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Frictions in financial modelling

I Classical Black-Scholes theory: dynamic trading of arbitrary
amounts, arbitrarily fast without impact on (exogenously
given) asset prices and without taxes, transaction fees, etc.

I How to account for these nonlinear effects? Formidable
challenges at the interfaces between financial modelling,
stochastic analysis, and stochastic optimal control.

I Tax effects: important aspect of some financial deals (and
shenanigans: cf. cum-ex trades), devil in the details of an ever
changing tax code
 not obviously fun to develop mathematical theory for this

I Transaction fees: often mixture of lump sum payments and
(capped) proportional fees
 optimal control problems which received a lot of attention
in recent years: asymptotic analysis for small fees, shadow
prices, . . .
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Frictions in financial modelling (ctd.)

I Price impact: triviality from the point of view of economic
theory as prices are determined by demand and supply, also in
financial markets

BUT: How to formalize equilibrium prices? Answers from the
work of many Nobel laureates: Debreu, Arrow, . . . , Thaler;
price formation theory is an academic industry of its own,
even when focusing on financial markets alone: market
microstructure, role of information and knowledge, market
power, market organization, different time scales for
modeling. . .
 stylized models of price impact to be considered first and
then move to more sophisticated models
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Price impact due to limited market liquidity

Kyle ’85 identifies different notions to assess market liquidity:

Tightness: The cost of turning around a position over a short
period of time.
Well captured by spread between bid- and ask-prices.

Depth: The size of an order flow innovation required to
change prices a given amount.
Good proxy: volume available for trading on bid- and
ask-side of limit order book.

Resiliency: The speed at which prices recover from a random,
uninformative shock.
Hard to measure . . .

Liquidity model has to identify relevant time-scale for its purpose:

I high-frequency trading: limit order book model.

I option pricing, hedging, optimal investment: mesoscopic
models like the ones of this course.
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Course outline

This course will discuss:
I models with purely temporary price impact: [3], [4]

I indifference pricing and asymptotics for small impact
I quadratic hedging
I (essentially) classical stochastic control

I tractable models with transient price impact: [1], [2]
I super-replication duality
I utility maximization
I singular stochastic control

I equilibrium with frictions: [5]

I new approach to information modeling in optimal control
problems: [6] (time permitting)



Outline

Models with temporary price impact

Models with transient price impact

Equilibrium with market frictions

Modeling information flow in stochastic control



Temporary price impact

Consider an arbitrage-free stock price model:

P = (Pt)0≤t≤T with volatility d〈P〉t = σ2
t dt

Temporary price impact when an investor changes her position X
at speed Ẋ with market liquidity described by κ > 0:

Pκt = Pt + Ẋtκt (0 ≤ t ≤ T )

PnL at time T when starting and ending with a flat stock position:

V κ
T (X ) = −

∫ T

0
Pκt dXt =

∫ T

0
XtdPt −

∫ T

0
Ẋ 2
t κtdt

How to invest optimally? How to price & hedge contingent claims?

Asymptotic expansions about the frictionless case “κ = 0”:
Guasoni, Weber (’15), Moreau, Muhle-Karbe, Soner (’15), . . .
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at speed Ẋ with market liquidity described by κ > 0:
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Heuristics for indifference price asymptotics

With ξ denoting the frictionless optimizer with endowment
−H + p, we want to find for “small” κ an X which minimizes

Eu(V 0
T (ξ)− H + p)− Eu(V κ

T (X )− H + p)

≈ E
[
u′(V 0

T (ξ)− H + p) ( V 0
T (ξ) − V κ

T (X ) )︸ ︷︷ ︸
=
∫ T

0 (ξt−Xt)dPt+
∫ T

0 Ẋ 2
t κtdt

+
1

2
u′′(V 0

T (ξ)− H + p)(V 0
T (ξ)− V κ

T (ξ))2

]
≈ E0

[∫ T

0
Ẋ 2
t κtdt +

1

2
α

∫ T

0
(ξt − Xt)

2d〈P〉t
]

+ . . .

where dP0/dP ∝ u′(V 0
T (ξ)− H + p) is the density of a martingale

measure for P and where u(x) = − exp(−αx).
 simplified quadratic optimization problem!



Quadratic tracking problem

Mathematical optimization problem

For a given predictable ξ and given x ∈ R, find an absolutely
continuous, adapted process Xt = x +

∫ t
0 usds with

u ∈ L2(P⊗ κsds), which minimizes

J(u) , E
[∫ T

0
(ξt − Xt)

2σ2
t dt +

∫ T

0
u2
t κtdt

]
for given progressively measurable, strictly positive processes σ, κ.

Possible additional constraint on terminal position:

XT = ξT for some given ξT ∈ FT .

Closely related references from Mathematical Finance

Rogers & Singh (2010) , Naujokat & Westray (2011), Frei &
Westray (2013), Schied (2013), Horst & Naujokat (2014),
Almgren & Li (2014), Cartea & Jaimungal (2015), Cai et al.
(2015, 2016), . . .
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Constant coefficients in the unconstrained case

Theorem
If σ and κ are constant and there is no constraint on the terminal
position, it is optimal to always trade towards

ξ̂t = E

[∫ T

t
ξs

cosh(T−s√
λ

)

sinh(T−t√
λ

)
√
λ
ds

∣∣∣∣∣Ft

]

according to

dX ∗t =
1√
λ

tanh(
T − t√

λ
)
(
ξ̂t − X ∗t

)
dt

where λ , κ/σ2.

Rather than towards the current target ξt , one should trade
towards its expected future ξ̂t ; cf. Garleanu & Pedersen (2014).



Constant coefficients in the constrained case

Theorem
If σ and κ are constant and the terminal position has to be
X ∗T = ξT ∈ L2(P), it is optimal to always trade towards

ξ̂t =
1

cosh(T−t√
λ

)
E [ξT |Ft ]

+

(
1− 1

cosh(T−t√
λ

)

)
E

[∫ T

t
ξs

sinh(T−s√
λ

)

(cosh(T−t√
λ

)− 1)
√
λ

∣∣∣∣∣Ft

]

according to

dX ∗t =
1√
λ

coth(
T − t√

λ
)
(
ξ̂t − X ∗t

)
dt

where λ , κ/σ2.

As t ↑ T we have to trade towards ξ̂ (and thus towards ξT ) with
higher and higher urgency.



Illustration: Frictionless hedge with jump midway
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unconstrained (orange) and constrained (green) frictional hedge, and
directly targeting strategy (red)
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Illustration: Discretely monitored Asian option
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Figure: Target strategy ξ of “Asian option” ( 1
2 (ST/2 + ST )− K )+

(blue), unconstrained (orange, dashed) and constrained (green, dashed)
target, corresponding unconstrained (orange) and constrained (green)
frictional hedge, and directly targeting strategy (red)



Illustration: Call option with physical delivery
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Lemma
A terminal position ξT can be attained at finite expected costs if
and only if it becomes known sufficiently fast towards the end:∫ T

0

E[(ξT − E [ξT |Ft ])
2]

(T − t)2
dt <∞.
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General case with stochastic coefficients

For a given predictable target strategy ξ, a given terminal position
ξT and a given initial position x ∈ R, find an absolutely
continuous, adapted process X = x +

∫ ·
0 utdt which minimizes

E
[∫ T

0
(ξt − Xt)

2σ2
t dt +

∫ T

0
u2
t κtdt + η(ξT − XT )2

]
with σ, κ progressively measurable, strictly positive, bounded
processes, nonnegative η ∈ FT .

Also allow for η = +∞ with positive probability:

 imposes implicitly the terminal state constraint XT = ξT on
{η = +∞} (constrained problem)

 we have to be careful with η(ξT − XT )2 if η =∞ and
ξT = XT : “truncation in space” vs. “truncation in time”.
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Bounded penalization

Kohlmann and Tang (2002): For η ≥ 0 bounded, construct
optimal control u∗ = (b − cX ∗)/κ from solutions to BSRDE

dct =

(
c2
t

κt
− σ2

t

)
dt − dMt (0 ≤ t ≤ T ), cT = η,

and linear BSDE

dbt =

(
ct
κt

bt − σ2
t ξt

)
dt + dM ′t (0 ≤ t ≤ T ), bT = ηξT .

Problem: How to make sense of this when P[η = +∞] > 0?

I For BSRDE: Truncate η ∧ n to obtain c(n) and use comparison
to control c , limn c

(n); see Kruse & Popier (2015).

I For BSDE: Above truncation does not work because of linear
dynamics!?! — unless ξT = 0  “liquidation problem”

Idea: Use signal process ξ̂ for “consistent truncation in time”!
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General result

Suppose:
I integrable coefficients:

∫ T
0 (σ2

t + κ−1
t )dt <∞ a.s.

I effective time horizon is indeed T , i.e. penalization for
deviations from targets remains conceivable throughout:

P
[
η = 0,

∫ T

t
σ2
s ds = 0

∣∣∣∣ Ft

]
< 1, for all t < T

I supersolution for BSRDE: consider semimartingale
c = (ct)0≤t<T > 0 with dynamics

dct =

(
c2
t

κt
− σ2

t

)
dt − dMt (0 ≤ t < T ), lim inf

t↑T
ct ≥ η

such that (Mt)t<T is a martingale and∫
[0,T )

d [c]t
c2
t−

<∞ on {η = +∞}.

I integrable targets: ξt ∈ L1(P⊗ σ2
t dt), ξTL

c
T ∈ L1(P)



General result (ctd)

Then Lct , cte
−

∫ t
0

cu
κu

du ≥ 0 is a supermartingale and . . .
I . . . the signal process

ξ̂ct ,
1

Lct
E
[
ξTL

c
T +

∫ T

t
ξre
−

∫ r
0

cu
κu

duσ2
r dr

∣∣∣∣Ft

]
(0 ≤ t < T )

is well defined and satisfies

lim
t↑T

ξ̂ct = ΞT on {LcT > 0} ⊃ {η > 0},

I . . . the target functional with “truncation in time”

Jc(u) , lim sup
τ↑T

E
[∫ τ

0
(X u

t − ξt)2σ2
t dt +

∫ τ

0
κtu

2
t dt + cτ (X u

τ − ξ̂cτ )2

]
dominates J: J(u) ≤ Jc(u). Its domain {u | Jc(u) <∞} is
nonempty iff

E
[∫ T

0
(ξ̂ct )2σ2

t dt

]
< +∞ and E

[∫
[0,T )

ctd [ξ̂c ]t

]
< +∞,



General result (ctd)

I . . . if {u | Jc(u) <∞} 6= ∅, the optimal control uc can be
described in feedback form as

uct =
ct
κt

(ξ̂ct − X uc
t ), 0 ≤ t < T ,

I . . . the minimal costs decompose as

J(uc) = c0(x − ξ̂c0 )2 + E
[∫ T

0
(ξt − ξ̂ct )2σ2

t dt

]
+ E

[∫
[0,T )

ctd [ξ̂c ]t

]

into costs due to suboptimal starting position, to the (lack of)
regularity and compatibility of the targets ξ, ξT , and to the
signal’s variability given new information on problem data.



Key insights for proof

A lengthy calculation reveals that∫ τ

0
(X u

t − ξt)2σ2
t dt +

∫ τ

0
κtu

2
t dt + cτ (X u

τ − ξ̂cτ )2

=c0(x − ξ̂c0 )2 +

∫ τ

0
(ξt − ξ̂ct )2σ2

t dt +

∫ τ

0
ctd [ξ̂c ]t

+

∫ τ

0

(
ut −

ct
κt

(
ξ̂ct − X u

t

))2

κtdt + local martingaleτ .

 Consistency of optimization problems with different time
horizons τ : same feedback policy optimal for all τ < T

Letting τ ↑ T and taking expectations reveals optimality of given
uc along with necessary and sufficient conditions for
{u | Jc(u) <∞} 6= ∅.

Conjecture:

argminJ = argminJcmin for minimal supersolution cmin of BSRDE.
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Conclusions

I quadratic hedging with quadratic transaction costs from
temporary price impact

I explicit solution for constant coefficients: trade towards
expected average future position of suitable frictionless
optimum

I . . . possibly combined with weighted expectation of ultimate
target position

I characterization of ultimate positions which are attainable
with finite expected costs

I closed-form hedging recipes also for frictionless reference
hedges which have singularities

I very general optimal control with stochastic coefficients solved
in terms of (singular) backward stochastic Riccati equation
under minimal assumptions

I construction of signal process and interpretation of problem
value

Thank you very much!
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Continuous-time model with transient price impact

I no interest; unaffected, “fundamental” asset price: continuous
adapted process P = (Pt)

I investment strategy of large investor: number of assets held
Xt = x0 + X ↑t − X ↓t , t ≥ 0, X0− = x0, X ↑0− = X ↓0− = 0,
right-continuous, adapted, of bounded total variation

I permanent impact on midquote price:
PX
t = Pt + ιXt , t ≥ 0, PX

0− = P0 + ιx0

(cf. Huberman-Stanzl ’04)

I half-spread: dζXt = 1
δt

(dX ↑t + dX ↓t )− rtζ
X
t dt, ζX0− = ζ0 ≥ 0

I market depth: δ = (δt) continuous adapted, bounded away
from 0 and ∞.

I resilience rate: r = (rt) ≥ 0 predictable,
∫ T

0
rtdt bounded

I bid-price: PX
t − ζXt ; ask-price: PX

t + ζXt
(cf. Roch-Soner ’13)



Wealth dynamics

Holding Xt assets at time t ∈ [0,T ] yields ultimate cash position:

V X
T = v0 −

∫
[0,T ]

PX
t ◦ dXt −

∫
[0,T ]

ζXt ◦ d(X ↑t + X ↓t ).

where
∫

[0,T ] Yt ◦ dXt =
∫

[0,T ]
1
2 (Yt− + Yt+)dXt

(Stratonovich/Marcus-integral; cf. Becherer et al. ’17)

Crucial observation: For X ∈X with XT = 0,

V X
T = v0 +

1

2
(ιx2

0 + δ0ζ
2
0 )−

∫ T

0
PtdXt −

1

2

∫ T

0
(ρtζ

X
t )2|dκt |

if κt = δt/ρ
2
t 1[0,T )(t) is strictly decreasing (assumed henceforth)

with ρt = exp
(∫ t

0 rs ds
)

.

 convex transaction costs, convex analytic methods apply



Super-replication of non-manipulable claims

Consider contingent claim with FT -measurable payoff H ≥ 0.
Super-replication costs:

π(H) , inf{v0 ∈ R : V X
T ≥ H for some X ∈X with XT = 0}

 convex functional of H

Question: What is its dual description?
Notice: payoff of H not affected by strategy X ; this is no issue if
H = h(PX

T ) because PX
T = PT when XT = 0.

(See Frey ’96, Bouchard et al ’17, Becherer-Bilarev ’17 for
PDE-approach with manipulable claims.)
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Super-replication duality

Additional technical assumption:

All (Ft)-martingales have a continuous version.

Theorem
The super-replication costs of a contingent claim H ≥ 0 have the
dual description

π(H) = sup
(Q,M,α)

{
EQ[H]− 1

2
‖α− ζ0‖2

L2(Q⊗|dκ|) −M0x0 −
1

2
ιx2

0

}
> −∞

where the supremum is taken over all triples (Q,M, α) of
probability measures Q� P on FT , martingales M ∈M 2(Q) and
all optional α ∈ L2(Q⊗ |dκ|) which control the fluctuations of P
in the sense that

|Pt −Mt | ≤
ρt
δt
EQ

[∫
[t,T ]

αu |dκu|

∣∣∣∣∣Ft

]
, 0 ≤ t ≤ T .



Connections with other duality formulae

π(H) = sup
(Q,M,α)

{
EQ[H]− 1

2
‖α− ζ0‖2

L2(Q⊗|dκ|) −M0x0 −
1

2
ιx2

0

}
> −∞

subject to |Pt −Mt | ≤ ρt
δt
EQ

[∫
[t,T ] αu |dκu|

∣∣∣Ft

]
, 0 ≤ t ≤ T .

I If Q� P martingale measure for P, π(H) ≥ EQ[H].
I Classical transaction cost models correspond roughly to r = 0

and δ =∞, without permanent impact: ι = 0. Then we have
a constant spread ζX ≡ ζ0 and can choose α ≡ ζ0 for any
consistent price system, (Q� P with M ∈M 2(Q)) to ensure
closeness constraint and thus obtain π(H) ≥ EQ[H].

I Classical transaction cost models not a special case, though,
since they require admissibility notion because of linear
scaling. No notion of admissibility required for our
“quadratic” price impact model.

I With temporary transaction costs
∫ T

0 Gt(Ẋt)dt for suitable
convex Gt (like Gt(x) = x2), Dolinsky-Soner ’13 and
Guasoni-Rasonyi’15 also get convex risk measure description.



Proof

lower bound: not too hard given convex form of wealth dynamics
upper bound:

I construct Q̂ by separation argument: standard because of
convex wealth dynamics; need to understand

inf
X∈X 2, XT =0

EQ̂

[∫ T

0
PtdXt +

1

2

∫ T

0
(ρtζ

X
t )2|dκt |

]
=?

I construct M̂ as a Lagrange multiplier for XT = 0; solve

inf
X∈X bdd.

EQ̂

[∫ T

0
(Pt − M̂t)dXt − M̂0x0 +

1

2

∫ T

0
(ρtζ

X
t )2|dκt |

]
=?

I construct α̂ for which
· · · = −1

2‖α̂− ζ0‖2
L2(Q̂⊗|dκ|) − M̂0x0 + 1

2ζ
2
0δ0: need continuity

of filtration for representation theorem in B. & El Karoui ’04



Optimal investment

Question: How to determine optimal investment strategies with
transient price impact?

Corollary

Consider a strictly concave, increasing and differentiable utility
function u for which supX∈X , XT =0 E[u(V X

T ) ∨ 0] <∞. Suppose

X̂ ∈X with X̂T = 0 yields via dQ̂
dP =

u′(V X̂
T )

E[u′(V X̂
T )]

a probability

measure Q̂� P with a shadow price M̂ for spread dynamics

λ̂t =
ρt
δt
EQ̂

[∫
[t,T ]

α̂uµ(du)

∣∣∣∣∣Ft

]
, 0 ≤ t ≤ T ,

with α̂ = ρζX̂ ∈ L2(Q̂⊗ µ).
Then X̂ yields the highest expected utility E[u(V X

T )] among all
strategies X ∈X with XT = 0.

 not constructive, but suitable for verification of optimality
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Exponential utility maximization in Bachelier model with
constant transient impact

Choose:
I utility function: u(x) = − exp(−αx)
I Bachelier reference model: Pt = µt + σBt

I constant coefficients: rt ≡ r ≥ 0, δt ≡ δ > 0; ι = 1/δ

Figure: Buying region below green surface, selling region above red
surface, holding region in between.
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Illustration: Phenomenology of optimal trading trajectories

012345
time to maturity
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20
number of shares

Figure: After waiting for spread to recover, one buys towards Merton’s
optimal holdings (grey) and holds this position before unwinding it as
time for investing elapses (blue).



Illustration: Phenomenology of optimal trading trajectories
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Figure: When the trading period starts with a “small” spread, one
should do an initial block trade and then gradually build up a position
which is held until liquidation at the end.
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Illustration: Phenomenology of optimal trading trajectories
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Figure: But, maybe somewhat counterintuitively, it may also be optimal
to do an initial block trade, hold the position and then liquidate
everything with a final block trade.



Illustration: Phenomenology of optimal trading trajectories
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Figure: Starting with a short position, it may be optimal to clear this
position and go away then, even though there is still time for a more
moderate unwinding of short position or for even holding stock.



Illustration: Phenomenology of optimal trading trajectories
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Figure: Starting with a long position beyond the Merton position, an
initial block sell is followed by a smooth unwinding at varying speed
depending on time to go; cf. Obizhaeva & Wang (2013).



Illustration: Phenomenology of optimal trading trajectories

012345
time to maturity
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number of shares

Figure: When the initial spread is very large, a starting position beyond
the Merton position will be unwound only after an initial waiting
period.
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Illustration: Trading trajectories embedded in state space

Figure: The different optimal trading trajectories as they move through
the buying region, the selling region, and the holding region in state
space; dashed lines indicated holding periods.



Papers for this talk

I with Yan Dolinsky:
Super-replication with Transient Price Impact,
to appear in The Annals of Applied Probability
arXiv:1808.09807

Scaling Limits for Super–replication with Transient Price
Impact
submitted
arXiv:1810.07832

I with Moritz Voss:
Optimal Investment with Transient Price Impact
SIAM J. Finan. Math. 10-3 (2019), pp. 723-768
https://doi.org/10.1137/18M1182267



Conclusion and Outlook

I model for transient price impact with convex liquidity costs
What if convexity condition on depth/resiliency fails?
cf. B. & Fruth ’14 for order execution result then

I tractable: super-replication duality, utility maximization
What about nonlinear impact specifications? More accurate
resiliency model?

I wide panorama of optimal investment strategies
Truly stochastic case? Asymptotic expansions?

I convex duality for utility maximization problem
(Master thesis by Fritz Krause)

I interesting new aspect: discontinuous information
 Meyer σ-fields, recent work with David Beßlich

Thank you very much!
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Dramatis personae

I Dealers: in perfect competition for their clients’ business; can
manage their inventory risk by trading with “end-users” at
fundamental prices, but they incur search costs

I Clients: demand immediacy for their trades from dealers; no
direct access to “end-user” market

I “End-users”: accept positions at exogenous, fundamental
prices; dealers can only find them incurring search costs

Questions:

I How do the dealers’ prices match demand with supply? How
are they related to fundamentals? What role is played by the
dealers’ search costs and holding costs?

I How should clients choose their demand to manage their
exogenously given risk? What if they internalize their impact?
Do they benefit from the dealers’ presence?
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The dealers’ problem

For dealer market prices (St) and fundamental prices (Pt), the
dealers servicing their clients’ requested positions (Kt) and
cumulatively transferring Ut =

∫ t
0 us ds to the end-users at costs

λ
2u

2
t dt in t ∈ [0,T ], will generate proceeds∫ T

0
(−Kt)dSt − (PT − ST )KT +

∫ T

0
UtdVt −

λ

2

∫ T

0
u2
t dt.

Assuming P is a martingale, i.e., ruling out speculation by the
dealers, we get the dealers’ expected proceeds to be

E
[∫ T

0
(−Kt)dSt − (PT − ST )KT −

λ

2

∫ T

0
u2
t dt

]
.

The dealers’ inventory risk is determined by U − K :

1

2
E
[∫ T

0
(Kt − Ut)

2 dt

]



The dealers’ problem

Dealers’ target functional with holding costs γd > 0:

Jd(K , u;S) ,E
[∫ T

0
(−Kt)dSt − (PT − ST )KT −

λ

2

∫ T

0
u2
t dt

]
− γd

2
E
[∫ T

0
(Kt − Ut)

2 dt

]
→ max

K ,u

Observe: Problem can be addressed in two stages.
Stage 1: Given K , maximization over u is a quadratic tracking
problem

E
[
γd
2

∫ T

0
(Kt − Ut)

2 dt +
λ

2

∫ T

0
u2
t dt

]
→ min

u

as solved explicitly in B., Soner, Voß’17.
Stage 2: Given the optimal transfer policy uK for any K , optimize
over K .
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Quadratic tracking problem

Theorem (B., Soner, Voß’17)

The dealers’ optimal trading rate minimizing

E
[
γd
2

∫ T

0
(Kt − Ut)

2 dt +
λ

2

∫ T

0
u2
t dt

]
is

uKt ,
d

dt
UK
t =

tanh((T − t)/
√
κ)√

κ
(K̂t − UK

t )

where

κ , λ/γd and K̂t , E
[∫ T

t
Ku

cosh((T − u)/
√
κ)√

κ sinh((T − t)/
√
κ)

du

∣∣∣∣Ft

]

 Dealers form a view K̂ on expected future demand and trade
with the end-users towards this ideal position.



Back to our equilibrium considerations . . .

Stage 2: Dealers’ target functional with holding costs γd > 0:

Jd(K ; S) ,E
[∫ T

0
(−Kt)dSt − (PT − ST )KT

]
− E

[
γd
2

∫ T

0
(Kt − UK

t )2 dt +
λ

2

∫ T

0
(uKt )2 dt

]
→ max

K

Dealer market prices (St) will generate an equilibrium if at these
quotes the dealers’ optimal supply matches their clients’ demand:

K ∈ argmax
K

Jd(K ;S)

Theorem
Given clients’ demand K , the unique equilibrium quotes SK are

SK
t , Pt + γdE

[∫ T

t
(Ks − UK

s ) ds

∣∣∣∣Ft

]
, 0 ≤ t ≤ T ,

where UK describes the dealers’ optimal cumulative transfers to
the end-users as determined by B., Soner, Voß ’17.
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Stage 2: Dealers’ target functional with holding costs γd > 0:

Jd(K ; S) ,E
[∫ T

0
(−Kt)dSt − (PT − ST )KT

]
− E

[
γd
2

∫ T

0
(Kt − UK

t )2 dt +
λ

2

∫ T

0
(uKt )2 dt

]
→ max

K

Dealer market prices (St) will generate an equilibrium if at these
quotes the dealers’ optimal supply matches their clients’ demand:

K ∈ argmax
K
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Equilibrium

SK
t = Pt + γdE

[∫ T

t
(Ks − UK

s ) ds

∣∣∣∣Ft

]
, 0 ≤ t ≤ T ,

I fundamental value P adjusted for dealers’ effective risk
I adjustment in line with asymptotic expansion for small dealer

risk aversion in exponential utility setting by Kramkov-Pulido
’16 (who do not consider end-users)

I small search costs asymptotics of dealers’ surcharge depend
on demand regularity:
I absolutely continuous demand K =

∫ .
0
µK
t dt:∫ T

0

Ktd(Pt − SK
t ) = λ

∫ T

0

(µK
t )2dt + o(λ) in L1 as λ ↓ 0

I diffusive demand K =
∫ .

0
(µK

t dt + σK
t dWt):∫ T

0

Ktd(Pt−SK
t ) =

√
λγd

∫ T

0

(σK
t )2dt+o(

√
λ) in L1 as λ ↓ 0

I endogenous price impact model with resilience, in contrast to
B.-Kramkov ’15



The clients’ problem

How should the clients choose their demand K given quotes (St)?

Quadratic criterion: Facing exogenous FX exposure (ζt), the
clients seek to maximize

Jc(K ;S) , E
[∫ T

0
Kt dSt

]
− γc

2
E
[∫ T

0
(ζt −Kt)

2dt

]
→ max

K

If (St) has drift (µt), this amounts to

E
[∫ T

0

(
Ktµt −

γc
2

(ζt −Kt)
2
)
dt

]
→ max

K
, i.e. K ∗

t = ζt−µt/γc

Given demand K ∗, the equilibrium quotes’ SK ∗ drift is

µK ∗
t = −γd(K ∗

t − UK ∗
t )

which yields the equilibrium demand equation:

K ∗
t =

γd
γd + γc

UK ∗
t +

γc
γd + γc

ζt , t ∈ [0,T ],

where, again, UK ∗ is as in B., Soner, Voß ’17.
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Equilibrium demand

The equilibrium demand equation:

K ∗
t =

γd
γd + γc

UK ∗
t +

γc
γd + γc

ζt , t ∈ [0,T ],

is an integral equation for K ∗.

With

kt , K ∗
t −

γc
γd + γc

ζt and Kt , E
[∫ T

t
K ∗

u

cosh((T − u)/
√
κ)√

κ cosh((T − t)/
√
κ)

du

∣∣∣∣Ft

]
it is equivalent to the linear forward backward stochastic
differential equation (FBSDE):

k0 = 0, dkt =

(
γd

γd + γc
Kt −

tanh((T − t)/
√
κ)√

κ
kt

)
dt,

KT = 0, dKt =

(
tanh((T − t)/

√
κ)√

κ
Kt −

1

κ
(kt +

γc
γd + γc

ζt)

)
dt + dMK

t ,

for a suitable martingale MK determined uniquely by the FBSDE.
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Equilibrium demand

Theorem
The unique equilibrium demand is given explicitly by

K ∗
t =

γc
γd + γc

ζt + Ũ
γd

γd+γc
ζ

t , t ∈ [0,T ]

where Ũ
γd

γd+γc
ζ

denotes the tracking portfolio from B., Soner, Voß:

d

dt
Ũ

γd
γd+γc

ζ

t =
tanh((T − t)/

√
κ̃)√

κ̃

(
γd

γd + γc
ζt − Ũ

γd
γd+γc

ζ

t

)
,

for the aggregate holding costs γ̃ = (1/γd + 1/γc)−1, i.e.,

κ̃ , λ/γ̃ and ζ̃t , E

[∫ T

t
ζu

cosh((T − u)/
√
κ̃)√

κ̃ sinh((T − t)/
√
κ̃)

du

∣∣∣∣∣Ft

]
.

This balances the clients’ demand for immediacy with their holding
costs, taking into account also their dealers’ holding costs and
their ability of transferring risk to end-users: Ũζ = UK ∗ .



When do the clients really need their dealers?

Example: Constant target position

0.05 0.10 0.15 0.20 0.25 0.30
Risk0.0

0.1

0.2

0.3

0.4

Costs

Figure: Risk or holding costs vs. search costs when clients are
trading through their dealers’ or are searching end-users themselves.



What if the clients are collectively aware of their impact?

In other words: What if the dealers are facing a large trader?

Quadratic criterion: Facing exogenous FX cash flow (ζt), the
large investor seeks to maximize

Jc(K ) , E
[∫ T

0
Kt dS

K
t

]
− γc

2
E
[∫ T

0
(ζt −Kt)

2dt

]
→ max

K

This is still concave in K since K 7→ −E
[∫ T

0 Kt dS
K
t

]
is the

dealers’ expected profit in equilibrium and thus nonnegative.
 no statistical arbitrage in this model with endogenously
derived market impact.
Remarkably, first order condition for optimality now reads

K ∗
t =

γd
γd + γc/2

UK ∗
t +

γc/2

γd + γc/2
ζt , t ∈ [0,T ],

i.e. the same equilibrium demand equation as before, albeit
with half the clients’ holding costs.
“Price of anarchy”: Jc(K ∗) ≥ Jc(K ∗) = Jc(K ∗;SK ∗)
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Conclusions

I analyzed dealer market with clients and end-users

I quadratic setting allows for explicit computations following
previous optimal tracking results

I equilibrium quotes for arbitrary demand take into account
legacy position and expected future positions

I optimization of demand with and without impact awareness

I dealers will be used if their search and holding costs are small
compared to those of their clients

I harder to serve sophisticated clients aware of their impact

I endogenously derived impact model ruling out statistical
arbitrage

I asymptotic analysis for small search costs

Thank you very much!
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Outline

Models with temporary price impact

Models with transient price impact

Equilibrium with market frictions

Modeling information flow in stochastic control



Information flow and optimal control

In many financial optimal control problems, there are moments
known in advance when significant new information will become
available:

I interest rate decisions by central banks, elections, referendums

I publication of data on GDP growth, job market statistics,
trade balances

I price jumps, e.g., at opening of exchanges, due to earning
announcements, . . .

I trading algos scanning limit order books for signals of new
demand/supply for shares of stock

Before these moments, investors will form an opinion and take
precautionary actions: proactive trading.
Afterwards, when the news are fully revealed, further measures
may have to be taken: reactive trading.
How to describe such information flows mathematically?
How to do optimal control with them?
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Illustration: Optimal investment with a twist

I asset price fluctuations modeled by symmetric compound
Poisson process

P̃t = p̃ +
Nt∑
k=1

Yk with i.i.d. Yk ∼ U[−1, 1]

I strategy C = (Ct)0≤t≤1 with |C | ≤ 1 yields expected P&L

E
∫ 1

0
CtdP̃t = E

N1∑
k=1

CTk
Yk

I Question: How to maximize this?

I If controls C are predictable:

E
∫ 1

0
CtdP̃t ≡ 0

E
N1∑
k=1

|Yk |

for any control
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Meyer σ-fields Λ: Definition and some properties

A σ-field on Ω× [0,∞) is called a Meyer σ-field if

I it is generated by càdlàg processes;

I it contains all deterministic Borel-measurable events;

I it is stable with respect to stopping: with Z also (Zs∧t)s≥0 is
Λ-measurable for any t ≥ 0.

Examples:

O, P,

and

Λη = P ∨ σ

(
N.∑
k=1

Yk1{|Yk |≥η}

)

Theorem

C η = sign
(

∆P̃1{|∆P̃|≥η}

)
∈ argmax

C∈Λη , |C |≤1
E
∫ 1

0
CtdPt
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Meyer σ-fields Λ: Definition and some properties

Proof: To argue:

E
∫ 1

0
CtdP̃t ≤ E

N1∑
k=1

|CTk
||Yk |1{|YTk

≥η} ≤ E
N1∑
k=1

|Yk |1{|YTk
≥η}

Observe decomposition of jump times

Tk = (Tk){|Yk |≥η}︸ ︷︷ ︸
Λη−st.time

∧ (Tk){|Yk |<η}︸ ︷︷ ︸
tot.inacc.

yields for Λη-measurable C (with C∞ := 0):

CTk
= C(Tk ){|Yk |≥η}

+ (PC )(Tk ){|Yk |<η}So:

E
∫ 1

0
CtdP̃t = E

N1∑
k=1

CTk
1{|Yk |≥η}Yk + E

N1∑
k=1

(PC )(Tk ){|Yk |<η}
Yk︸ ︷︷ ︸

=0 as pred.stoch.int. wrt. mart.



Illustrative control problem: Irreversible investment

I Classic problem: Dixit and Pindyck (1994), Bertola (1998),
Merhi and Zervos (2007), Riedel and Su (2011), Ferrari
(2015), Al Motairi and Zervos (2017), De Angelis et al.
(2017). . .

I Consider target functional:

Ṽ (C ) = E

[∫
[0,∞)

Pt dCt −
∫

[0,∞)
ρt(Ct) dRt

]
→ max

C≥c0 ↗ càd, adapted
.

P discounted reward process, ρt(c) risk penalty convex in c ,
R risk assessment clock

I Standard assumptions: Pt = e−rt P̃t for compound Poisson
P̃t = p̃ +

∑Nt
k=1 Yk ; ρt(c) = c2/2;dRt = e−rtdt:

E

[∫
[0,∞)

e−rt P̃t dCt −
∫

[0,∞)

1

2
(Ct)

2e−rt dt

]
→ max

C

I New issues: C right- or left-continuous or just làdlàg?

What
is known about P̃t at time of decision on dCt?
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is known about P̃t at time of decision on dCt?



Relaxation of the problem

Theorem

sup
Λ3C≥c0↗, càd

Ṽ (C ) = max
Λ3C≥c0↗

V (C )

where

V (C ) = E

[∫
[0,∞)

ΛPt
∗dCt −

∫
[0,∞)

ρt(Ct) dRt

]

with ΛP the Meyer-projection of P and ∗d-integral defined by∫
[0,∞)

Qt
∗dCt =

∫
[0,∞)

Qt dC
c
t +

∑
t≥0

Qt(Ct − Ct−) +
∑
t≥0

Q∗t (Ct+ − Ct)

for Q∗t = lim supu↓t Qu



Heuristics from first order conditions

First order conditions for optimality of C ∗:

ΛPS ≤ E

[∫
[S ,∞)

∂

∂c
ρt(Ĉt)dRt

∣∣∣∣∣FS

]

with “=” holding true whenever it is optimal to intervene: dC ∗S > 0

If optimal to intervene at S , then for any T with T > S :

E
[

ΛPS − ΛPT

∣∣∣F Λ
S

]
≥ E

[∫
[S ,T )

∂

∂c
ρt(Ĉt)dRt

∣∣∣∣∣F Λ
S

]

≥ E

[∫
[S ,T )

∂

∂c
ρt(ĈS)dRt

∣∣∣∣∣F Λ
S

]

 ĈS ≤ ess infT `S,T =: LΛ
S

 ĈS = c0 ∨ supv∈[0,S] L
Λ
S
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ρt(Ĉt)dRt

∣∣∣∣∣F Λ
S

]

≥ E

[∫
[S ,T )

∂

∂c
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Heuristics from first order conditions

First order conditions for optimality of C ∗:

ΛPS ≤ E

[∫
[S ,∞)

∂

∂c
ρt(Ĉt)dRt

∣∣∣∣∣FS

]

with “=” holding true whenever it is optimal to intervene: dC ∗S > 0
If not optimal to intervene a S , then for next time TS that dC > 0

E
[

ΛPS − ΛPTS

∣∣∣F Λ
S

]
≤ E

[∫
[S ,TS )

∂

∂c
ρt(Ĉt)dRt

∣∣∣∣∣F Λ
S

]

= E

[∫
[S ,TS )

∂

∂c
ρt(ĈS)dRt

∣∣∣∣∣F Λ
S

]

 ĈS ≥ `S ,TS
≥ ess infT `S,T =: LΛ

S

 ĈS = c0 ∨ supv∈[0,S] L
Λ
S



A stochastic representation theorem

Theorem (B. & El Karoui (2004), B. & Besslich (2019))

Under suitable integrability and upper-semicontinuity assumptions,
there exists LΛ ∈ Λ such that

ΛPS = E

[∫
[S ,∞)

∂

∂c
ρt

(
sup

v∈[S ,t]
LΛ
v

)
dRt

∣∣∣∣∣F Λ
S

]
, S ∈ S Λ.

The maximal such LΛ is uniquely determined by

LΛ
S = essinfT∈S Λ,T>S`S ,T , S ∈ S Λ,

where for S < T, `S ,T ∈ F Λ
S is defined by

E
[
PS − PT

∣∣∣F Λ
S

]
= E

[∫
[S ,T )

∂

∂c
ρt(`S ,T )dRt

∣∣∣∣∣F Λ
S

]

on {P
(
RT− − RS− > 0

∣∣F Λ
S

)
> 0} and `S ,T :=∞ elsewhere.



Solutions via a representation theorem

Theorem
Suppose CLΛ

given by

CLΛ

0− := c0, CLΛ

t := c0 ∨ sup
v∈[0,t]

LΛ
v , t ∈ [0,∞),

satisfies

E

[∫
[0,∞)

{
∂

∂c
ρt

(
CLΛ

t

)
(CLΛ

t − c0)

}
∨ 0 dRt

]
<∞.

Then CLΛ
is optimal for the relaxed problem whose value is

V (CLΛ
) = E

[∫
[0,∞)

{
∂

∂c
ρt

(
CLΛ

t

)
(CLΛ

t − c0)− ρt
(
CLΛ

t

)}
dRt

]
<∞.



Explicit solution in the compound Poisson example

Let Pt = e−rt P̃t with P̃t = p̃ +
∑Nt

k=1 Yk for Poisson N with
param. λ, i.i.d. Yk ∈ L2, EYk = m; dRt = e−rtdNt ; ρt(c) = 1

2c
2;

Λ = Λη := P ∨ σ

(
N.∑
k=1

Yk1{|Yk |≥η}

)
 Large jump alerts

Probability of failure to alert: p(η) = P[|Yk | ≤ η].

I p(η) = 1: no alerts, predictable case Λη = P

I p(η) = 0: alerts for all jumps, optional case Λη = O

I p(η) ∈ (0, 1): Meyer case P ( Λη ( O
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Solution in the predictable case

In the case p(η) = 1, i.e. without alerts::

LP
t = a(P̃t− − b), t ∈ [0,∞),

where the constants a, b are given by

a :=
1

E[R∞−]
=

r

λ
,

b := sup
0<T pred.

E
[
e−rT

∑NT
k=1 Yk

]
1− E [e−rT ]

=
E
[∫

[0,∞)

(
supv∈[0,t] P̃v− − p̃

)
dRt

]
E[R∞−]

.

 CP = c0∨ sup0≤v≤. L
P
v left-continuous with exclusively reactive

jumps because jump times are totally inaccessible to controller



Solution in the Meyer case

In the case p(η) ∈ (0, 1) with alerts for some, but not all jumps:

LΛη
t =



0, P̃ηt ≥ b, |∆P̃ηt | ≥ η,
r
λ(P̃ηt − b), P̃ηt ≥ b, |∆P̃ηt | < η,

inf
γ0∈(0,Bη0 ·(b−P̃

η
t ))

f η1 (γ0, 0, P̃ηt ) < 0, P̃ηt < b, |∆P̃ηt | ≥ η,

inf
γ1∈(−Bη1 ·(b−P̃

η
t ),0)

f η0 (0, γ1, P̃ηt ) < 0, P̃ηt < b, |∆P̃ηt | < η

where P̃η := Λη P̃ = (P̃t−+ ∆P̃t1{|∆P̃t |≥η})t≥0 a Meyer-projection,

f η∆ =

(
1− E

[
e−rT

η(γ0,γ1)
])

p − E

[
e−rT

η(γ0,γ1)
NTη(γ0,γ1)∑

k=1

Yk

]
λ
r

(
1− E

[
e−rTη(γ0,γ1)

])
− E

[
e−rTη(γ0,γ1)1{|∆P̃Tη(γ0,γ1)|≥η}

]
+ ∆

,

T η(γ0, γ1) = inf
{
t ∈ {ΛηN > 0}

∣∣∣(|∆P̃t | < η and P̃t− − p̃ ≥ γ0
)

or
(
|∆P̃t | ≥ η and P̃t − p̃ ≥ γ1

)}
.



Solution in the optional case

In the optional case with complete alerts p(η) = 0:

LO
t =



0, P̃t ≥ b, |∆P̃t | > 0,
r
λ(P̃t − b), P̃t ≥ b, ∆P̃t = 0,
r

λ+r (b − P̃t), P̃t < b, |∆P̃t | > 0,

inf
γ∈(−∞,0)

f (γ, P̃t) < 0, mλ
r ≤ P̃t < b, ∆P̃t = 0,

−∞, P̃t < mλ
r , ∆P̃t = 0.

where

f (γ, p) :=

(
1− E

[
e−rT (γ)

])
p − E

[
e−rT (γ)

NT (γ)∑
k=1

Yk

]
λ
r

(
1− E

[
e−rT (γ)

])
− E

[
e−rT (γ)

] ,

T (γ) := inf {t ∈ {N > 0}
∣∣∣|∆P̃t | > 0 and P̃t − p̃ ≥ γ

}
.

Observation: LP
t ←−−−−

p(η)→1
LΛη −−−−→

p(η)→0
LO
t
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Illustration

Figure: P̃η (black), b (Magenta) and optimal controls for η = 0 (blue,
optional), η = 3, η = 6 (green) and η =∞ (red, predictable). The dots
indicate the processes’ value at their jump times.
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Conclusion and Outlook

I continuous-time information modeling most flexible via Meyer
σ-fields

I rich toolbox for mathematically rigorous treatment

I allows for modeling instant signals on jumps

I general solution to irreversible investment problem

I explicit solution in compound Poisson setting with jump size
dependent alerts

I làdlàg controls in general

I continuous interpolation between predictable and optional
information flow

Thank you very much!
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