ (t, x) ≥ vε,K(t, x) = E

[
−
∫ T−t

0

σ̃2γ̄(Sxr )

2ι̃
dr + ĝεK(SxT−t)

]
364

where

Sx = x+
σ̃√
ι̃
W.

It remains to show that (23) holds for vε,K in place of v̄ε,Kγ̄ . The argument is
standard. Since ĝK is uniformly continuous, see Lemma 3.2, we can find BKε > 0 such
that ∣∣ĝεK(SxT−t)− ĝεK(x)

∣∣1{|SxT−t−x|≤BKε } ≤ ε
for all ε > 0. We now consider the case |SxT−t−x| > BKε . Let C > 0 denote a generic
constant that does not depend on (t, x) but can change from line to line. Because ĝK
is affine on [xK ,∞) and on (−∞,−xK ], see Lemma 3.2,

E
[∣∣ĝεK(SxT−t)− ĝεK(x)

∣∣1{SxT−t≥xK}] ≤ C(T − t) 1
2 if x ≥ xK ,
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and
E
[∣∣ĝεK(SxT−t)− ĝεK(x)

∣∣1{SxT−t≤−xK}] ≤ C(T − t) 1
2 if x ≤ −xK .

On the other hand, by linear growth of ĝεK , if x < xK , then365

E
[∣∣ĝεK(SxT−t)− ĝεK(x)

∣∣1{SxT−t≥xK}1{|SxT−t−x|≥BKε }]366

≤ E
[∣∣ĝεK(SxT−t)− ĝεK(x)

∣∣2] 1
2 P
[
|SxT−t − x| ≥ |xK − x| ∨BKε

] 1
2

367

≤ C (1 + |x|)(T − t) 1
2

|xK − x| ∨BKε
≤ C

BKε
(T − t) 1

2 .368

The (four) remaining cases are treated similarly, and we obtain

E
[∣∣ĝεK(SxT−t)− ĝεK(x)

∣∣] ≤ C

BKε
(T − t) 1

2 + ε.

Since γ̄ is bounded, this shows that

|vε,K(t, x)− ĝεK(x)| ≤ C

BKε
(T − t) 1

2 + ε

for t ∈ [T −1, T ]. Hence the required result for vε,K . Since v̄ε,Kγ̄ ≥ vε,K , this concludes369

the proof of (23). �370

371

For later use, note that, by stability, v̄ε,Kγ̄ converges to a solution of (17) when372

ε→ 0 and K →∞.373

Proposition 3.5. As ε → 0 and K → ∞, v̄ε,Kγ̄ converges to a function v̄γ̄ that374

is the unique viscosity solution of (17) with linear growth.375

Proof. The family of functions {v̄ε,Kγ̄ , ε ∈ (0, ε◦],K > 0} is uniformly bounded by376

a map with linear growth, see Proposition 3.4. In view of the comparison result of377

Theorem 3.11 below, it suffices to apply [2, Theorem 4.1]. �378

Remark 3.6. The bounds on v̄γ̄ can be made explicit, which can be useful to
design a numerical scheme, see Section 5.1 below. First, as a by-product of the proof
of Proposition 3.4, v̄ε,Kγ̄ ≥ inf g. Passing to the limit as ε→ 0 and K →∞ leads to

v̄γ̄ ≥ inf g =: w.

We have also obtained that

v̄ε,Kγ̄ ≤ (ĝε◦K − Γ̃)conc + Γ̃ + 1 +A

in which x 7→ Γ̃(x) = ηx2/2 for some η ∈ (0, ι ∧ inf f−1) with ι as in (13), and
A := T sup(σ2γ̄/[2(1− fγ̄)]). On the other hand, (19) implies

ĝε◦K ≤ 1 + (2c0 + c1| · | − Γ̄◦)conc + Γ̄◦

for Γ̄◦ such that ∂2
xxΓ̄◦ = γ̄. Then,379

v̄ε,Kγ̄ ≤
(

1 + (2c0 + c1| · | − Γ̄◦)conc + Γ̄◦ − Γ̃
)conc

+ Γ̃ + 1 +A380

≤
(

1 + (2c0 + c1| · | − Γ̃)conc + Γ̃− Γ̃
)conc

+ Γ̃ + 1 +A381

=
(

1 + 2c0 + c1| · | − Γ̃
)conc

+ Γ̃ + 1 +A =: w̄382
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14 B. BOUCHARD, G. LOEPER, AND Y. ZOU

and
v̄γ̄ ≤ w̄.

The function w̄ defined above can be computed explicitly by arguing as in Remark 2.6.383

Also note that (19) and the arguments of Remark 2.6 imply that there exists a384

constant C > 0 such that385

lim sup
|x|→∞

|v̄ε,Kγ̄ (x)|/(1 + |ĝK(x)|) ≤ C, for all ε ∈ [0, ε◦] and K > 0.(25)386

3.1.2. Regularization and verification. Prior to applying our verification387

argument, it remains to smooth out the function v̄ε,Kγ̄ . This is similar to [5, Section388

3], but here again the fact that ĝ may not be bounded incurs additional difficulties.389

In particular, we need to use a kernel with a space dependent window.390

We first fix a smooth kernel

ψδ := δ−2ψ(·/δ)

in which δ > 0 and ψ ∈ C∞b is a non-negative function with the closure of its support391

[−1, 0]× [−1, 1] that integrates to 1, and such that392 ∫
yψ(·, y)dy = 0.(26)393

Let us set394

v̄ε,K,δγ̄ (t, x) :=

∫
R×R

v̄ε,Kγ̄ ([t′]+, x′)
1

κ(x)
ψδ

(
t′ − t, x

′ − x
κ(x)

)
dt′dx′.(27)395

We recall that κ enters into the definition of F εκ and satisfies (22).396

The following shows that v̄ε,K,δγ̄ is a smooth supersolution of (17) with a space397

gradient admitting bounded derivatives. This is due to the space dependent rescaling398

of the window by κ and will be crucial for our verification arguments.399

Proposition 3.7. For all 0 < ε < ε◦ and K > 0 large enough, there exists δ◦ > 0400

such that v̄ε,K,δγ̄ is a C∞ supersolution of (17) for all 0 < δ < δ◦. It has linear growth401

and ∂xv̄ε,K,δγ̄ has bounded derivatives of any order.402

Proof. a. It follows from (22) and (25) that403

lim sup
|x|→∞

|v̄ε,Kγ̄ (x)|/(1 + |κ(x)|) <∞.404

Direct computations and (22) then show that v̄ε,K,δγ̄ has linear growth and that all

derivatives of ∂xv̄ε,K,δγ̄ are uniformly bounded.
b. We now prove the supersolution property inside the parabolic domain. Since the
proof is very close to that of [5, Theorem 3.3], we only provide the arguments that
require to be adapted, and refer to their proof for other elementary details. Fix ` > 0
and set

v`(t, x) := v̄ε,K,δγ̄ (t, (−`) ∨ x ∧ `).

We omit the superscripts that are superfluous in this proof. Given k ≥ 1, set

v`,k(z) := inf
z′∈[0,T ]×R

(
v`(z

′) + k|z − z′|2
)
.
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Since v` is bounded and continuous, the infimum in the above is achieved by a point405

ẑ`,k(z) = (t̂`,k(z), x̂`,k(z)), and v`,k is bounded, uniformly in k ≥ 1. This implies that406

we can find C` > 0, independent of k, such that407

|z − ẑ`,k(z)|2 ≤ C`/k =: (ρ`,k)2.(28)408

Moreover, a simple change of variables argument shows that, if ϕ is a smooth function
such that v`,k − ϕ achieves a minimum at z ∈ [0, T )× (−`, `), then

(∂tϕ, ∂xϕ, ∂
2
xxϕ)(z) ∈ P̄−v`(ẑ`,k(z)),

where P̄−v`(ẑ`,k(z)) denotes the closed parabolic subjet of v` at ẑ`,k(z); see e.g. [10]409

for the definition. Then, Proposition 3.4 implies that v`,k is a supersolution of410

min
x′∈Dεκ(x̂`,k(z))

min

{
−∂tϕ(z)− σ2(x′)∂2

xxϕ(z)

2(1− f(x′)∂2
xxϕ(z))

, γ̄(x′)− ∂2
xxϕ(z)

}
≥ 0,411

z ∈ [ρ`,k, T − ρ`,k)× (−`+ ρ`,k, `− ρ`,k). We next deduce from (28) that x′ ∈ Dε/2
κ (x)412

implies413

− ε
2
κ(x′)− C`/k

1
2 ≤ x̂`,k(t, x)− x′ ≤ ε

2
κ(x′) + C`/k

1
2 .414

Since inf κ > 0, this shows that x′ ∈ Dε
κ(x̂`,k(t, x)) for k large enough with respect to415

`. Hence, v`,k is a supersolution of416

min
x′∈Dε/2κ

min

{
−∂tϕ−

σ2(x′)∂2
xxϕ

2(1− f(x′)∂2
xxϕ)

, γ̄(x′)− ∂2
xxϕ

}
≥ 0417

on [ρ`,k, T − ρ`,k)× (−`+ ρ`,k, `− ρ`,k).418

We now argue as in [13]. Since v`,k is semi-concave, there exist ∂2,abs
xx v`,k ∈ L1

and a Lebesgue-singular negative Radon measure ∂2,sing
xx v`,k such that

∂2
xxv`,k(dz) = ∂2,abs

xx v`,k(z)dz + ∂2,sing
xx v`,k(dz) in the distribution sense

and

(∂tv`,k, ∂xv`,k, ∂
2,abs
xx v`,k) ∈ P̄−v`,k a.e. on [ρk, T − ρk]× (−`+ ρ`,k, `− ρ`,k),

see [14, Section 3]. Hence, the above implies that419

min
x′∈Dε/2κ

min

{
−∂tv`,k −

σ2(x′)∂2,abs
xx v`,k

2(1− f(x′)∂2,abs
xx v`,k)

, γ̄(x′)− ∂2,abs
xx v`,k

}
≥ 0420

a.e. on [ρ`,k, T − ρ`,k)× (−`+ ρ`,k, `− ρ`,k), or equivalently, by (18),421

min

{
−∂tv`,k −

σ2(x)∂2,abs
xx v`,k

2(1− f(x)∂2,abs
xx v`,k)

, γ̄(x)− ∂2,abs
xx v`,k

}
(t′, x′) ≥ 0422

for all x and for a.e. (t′, x′) ∈ [ρ`,k, T −ρ`,k)× (−`+ρ`,k, `−ρ`,k) such that 2|x′−x| ≤423

εκ(x). Take 0 < δ < ε/2. Integrating the previous inequality with respect to (t′, x′)424
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with the kernel function ψδ(·, ·/κ)/κ, using the concavity and monotonicity property425

of Remark 3.1 and the fact that ∂2,sing
xx v`,k is non-positive, we obtain426

(29) min

{
−∂tvδ`,k −

σ2∂2
xxv

δ
`,k

2(1− f∂2
xxv

δ
`,k)

, γ̄ − ∂2
xxv

δ
`,k

}
≥ 0427

on [ρ`,k + δ, T − ρ`,k)× (−x−`,k, x
+
`,k), in which

vδ`,k(t, x) :=

∫
R×R

v`,k([t′]+, x′)
1

κ(x)
ψδ

(
t′ − ·, x

′ − ·
κ(x)

)
dt′dx′

and

x+
`,k +

δ

2
κ(x+

`,k) = `− ρ`,k and − x−`,k −
δ

2
κ(−x−`,k) = −`+ ρ`,k.

The above are well defined, see Remark 3.3. By Remark 3.3 and (28), ±x±`,k → ±∞428

and ρ`,k → 0 as k → ∞ and then ` → ∞. Moreover, vδ`,k → v̄ε,K,δγ̄ as k → ∞ and429

then ` → ∞, and the derivatives also converge. Hence, (29) implies that v̄ε,K,δγ̄ is a430

supersolution of (17) on [δ, T )× R.431

c. We conclude by discussing the boundary condition at T . We know from Proposition432

3.4 that433

v̄ε,Kγ̄ ≥ ĝK + ε/2, on [T − cKε , T ]× R.434

Since ĝ is uniformly continuous, see (16), so is ĝK , and therefore v̄ε,K,δγ̄ (T, ·) ≥ ĝK on
the compact set [−2xK , 2xK ] for δ > 0 small enough with respect to ε, see Lemma
3.2 for the definition of xK ≥ K. Now observe that x ≥ 2xK and |x′ − x| ≤ δκ(x)
imply that x′ ≥ 2xK(1− δcK1 )− δcK0 in which cK1 and cK0 are constants. This actually
follows from the affine behavior of κ on [xK ,∞), see (22) and Lemma 3.2. For δ
small enough, we then obtain x′ ≥ xK . Since ĝK is affine on [xK ,∞), and since ψ is
symmetric in its second argument, see (26), it follows that

v̄ε,K,δγ̄ (T, x) ≥
∫
R×R

ĝK(x′)
1

κ(x)
ψδ

(
t′ − T, x

′ − x
κ(x)

)
dt′dx′ = ĝK(x)

for all x ≥ 2xK . This also holds for x ≤ −2xK , by the same arguments. �435

436

We can now use a verification argument and provide the main result of this section.437

Theorem 3.8. Let v̄γ̄ be defined as in Proposition 3.5. It has linear growth.438

Moreover, v̄γ̄ ≥ vγ̄ on [0, T ]× R.439

Proof. The linear growth property has already been stated in Proposition 3.5. We440

now show that v̄γ̄ ≥ vγ̄ by applying a verification argument to v̄ε,K,δγ̄ . From now441

on 0 < ε ≤ ε◦ in which ε◦ is as in (22). The parameters K, δ > 0 are chosen as in442

Proposition 3.7.443

Fix (t, x) ∈ (0, T )×R and δ ∈ (0, t∧ ε). Let (X,Y, V ) be defined as in (6)-(2)-(7)444

with (x, ∂xv̄ε,K,δγ̄ (t, x), v̄ε,K,δγ̄ (t, x) − ∂xv̄ε,K,δγ̄ (t, x)x) as initial condition at t, and for445

the Markovian controls446

â =

(
σ∂2

xxv̄ε,K,δγ̄

1− f∂2
xxv̄ε,K,δγ̄

)
(·, X)447

b̂ =

(
∂2
txv̄ε,K,δγ̄ + ∂2

xxv̄ε,K,δγ̄ (µ+ âσf ′) + 1
2∂

3
xxxv̄ε,K,δγ̄ (σ + âf)2

1− f∂2
xxv̄ε,K,δγ̄

)
(·, X).448
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By definition of F , (13) and (1), the above is well-defined as the denominators are449

always bigger than inf fι > 0. All the involved functions being bounded and Lipschitz,450

see Proposition 3.7, it is easy to check that a solution to the corresponding stochastic451

differential equation exists, and that (â, b̂) ∈ A◦. Direct computations then show that452

Y = ∂xv̄ε,K,δγ̄ (·, X). Moreover, the fact that v̄ε,K,δγ̄ is a supersolution of F [ϕ] = 0 on453

[t, T ]× R ensures that the gamma constraint (12) holds, for some k ≥ 1, and that454

−∂tv̄ε,K,δγ̄ (·, X)− 1

2
σ(X)â ≥ 0 on [t, T ).455

The last inequality combined with the definition of â implies456

1

2
f(X)â2 ≥ ∂tv̄ε,K,δγ̄ (·, X) +

1

2
(σ(X) + f(X)â)â457

= ∂tv̄
ε,K,δ
γ̄ (·, X) +

1

2
(σâX(X))2∂2

xxv̄ε,K,δγ̄ (·, X) on [t, T ).458

Hence,459

VT = v̄ε,K,δγ̄ (t, x) +
1

2

∫ T

t

f(Xu)â2
u du+

∫ T

t

∂xv̄ε,K,δγ̄ (u,Xu) dXu460

≥ v̄ε,K,δγ̄ (t, x) +

∫ T

t

dv̄ε,K,δγ̄ (u,Xu)461

= v̄ε,K,δγ̄ (T,XT ) ≥ g(XT ),462

in which the last inequality follows from Proposition 3.7 again.463

It remains to pass to the limit δ, ε→ 0. By Proposition 3.4, v̄ε,Kγ̄ is continuous, so464

that v̄ε,K,δγ̄ converges pointwise to v̄ε,Kγ̄ as δ → 0. By Proposition 3.5, v̄ε,Kγ̄ converges465

pointwise to v̄γ̄ as ε→ 0 and K →∞. In view of the above this implies the required466

result: v̄γ̄ ≥ vγ̄ . �467

Remark 3.9. Note that, in the above proof, we have constructed a super-hedging468

strategy in Ak,γ̄(t, x) and starting with |Yt| ≤ k, for some k ≥ 1 which can be chosen469

in a uniform way with respect to (t, x), while v̄ε,K,δγ̄ has linear growth.470

3.1.3. Comparison principle. We provide here the comparison principle that471

was used several times in the above. Before stating it, let us make the following472

observation, based on direct computations. Recall (1) and (13).473

Proposition 3.10. Fix ρ > 0. Consider the map

(t, x,M) ∈ [0, T ]× R× R 7→ Ψ(t, x,M) =
σ2(x)M

2(eρt − f(x)M)
.

Then, M 7→ Ψ(t, x,M) is continuous, uniformly in (t, x), on

O := {(t, x,M) ∈ [0, T ]× R× R : M ≤ eρtγ̄(x)}.

Moreover, there exists L > 0 such that x 7→ Ψ(t, x,M) is L-Lipschitz on O.474

Theorem 3.11. Fix ε ∈ [0, ε◦]. Let U (resp. V ) be a upper semicontinuous vis-475

cosity subsolution (resp. lower semicontinuous supersolution) of F εκ = 0 on [0, T )×R.476

Assume that U and V have linear growth and that U ≤ V on {T} × R, then U ≤ V477

on [0, T ]× R.478

This manuscript is for review purposes only.



18 B. BOUCHARD, G. LOEPER, AND Y. ZOU

Proof. Set Û(t, x) := eρtU(t, x), V̂ (t, x) := eρtV (t, x). Then, Û and V̂ are respec-479

tively sub- and supersolution of480

min
x′∈Dεκ

min

{
ρϕ− ∂tϕ−

σ2(x′)∂xxϕ

2(eρt − f(x′)∂xxϕ)
, eρtγ̄(x′)− ∂xxϕ

}
= 0(30)481

on [0, T )× R. For later use, note that the infimum over Dε
κ is achieved in the above,482

by the continuity of the involved functions.483

If sup[0,T ]×R(Û−V̂ ) > 0, then we can find λ ∈ (0, 1) such that sup[0,T ]×R(Û−V̂λ) >

0 with V̂λ := λV̂ + (1− λ)w, in which

w(t, x) := (T − t)A+ (cU0 + cU1 | · | −
ι

4
| · |2)conc(x) +

ι

4
|x|2

with cU0 , c
U
1 two constants such that eρT |U | ≤ cU0 + cU1 | · | and

A :=
1

2
sup

σ2

1− ι
2f

ι

2
,

where ι > 0 is as in (13). Note that484

V̂λ(T, ·) ≥ Û(T, ·),(31)485

and that486

w is a viscosity supersolution of (30)

V̂λ is a viscosity supersolution of λγ̄ + (1− λ) ι2 − ∂
2
xxϕ ≥ 0.

(32)487

Moreover, by Remark 3.1, V̂λ is a supersolution of (30). Define for ε > 0 and n ≥ 1488

(33) Θε
n := sup

(t,x,y)∈[0,T ]×R2

[
Û(t, x)− V̂λ(t, y)−

(ε
2
|x|2 +

n

2
|x− y|2

) ]
=: η > 0,489

in which the last inequality holds for n > 0 large enough and ε > 0 small enough.490

Denote by (tεn, x
ε
n, y

ε
n) the point at which this supremum is achieved. By (31), it must491

hold that tεn < T , and, by standard arguments, see e.g., [10, Proposition 3.7],492

lim
n→∞

n|xεn − yεn|2 = 0.(34)493

Moreover, Ishii’s lemma implies the existence of (aεn,M
ε
n, N

ε
n) ∈ R3 such that494

(aεn, εx
ε + n(xεn − yεn),Mε

n) ∈ P̄2,+Û(tεn, x
ε
n)495

(aεn,−n(xεn − yεn), Nε
n) ∈ P̄2,−V̂λ(tεn, y

ε
n),496

in which P̄2,+ and P̄2,− denote as usual the closed parabolic super- and subjets, see497

[10], and498 (
Mε
n 0

0 −Nε
n

)
≤ Rεn +

1

n
(Rεn)2 = 3n

(
1 −1
−1 1

)
+

(
3ε+ ε2

n −ε
−ε 0

)
499

with500

Rεn := n

(
1 + ε

n −1
−1 1

)
.501
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In particular,502

Mε
n −Nε

n ≤ δεn with δεn := ε+
ε2

n
.(35)503

Then, by (32) and (13),504

0 < (1− λ)
ι

2
≤ eρt

ε
n γ̄(ŷεn)−Nε

n ≤ eρt
ε
n γ̄(ŷεn)−Mε

n + δεn,(36)505

in which ŷεn ∈ Dε
κ(yεn). In view of Remark 3.3, this shows that eρt

ε
n γ̄(x̂εn) −Mε

n > 0506

for some x̂εn ∈ Dε
κ(xεn), for n large enough and ε small enough, recall (34). Hence,507

the super- and subsolution properties of V̂λ and Û imply that we can find uεn ∈ [−ε, ε]508

together with ŷεn and x̂εn such that509

ŷεn + uεnκ(ŷεn) = yεn , x̂
ε
n + uεnκ(x̂εn) = xεn(37)

None

510

and511

ρ(Û(tεn, x
ε
n)− V̂λ(tεn, y

ε
n)) ≤ σ2(x̂εn)Mε

n

2(eρt
ε
n − f(x̂εn)Mε

n)
− σ2(ŷεn)Nε

n

2(eρt
ε
n − f(ŷεn)Nε

n)
.512

By Remark 3.1 and (35), this shows that513

ρ(Û(tεn, x
ε
n)− V̂λ(tεn, y

ε
n))514

≤ σ2(x̂εn)(Nε
n + δεn)

2(eρt
ε
n − f(x̂εn)(Nε

n + δεn))
− σ2(ŷεn)Nε

n

2(eρt
ε
n − f(ŷεn)Nε

n)
.515

It remains to apply Proposition 3.10 together with (36) for n large enough and ε small516

enough to obtain517

ρ(Û(tεn, x
ε
n)− V̂λ(tεn, y

ε
n))518

≤ σ2(x̂εn)Nε
n

2(eρt
ε
n − f(x̂εn)Nε

n)
− σ2(ŷεn)Nε

n

2(eρt
ε
n − f(ŷεn)Nε

n)
+Oεn(1)519

≤ L |x̂εn − ŷεn|+Oεn(1)520

for some L > 0 and where Oεn(1)→ 0 as n→∞ and then ε→ 0. By continuity and521

(34) combined with Remark 3.3 and (37), this contradicts (33) for n large enough. �522

3.2. Supersolution property for the weak formulation. In this part, we523

provide a lower bound vγ̄ for vγ̄ that is a supersolution of (17). It is constructed524

by considering a weak formulation of the stochastic target problem (14) in the spirit525

of [8, Section 5]. Since our methodology is slightly different, we provide the main526

arguments.527

On C(R+)5, let us now denote by (ζ̃ := (ã, b̃, α̃, β̃), W̃ ) the coordinate process528

and let F̃◦ = (F̃◦s )s≤T be its raw filtration. We say that a probability measure P̃529

belongs to Ãk if W̃ is a P̃-Brownian motion and if for all 0 ≤ δ ≤ 1 and r ≥ 0 it holds530

P̃-a.s. that531

ã = ã0 +

∫ ·
0

β̃sds+

∫ ·
0

α̃sdW̃s for some ã0 ∈ R,(38)532

533

sup
R+

|ζ̃| ≤ k ,(39)534
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20 B. BOUCHARD, G. LOEPER, AND Y. ZOU

and535

EP̃
[
sup

{
|ζ̃s′ − ζ̃s|, r ≤ s ≤ s′ ≤ s+ δ

}
|F̃◦r
]
≤ kδ.(40)536

For φ̃ := (y, ã, b̃), y ∈ R, we define (X̃x,φ̃, Ỹ φ̃, Ṽ x,v,φ̃) as in (6)-(2)-(7) associated to537

the control (ã, b̃) with time-0 initial condition (x, y, v), and with W̃ in place of W .538

For t ≤ T and k ≥ 1, we say that P̃ ∈ G̃k,γ̄(t, x, v, y) if539

(41)
[
Ṽ x,v,φ̃T−t ≥ g(X̃x,φ̃

T−t) and − k ≤ γãY (X̃x,φ̃) ≤ γ̄(X̃x,φ̃) on R+

]
P̃− a.s.540

We finally define541

vkγ̄(t, x) := inf{v = c+ yx : (c, y) ∈ R× [−k, k] s.t. Ãk ∩ G̃k,γ̄(t, x, v, y) 6= ∅},542

and543

(42) vγ̄(t, x) := lim inf
(k, t′, x′) → (∞, t, x)
(t′, x′) ∈ [0, T ) × R

vkγ̄(t′, x′), (t, x) ∈ [0, T ]× R.544

The following is an immediate consequence of our definitions.545

Proposition 3.12. vγ̄ ≥ vγ̄ on [0, T )× R.546

In the rest of this section, we show that vγ̄ is a viscosity supersolution of (17).547

We start with an easy remark.548

Remark 3.13. Observe that the gamma constraint in (41) implies that we can
find ε > 0 such that

ε

1 + kε−1
≤ σãX(X̃x,φ̃) ≤ ε−1 + ε−2 and |ã| ≤ ε−1 P̃− a.s.,

for all P̃ ∈ Ãk ∩ G̃k,γ̄(t, x, v, y) and k ≥ 1. Indeed, if ã ≥ −σ/f then −k ≤ γãY ≤ γ̄549

implies550

(− kσ

1 + kf
) ∨ (−σ

f
) ≤ ã ≤ γ̄σ

1− γ̄f
and ãf + σ ≥ σ/(1 + kf).551

Then our claim follows from (1)-(13). On the other hand, if σ+ ãf < 0, then γãY ≤ γ̄552

implies ã ≥ γ̄σ/(1− fγ̄) ≥ 0, see (13), while ã < −f/σ < 0, a contradiction.553

We then show that vkγ̄ has linear growth, for k large enough.554

Proposition 3.14. There exists ko ≥ 1 such that {|vkγ̄ |, k ≥ ko} is uniformly555

bounded from above by a continuous map with linear growth.556

Proof. a. First note that Remark 3.9 implies that {(vkγ̄)+, k ≥ ko} is uniformly557

bounded from above by a map with linear growth, for some ko large enough.558

b. Let us now fix P̃ ∈ Ãk ∩ G̃k,γ̄(t, x, v, y). Using Remark 3.13 combined with (1)559

and the condition that (ã, b̃, α̃, β̃) is P̃-essentially bounded, one can find P̌ ∼ P̃ un-560

der which
∫ ·

0
Ỹ φ̃s dX̃

x,φ̃
s is a martingale on [0, T − t]. Then, the condition Ṽ x,v,φ̃T−t ≥561

g(X̃x,φ̃
T−t) P̃-a.s. implies v + EP̌[ 1

2

∫ T−t
0

ã2
sf(X̃x,φ̃

s )ds] ≥ inf g > −∞, recall (16). By562

Remark 3.13 and (1), v ≥ inf g − C > −∞, for some constant C independent of563

P̃ ∈ ∪k(Ãk ∩ G̃k,γ̄(t, x, v, y)). Hence {(vkγ̄)−, k ≥ ko} is bounded by a constant. �564

565

We now prove that existence holds in the problem defining vkγ̄ and that it is566

lower-semicontinuous.567
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Proposition 3.15. For all (t, x) ∈ [0, T ]×R and k ≥ 1 large enough, there exists568

(c, y) ∈ R×[−k, k] such that vkγ̄(t, x) = c+yx and Ãk∩G̃k,γ̄(t, c+xy, y) 6= ∅. Moreover,569

vkγ̄ is lower-semicontinuous for each k ≥ 1 large enough.570

Proof. By [19, Proposition XIII.1.5] and the condition (40) taken for r = 0, the571

set Ãk is weakly relatively compact. Moreover, [16, Theorem 7.10 and Theorem572

8.1] implies that any limit point (P∗, t∗, x∗, c∗, y∗) of a sequence (Pn, tn, xn, cn, yn)n≥1573

such that Pn ∈ Ãk ∩ G̃k,γ̄(tn, xn, cn + xnyn, yn) for each n ≥ 1 satisfies P∗ ∈ Ãk ∩574

G̃k,γ̄(t∗, x∗, c∗ + x∗y∗, y∗). Since vkγ̄ is locally bounded, by Proposition 3.14 when575

k ≥ ko, the announced existence and lower-semicontinuity readily follow. �576

577

We can finally prove the main result of this section.578

Theorem 3.16. The function vγ̄ is a viscosity supersolution of (17). It has linear579

growth.580

Proof. The linear growth property is an immediate consequence of the uniform581

linear growth of {|vkγ̄ |, k ≥ ko} stated in Proposition 3.14. To prove the supersolution582

property, it suffices to show that it holds for each vkγ̄ , with k ≥ ko, and then to apply583

standard stability results, see e.g. [2].584

a. We first prove the supersolution property on [0, T )× R. We adapt the arguments
of [8] to our context. Let us consider a C∞b test function ϕ and (t0, x0) ∈ [0, T ) × R
such that

(strict) min
[0,T )×R

(vkγ̄ − ϕ) = (vkγ̄ − ϕ)(t0, x0) = 0.

Recall that vkγ̄ is lower-semicontinuous by Proposition 3.15.585

Because the infimum is achieved in the definition of vkγ̄ , by the afore-mentioned

proposition, there exists |y0| ≤ k and P̃ ∈ Ãk ∩ G̃k(t0, x0, v0, y0), such that v0 :=

c0 + y0x0 = vkγ̄(t0, x0) for some c0 ∈ R. Let us set (X̃, Ỹ , Ṽ ) := (X̃x0,φ̃, Ỹ φ̃, Ṽ x0,v0,φ̃)

where φ̃ = (y0, ã, b̃). Let θo be a stopping time for the augmentation of the raw
filtration F̃◦, and define

θ := θo ∧ θ1 with θ1 := inf{s : |X̃s − x0| ≥ 1}.

Then, it follows from Proposition 3.17 below that

Ṽθo ≥ vkγ̄(t0 + θo, X̃θo) ≥ ϕ(t0 + θo, X̃θo),

in which here and hereafter inequalities are taken in the P̃-a.s. sense. After applying586

Itô’s formula twice, the above inequality reads:587

(43)

∫ θ

0

`s ds+

∫ θ

0

(
y0 − ∂xϕ(t0, x0) +

∫ s

0

mrdr +

∫ s

0

nrdX̃r

)
dX̃s ≥ 0.588

where589

` :=
1

2
ã2f(X̃)− Lãϕ(t0 + ·, X̃·) , m := µã,b̃Y (X̃)− Lã∂xϕ(t0 + ·, X̃·)590

n := γãY (X̃)− ∂2
xxϕ(t0 + ·, X̃·),591

with

Lã := ∂t +
1

2
(σãX)2∂2

xx
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For the rest of the proof, we recall (39). Together with (1) and Remark 3.13, this im-592

plies that σãX(X̃), σãX(X̃)−1 and µã,b̃X (X̃) are P̃-essentially bounded. After performing593

an equivalent change of measure, we can thus find P̌ ∼ P̃ and a P̌-Brownian motion594

W̌ such that:595

(44) X̃ =

∫ ·
0

σãsX (X̃s)dW̌s.596

Clearly, both P̌ and W̌ depend on (ã, b̃, y0).597

1. We first show that y0 = ∂xϕ(t0, x0), and therefore598

(45)

∫ θ

0

`s ds+

∫ θ

0

∫ s

0

mrdrdX̃s +

∫ θ

0

∫ s

0

nrdX̃rdX̃s ≥ 0.599

Let P̌λ ∼ P̌ be the measure under which

W̌λ := W̌ +

∫ ·
0

λ[σãsX (X̃s)]
−1(y0 − ∂xϕ(t0, x0))ds

is a P̌λ-Brownian motion. Consider the case θo := η > 0. Since all the coefficients are600

bounded, taking expectation under P̌λ and using (43) imply601

C ′η ≥ λ(y0 − ∂xϕ(t0, x0))2EP̌λ [θ]602

+EP̌λ
[∫ θ

0

(∫ s

0

mrdr +

∫ s

0

nrdX̃r

)
λ(y0 − ∂xϕ(t0, x0))ds

]
603

for some C ′ > 0. We now divide both sides by η and use the fact that (η ∧ θ1)/η → 1604

P̌λ-a.s. as η → 0 to obtain605

C ′ ≥ λ(y0 − ∂xϕ(t0, x0))2.606

Then, we send λ→∞ to deduce that y0 = ∂xϕ(t0, x0).607

2. We now prove that608

(46) ∂2
xxϕ(t0, x0) ≤ γã0Y (x0) ≤ γ̄(x0).609

We first consider the time change

h(t) = inf{r ≥ 0 :

∫ r

0

[
(σãsX (X̃s))

21[0,θ](s) + 1[0,θ]c(s)
]
ds ≥ t}.

Again, σãX(X̃) and σãX(X̃)−1 are essentially bounded by Remark 3.13, so that h is610

absolutely continuous and its density h satisfies611

(47) 0 < ht ≤ h(t) :=
[
(σãX(X̃))21[0,θ](t) + 1[0,θ]c(t)

]−1

≤ h̄t612

for some constants h and h̄, for all t ≥ 0. Moreover, Ŵ := X̃h is a Brownian motion613

in the time changed filtration. Let us now take θo := h−1(η) for some 0 < η < 1.614

Then, (45) reads615

0 ≤
∫ η∧h−1(θ1)

0

`h(s)h(s) ds+

∫ η∧h−1(θ1)

0

∫ s

0

mh(r)h(r)drdŴs616

+

∫ η∧h−1(θ1)

0

∫ s

0

nh(r)dŴrdŴs.(48)617
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Since all the involved processes are continuous and bounded, and since (η∧h−1(θ1))/η →
1 a.s. as η → 0, the above combined with [8, Theorem A.1 b. and Proposition A.3]
implies that

γã0Y (x0)− ∂2
xxϕ(t0, x0) = lim

r↓0
nh(r) = lim

r↓0
nr ≥ 0.

Since γãY (X̃) ≤ γ̄(X̃), this proves (46).618

3. It remains to show that the first term in the definition of F [ϕ](t0, x0) is also619

non-negative, recall (15). Again, let us take θo := h−1(η) and recall from 2. that620

limη→0(η∧h−1(θ1))/η = 1 P̌-a.s. Note that ã being of the form (38) with the condition621

(39), it satisfies [8, Condition (A.2)], and so does n. Using [8, Theorem A.2 and622

Proposition A.3] and (48), we then deduce that `0h(0) − 1
2n0 ≥ 0. Hence, (47) and623

direct computations based on (8) imply624

0 ≤ 1

2
ã2

0f(x0)− Lã0ϕ(t0, x0)− 1

2

(
γã0Y (x0)− ∂2

xxϕ(t0, x0)
)

(σã0X (x0))2
625

=
1

2
ã2

0f(x0)− ∂tϕ(t0, x0)− 1

2
γã0Y (x0)(σã0X (x0))2

626

= −∂tϕ(t0, x0)− 1

2

σ2(x0)

1− f(x0)γã0Y (x0)
γã0Y (x0)627

≤ −∂tϕ(t0, x0)− 1

2

σ2(x0)

1− f(x0)∂2
xxϕ(t0, x0)

∂2
xxϕ(t0, x0),628

in which we use the facts that ∂2
xxϕ(t0, x0) ≤ γã0Y (x0) ≤ γ̄(x0) and z 7→ z/(1−f(x0)z)629

in non-decreasing on (−∞, γ̄(x0)] ⊂ (−∞, 1/f(x0)), for the last inequality.630

b. We now consider the boundary condition at T . Since vkγ̄ is a supersolution of

γ̄ − ∂2
xxϕ ≥ 0 on [0, T ) × R, the same arguments as in [11, Lemma 5.1] imply that

vkγ̄ − Γ̄ is concave for any twice differentiable function Γ̄ such that ∂2
xxΓ̄ = γ̄. The

function vkγ̄ being lower-semicontinuous, the map

x 7→ G(x) := lim inf
t′ → T, x′ → x

t′ < T

vkγ̄(t′, x′)

is such that G ≥ g and G− Γ̄ is concave. Hence, G = (G− Γ̄)conc +Γ̄ ≥ (g− Γ̄)conc +Γ̄631

= ĝ. �632

It remains to state the dynamic programming principle used in the above proof.633

Proposition 3.17. Fix (t, x, v, y) ∈ [0, T ]× R2 × [−k, k] and let θ be a stopping634

time for the P̃-augmentation of F̃◦ that takes P̃-a.s. values in [0, T − t]. Assume that635

P̃ ∈ Ãk ∩ G̃k,γ̄(t, x, v, y). Then,636

Ṽ x,v,φ̃θ ≥ vkγ̄(t+ θ, X̃x,φ̃
θ ) P̃− a.s.,637

in which φ̃ := (y, ã, b̃).638

Proof. Since vkγ̄ is lower-semicontinuous and all the involved processes have contin-
uous paths, up to approximating θ by a sequence of stopping times valued in finite
time grids, it suffices to prove our claim in the case θ ≡ r ∈ [0, T − t]. Let P̃ω be a
regular conditional probability given F̃◦r for P̃. It coincides with P̃[·|F̃◦r ](ω) outside a
set N of P̃-measure zero. Then, for all ω /∈ N , 0 ≤ δ ≤ 1 and r ≥ 0 the conditions
(38)-(39)-(40) hold for P̃rω defined on C(R+)5 by

P̃rω[ω′ ∈ A] = P̃ω[ω′r+· ∈ A].
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Moreover, [9, Theorem 3.3] ensures that, after possibly modifying N ,639

P̃rω
[
Ṽ
ξr(ω),ϑr(ω),φ̂(ω)
T−(t+r) ≥ g(X̃

ξr(ω),φ̂(ω)
T−(t+r) )

]
= 1640

and P̃rω
[
γãY (X̃ξr(ω),φ̂(ω)) ≤ γ̄(X̃ξr(ω),φ̂(ω)) on R+

]
= 1,641

for ω /∈ N , in which

(ξr, ϑr, φ̂) := (X̃x,φ̃
r , Ṽ x,v,φ̃r , (Ỹ x,φ̃r , ã, b̃)).

This shows that ϑr(ω) ≥ vkγ̄(t+ r, ξr(ω)) outside the null set N , which is the required642

result. �643

3.3. Conclusion of the proof and construction of almost optimal strate-644

gies. We first conclude the proof of Theorem 2.4.645

Proof of Theorem 2.4. Proposition 3.5 and Theorem 3.8 imply that v̄γ̄ ≥ vγ̄ in646

which v̄γ̄ has linear growth and is a continuous viscosity solution of (17). On the647

other hand, Proposition 3.12 and Theorem 3.16 imply that vγ̄ ≤ vγ̄ on [0, T ) × R in648

which vγ̄ has linear growth and is a viscosity supersolution of (17). By the comparison649

result of Theorem 3.11 applied with ε = 0, vγ̄ ≥ v̄γ̄ . Hence,650

vγ̄ = vγ̄ = v̄γ̄ on [0, T )× R and vγ̄ = v̄γ̄ on [0, T ]× R(49)651

Since v̄γ̄ is continuous, this shows that

lim
(t′, x′) → (T, x)

t′ < T

vγ̄(t′, x′) = v̄γ̄(T, x) = vγ̄(T, x).

Hence, vγ̄ is a viscosity solution of (17), with linear growth. �652

Remark 3.18 (Almost optimal controls). In the proof of Theorem 3.8, we have653

constructed a super-hedging strategy starting from v̄ε,K,δγ̄ (t, x). Since v̄ε,K,δγ̄ (t, x) →654

v̄γ̄(t, x) = vγ̄(t, x) as δ, ε → 0 and K → ∞, this provides a way to construct super-655

hedging strategies associated to any initial wealth v > vγ̄(t, x).656

4. Adding a resilience effect. In this section, we explain how a resilience657

effect can be added to our model. In the discrete rebalancement setting, we replace658

the dynamics (4) by659

Xn = X0 +

∫ ·
0

µ(Xn
s )ds+

∫ ·
0

σ(Xn
s )dWs +Rn,660

in which Rn is defined by

Rn = R0 +

n∑
i=1

1[tni ,T ]δ
n
tni
f(Xn

tni −)−
∫ ·

0

ρRns ds,

for some ρ > 0 and R0 ∈ R. The process Rn models the impact of past trades on the661

price, the last term in its dynamics is the resilience effect. Then, the continuous time662

dynamics becomes663

X = X0 +

∫ ·
0

σ(Xs)dWs +

∫ ·
0

f(Xs)dYs +

∫ ·
0

(µ(Xs) + as(σf
′)(Xs)− ρRs)ds664

R = R0 +

∫ ·
0

f(Xs)dYs +

∫ ·
0

(as(σf
′)(Xs)− ρRs)ds665

V = V0 +

∫ ·
0

YsdXs +
1

2

∫ ·
0

a2
sf(Xs)ds.666
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This is obtained as a straightforward extension of [4, Proposition 1.1].667

Let vRγ̄ (t, x) be defined as the super-hedging price vγ̄(t, x) but for these new668

dynamics and for Rt = 0. The following states that vRγ̄ = vγ̄ , i.e. adding a resilience669

effect does not affect the super-hedging price.670

Proposition 4.1. vγ̄ = vRγ̄ on [0, T ]× R.671

Proof. 1. To show that vγ̄ ≥ vRγ̄ , it suffices to reproduce the arguments of the proof
of Theorem 3.8 in which the drift part of the dynamics of X does not play any role.
More precisely, these arguments show that v̄γ̄ ≥ vRγ̄ . Then, one uses the fact that
vγ̄ = v̄γ̄ , by (49).
2. As for the opposite inequality, we use the weak formulation of Section 3.2 and a
simple Girsanov’s transformation. For ease of notations, we restrict to t = 0. Fix
v > vRγ̄ (0, x), for some x ∈ R. Then, one can find k ≥ 1, (c, y) ∈ R× [−k, k] satisfying
v = c + yx, and (a, b) ∈ Ak,γ̄(0, x) such that VT ≥ g(XT ), with (V,X, Y,R) defined
by the corresponding initial data and controls. We let

a = a0 +

∫ ·
0

βsds+

∫ ·
0

αsdWs

be the decomposition of a into an Itô process, see Section 2.1. Let QR ∼ P be the672

probability measure under which WR := W −
∫ ·

0
(ρRs/σ(Xs))ds is a QR-Brownian673

motion, recall (1). Then,674

X = X0 +

∫ ·
0

σ(Xs)dW
R
s +

∫ ·
0

f(Xs)dYs +

∫ ·
0

(µ(Xs) + as(σf
′)(Xs))ds675

Y = Y0 +

∫ ·
0

(bs + asρRs/σ(Xs))ds+

∫ ·
0

asdW
R
s676

a = a0 +

∫ ·
0

(βs + αsρRs/σ(Xs))ds+

∫ ·
0

αsdW
R
s677

V = V0 +

∫ ·
0

YsdXs +
1

2

∫ ·
0

a2
sf(Xs)ds.678

Upon seeing (a, b + aρR/σ(X), α, β + αρR/σ(X),WR) as a generic element of the679

canonical space C([0, T ])5 introduced in Section 3.2, then QR belongs to Ãk ∩ G̃k,γ̄(t,680

x, v, y), and therefore v > vγ̄(0, x). Hence, vRγ̄ (0, x) ≥ vγ̄(0, x), and thus vRγ̄ (0, x) ≥681

vγ̄(0, x) by (49). �682

5. Numerical approximation and examples. In this section, we provide an683

example of numerical schemes that converges towards the unique continuous viscos-684

ity solution of (17) with linear growth. The scheme is then exemplified using two685

numerical applications in the case of constant market impact and gamma constraint.686

5.1. Finite difference scheme. Given a map φ and h := (ht, hx) ∈ (0, 1)2,687

define688

Lh1 (t, x, y, φ) := −φ(t+ ht, x)− y
ht

− σ2(x)Gh(t, x, y, φ)

2(1− f(x)Gh(t, x, y, φ))
689

Lh2 (t, x, y, φ) := γ̄(x)−Gh(t, x, y, φ)690

where

Gh(t, x, y, φ) :=
φ(t+ ht, x+ hx) + φ(t+ ht, x− hx)− 2y

h2
x

.
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The numerical scheme is set on the grid πh := {(ti, xj) = (iht, x + jhx) : i ≤691

nt, j ≤ nx}, with ntht = T for some nt ∈ N, and nxhx = x−x, for some real numbers692

x < x. To paraphrase, vhγ̄ is defined on πh as the solution of693

S(h, ti, xj , v
h
γ̄(ti, xj), v

h
γ̄) = 0 for i < nt, 1 ≤ j ≤ nx − 1(50)694

vhγ̄ = ĝ on πh ∩ {({T} × R) ∪ ([0, T ] ∩ {x, x})}695

where
S(h, t, x, y, φ) := (w̄ − y) ∨ (y − w) ∧ min

l=1,2

{
Lhl (t, x, y, φ)

}
with w̄ and w as in Remark 3.6.696

Theorem 5.1. The equation (50) admits a unique solution vhγ̄ , for all h := (ht,697

hx) ∈ (0, 1)2. Moreover, if ht/h
2
x → 0 and h2

x → 0, then vhγ̄ converges locally uniformly698

to the unique continuous viscosity solution of (17) that has linear growth.699

Proof. The existence of a solution, that is bounded by the map with linear growth
|w̄| + |w|, is obvious. We now prove uniqueness. First observe that Lh2 is strictly
increasing in its y-component, and that

∂Lh1
∂y

(t, x, y, φ) =
1

ht
+

σ2(x)

h2
x(1− f(x)Gh(t, x, y, φ))2

> 0

on the domain {y : Lh2 (ti, xj , y, φ) ≥ 0}. Uniqueness of the solution follows.700

It is easy to see that φ 7→ S(·, φ) is non-decreasing, so that our scheme is mono-
tone. Consistency is clear. Moreover, it is not difficult to check that the comparison
result of Theorem 3.11 extends to this equation (there is an equivalence of the notions
of super- and subsolutions in the class of functions w such that w ≤ w ≤ w̄). It
then follows from [3, Theorem 2.1] that vhγ̄ converges locally uniformly to the unique
continuous viscosity solution with linear growth of[

(w̄ − ϕ) ∨ (ϕ− w) ∧ F [ϕ]
]
1[0,T ) + (ϕ− ĝ)1{T} = 0.

In view of (49), Remark 3.6 and Theorem 2.4, vγ̄ is the unique viscosity solution of701

the above equation. �702

5.2. Numerical examples: the fixed impact case. To illustrate the above
numerical scheme, we place ourselves in the simpler case where f ≡ λ > 0 and γ̄ > 0
are constant. The dynamics of the stock is given by the Bachelier model

dXt = σ dWt,

with σ := 0.2. In the following, T = 2.703

First, we consider a European Butterfly option with three strikes K1 = −1 <
K2 = 0 < K3 = 1, where K1 + 1/(2γ̄) ≤ K2 ≤ K3 − 1/(2γ̄). Its pay-off is

g(x) = (x−K1)+ − 2(x−K2)+ + (x−K3)+,

and the corresponding face-lifted function ĝ can be computed explicitly:704

ĝ(x) =
γ̄

2
(x− x−1 )21[x−1 ,x

+
1 ) + (x−K1)1[x+

1 ,K2)705

+(x−K1 − 2(x−K2))1[K2,x
−
2 )706

+
( γ̄

2
(x− x+

2 )2 + 2K2 − (K1 +K3)
)

1[x−2 ,x
+
2 )707

+(2K2 − (K1 +K3))1[x+
2 ,+∞),708
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where x±1 = K1 ± 1/(2γ̄) and x±2 = K3 ± 1/(2γ̄).709

In Figure 1, we separately show the effect of the gamma constraint and of the710

market impact. As observed in Remark 2.9, the price is non-decreasing with respect711

to the impact parameter λ and bounded from below by the hedging price obtained in712

the model without impact nor gamma constraint. On the left and right tails of the713

curves, we observe the effect of the gamma constraint. It does not operate around714

x = 0 where the gamma is non-positive. The effect of the market impact operates715

only in areas of high convexity (around x = −1.5 and x = 1.5) or of high concavity716

(around x = 0).717

Fig. 1. Left: Super-hedging price of the Butterfly option. Dashed line: λ = 0.5, γ̄ = 1.75; solid
line: λ = 0, γ̄ = 1.75; dotted line: λ = 0, γ̄ = +∞. Right: Difference with the price associated to
λ = 0, γ̄ = +∞. Dashed line: λ = 0.5, γ̄ = 1.75; solid line: λ = 0, γ̄ = 1.75 .

In Figure 2, we perform similar computations but for a call spread option, where

g(x) = (x−K1)+ − (x−K2)+,

with K1 = −1 < K2 = 1 such that K1 + 1/(2γ̄) ≤ K2. The face-lifted function ĝ is
given by

ĝ(x) =
γ̄

2
(x− x−)21[x−,x+) + (x−K1)1[x+,K2) + (K2 −K1)1[K2,+∞)

with x± = K1 ± 1/(2γ̄).718
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Fig. 2. Left: Super-hedging price of the Call Spread option. Dashed line: λ = 0.5, γ̄ = 1.75;
solid line: λ = 0, γ̄ = 1.75; dotted line: λ = 0, γ̄ = +∞. Right: Difference with the price associated
to λ = 0, γ̄ = +∞. Dashed line: λ = 0.5, γ̄ = 1.75; solid line: λ = 0, γ̄ = 1.75 .

6. Appendix. The following is very standard, we prove it for completeness.719

Lemma 6.1. A upper-semicontinuous (resp. lower-semicontinuous) map is a vis-
cosity subsolution (resp. supersolution) of

F εκ[ϕ]1[0,T ) + (ϕ− ĝεK)1{T} = 0

if and only if it is a viscosity subsolution (resp. supersolution) of F ε,Kκ,− [ϕ] = 0 (resp.720

F ε,Kκ,+ [ϕ] = 0).721

Proof. The equivalence on [0, T ) is evident, we only consider the parabolic boundary722

{T} × R. Since F ε,Kκ,+ ≥ F εκ and F ε,Kκ,− ≤ F εκ, only one implication is not completely723

trivial.724

a. Let v be a viscosity supersolution of F ε,Kκ,+ [ϕ] = 0, and ϕ ∈ C2 be a test function
such that

(strict) min
[0,T ]×R

(v − ϕ) = (v − ϕ)(T, x0) = 0,

for some x0 ∈ R. We define a new test function φ ∈ C2,

φ(t, x) := ϕ(t, x)− C(T − t),

so that ∂tφ = ∂tϕ+ C. For C > 0 large enough,

min
x′∈Dεκ

min

{
−∂tφ−

σ2(x′)∂xxφ

2(1− f(x′)∂xxφ)
, γ̄(x′)− ∂xxφ

}
< 0

at (T, x0). Since,

(strict) min
[0,T ]×R

(v − φ) = (v − φ)(T, x0) = 0,

it must hold that F ε,Kκ,+ [φ](T, x0) ≥ 0, and therefore

v(T, x0)− ĝεK(x0) = ϕ(T, x0)− ĝεK(x0) = φ(T, x0)− ĝεK(x0) ≥ 0.
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b. Let now v be a viscosity subsolution of F ε,Kκ,− [ϕ] = 0, and ϕ ∈ C2 be a test function
such that

(strict) max
[0,T ]×R

(v − ϕ) = (u− ϕ)(T, x0),

for some x0 ∈ R. Then, F ε,Kκ,− [ϕ](T, x0) ≤ 0. By replacing ϕ by φ, defined for α > 0
as

φ(t, x) := ϕ(t, x0 + α(x− x0)) + C(T − t),

we obtain a new test function at (T, x0). Since inf γ̄ > 0, recall (1), we can take α
small enough so that

min
x′∈Dεκ

{γ̄(x′)− ∂xxφ(T, x0)} > 0.

As in the previous step, we can now choose C > 0 such that

min
x′∈Dεκ

{
−∂tφ−

σ2(x′)∂xxφ

2(1− f(x′)∂xxφ)

}
> 0

at (T, x0). Since F ε,Kκ,− [φ](T, x0) ≤ 0, we conclude that v(T, x0) = φ(T, x0) ≤ ĝεK(x0).725

�726
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