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Introduction

The term ‘no-good-deal pricing’ in this paper encompasses pricing techniques
based on the absence of attractive investment opportunities – good deals –
in equilibrium. We borrowed the term from [8] who pioneered the calcula-
tion of price bands conditional on the absence of high Sharpe Ratios. Alter-
native methodologies for calculating tighter-than-no-arbitrage price bounds
have been suggested by [4], [6], [12]. The theory presented here shows that
any of these techniques can be seen as a generalization of no-arbitrage pricing.
The common structure is provided by the Extension and Pricing Theorems, al-
ready well known from no-arbitrage pricing, see [15]. We derive these theorems
in no-good-deal framework and establish general properties of no-good-deal
prices. These abstract results are then applied to no-good-deal bounds de-
termined by von Neumann-Morgenstern preferences in a …nite state model1 .
One important result is that no-good-deal bounds generated by an unbounded
utility function are always strictly tighter than the no-arbitrage bounds. The
same is not true for bounded utility functions. For smooth utility functions we
show that one will obtain the no-arbitrage and the representative agent equi-
librium as the two opposite ends of a spectrum of no-good-deal equilibrium
restrictions indexed by the maximum attainable certainty equivalent gains.

A sizeable part of …nance theory is concerned with the valuation of risky
income streams. In many cases this valuation is performed against the back-
drop of a frictionless market of basis assets. Whenever the payo¤ of the focus
asset can be synthesized from the payo¤s of basis assets the value of the focus
asset is uniquely determined and this valuation process is preference-free – any
other price of the focus asset would lead to an arbitrage opportunity. In reality,
however, the perfect replication is an unattainable ideal, partly due to mar-
ket frictions and partly due to genuine sources of unhedgeable risk presenting
themselves, for example, as stochastic volatility. When perfect replication is

1 Each of the no-good-deal restrictions mentioned above is in fact derived from a
utility function: for Bernardo and Ledoit it is the Domar-Musgrave utility, for
Cochrane and Saa-Requejo it is the truncated quadratic utility, and for Hodges it
is the negative exponential utility, see [6].
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not possible – a situation synonymous with an ‘incomplete market’– the stan-
dard Black-Scholes pricing methodology fails because the price of the focus
asset is no longer unique.

One way to overcome this di¢culty is to single out one price of the fo-
cus asset consistent with the price of basis assets. This can be achieved via
the representative agent equilibrium, where the ‘special’ pricing functional
is obtained from the marginal utility of the optimized representative agent’s
consumption, see [20].

A valid objection against the representative agent equilibrium is that it
imposes very strong assumptions about the way the equilibrium is generated.
Alternative route is to look for preference-free price bounds, in the spirit of
[16], which leads to the calculation of super-replication bounds2 . However,
these bounds have a practical shortcoming in that they tend to be rather
wide and hence not very informative.

Recently a new approach has emerged whereby it is accepted that the price
of a non-redundant contingent claim is not unique, but an attempt is made to
render the price bound more informative by restricting equilibrium outcomes
beyond no arbitrage. Typically, one tries to hedge the focus asset with a self-
…nanced portfolio of basis assets to maximize a given ‘reward for risk’ measure
and rules out those focus asset prices that lead to a highly desirable hedging
strategy. Such a procedure gives a price interval for every contingent claim
where the interval is the wider the more attractive investment one allows to
exist in equilibrium.

The idea of good deals as an analogy of arbitrage comes naturally at this
point. Recall that arbitrage is an opportunity to purchase an unambiguously
positive claim, that is a claim that pays strictly positive amount in some
states and non-negative amounts in all other states, at no cost. While the
absence of arbitrage is surely a necessary condition for the existence of a
market equilibrium, it is still a rather weak requirement. Considering a claim
with zero price that either earns $1000 or loses $1 with equal probability, one
feels that, although not an arbitrage, such investment opportunity still should
not exist in equilibrium. One can then de…ne ‘approximate’ arbitrage, or as
we say here ‘good deal’, as an opportunity to buy a desirable claim at no cost.

Historically, good deals have been associated with high Sharpe Ratios. The
Arbitrage Pricing Theory of [18] is a prime example of ruling out high Sharpe
Ratios. Further breakthrough came with the work of [11] who established a
duality link equating the maximum Sharpe Ratio available in the market and
the minimum volatility of discount factors consistent with all prices. While
Hansen and Jagannathan use this result to construct an empirical lower bound
on discount factor volatility, [8] realize that it can be used in the opposite
direction, namely to limit the discount factor volatility and thus to infer the
no-good-deal prices conditional on the absence of high Sharpe Ratios.

2 See [17] for a one-period …nite state setting and [10] for a continuous time model.
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It is well known that outside the elliptic world the absence of high Sharpe
Ratios does not generally imply the absence of arbitrage. Other researchers
therefore tried to come up with reward for risk measures that would automat-
ically capture all arbitrage opportunities. [4] base the de…nition of good deals
on the gain-loss ratio and [12] uses a generalized Sharpe Ratio derived from the
negative exponential utility function. [6] calculates the Hansen-Jagannathan
duality link for good deals de…ned by an arbitrary smooth utility function and
proposes a reward for risk measure generated by the CRRA utility class.

In this paper we point out that, regardless of the speci…c de…nition of good
deals, the nature of the duality restrictions is formalized in the extension theo-
rem, already well known from the no-arbitrage theory3 . The extension theorem
states that any incomplete market without good deals can be augmented by
adding new securities in such a way that the resulting complete market has
no good deals. The important point is that the set of complete market state
prices which do not allow good deals is independent both of the basis and
the focus assets. The pricing theorem uses the above fact to assert that any
no-good-deal price of a focus asset must be supported by a complete market
no-good-deal pricing functional. These results are crucial both for establishing
the theoretical properties of no-good-deal prices, which will be discussed here,
and for practical applications, see for example [6].

The paper is organized as follows: The …rst section reviews the essentials
of no-arbitrage theory and builds the no-good-deal theory in analogous way.
The second section derives abstract versions of the Extension Theorem and
the Pricing Theorem in no-good-deal framework. Section three applies the
theory to desirable claims de…ned by von Neumann-Morgenstern preferences
in …nite state space. The results of this section are summarized in the no-good-
deal pricing theorem of section four, where we also discuss the similarities and
di¤erences between the …nite and in…nite state space. The …fth section gives a
geometric illustration of the theory by taking an example from the literature
– desirable claims determined by Sharpe ratio as in [8]. Finally, section six
concludes.

1 Arbitrage and good deals

In this section we brie‡y describe the axiomatic theory of no-arbitrage pricing4

and show how it can be analogously used to de…ne good deals and no-good-
deal prices. The model of security market is an abstract one, the application
to a multiperiod security market is spelled out in Clark and in the references
mentioned in the introduction. One should bear in mind that in this section

3 Incidentally, it is Ross again (we already mentioned his APT contribution) who
has introduced the extension theorem to …nance in his 1978 paper on the valuation
of risky streams. The extension theorem in no-arbitrage setting has been studied
extensively in the realm of mathematical …nance, starting with [15].

4 This section is based on [7].
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the origin 0 is not to be taken literally as a position with zero wealth, rather
it is the position relative to an initial endowment.

We will have a topological vector space X of all contingent claims. The
space of all continuous linear forms on X (strong dual) is denoted X¤: The
vector space X will be endowed with a natural ordering ¸ which de…nes the
positive cone5 X+ ´ fx 2 X : x ¸ 0g: The cone of strictly positive claims is

X++ ´ fx 2 X : x > 0g = X+nf0g:

Suppose we have a collection of claims with predetermined prices, so called
basis assets. These claims generate the marketed subspace M and their prices
de…ne a price correspondence p on this subspace. The cone of strictly positive
claims has the following role:

De…nition 1.1. A strictly positive claim with zero or negative price is called
arbitrage.

De…nition 1.2. Let M be a linear subspace of X: A linear functional p :
M ! R is positive if p(m) ¸ 0 for all m 2 M \ X+ : We say that p is strictly
positive if p(m) > 0 for all m 2 M \ X++ :

Standing assumption 1 There is a strictly positive marketed claim.
Clark shows that under this assumption no arbitrage implies that the price

correspondence p is in fact a strictly positive linear functional. This result
guarantees, among others, unique price for each marketed claim.

Now we move on to de…ne generalized arbitrage opportunities – good deals.
Suppose we have a convex set K disjoint from the origin which we interpret
as the set of all desirable claims. At the moment we do not specify how the
set of desirable claims is obtained or what are its additional properties. The
relationship between arbitrage and strictly positive claims is generalized as
follows:

De…nition 1.3. A desirable claim with zero or negative price is called a good
deal.

Frictionless trading leads to the following de…nition:

De…nition 1.4. A claim is virtually desirable if some positive scalar multiple
of it is desirable. The set of all virtually desirable claims is denoted C++ ,

C++ =
[

¸>0

¸K

5 In no-arbitrage pricing one works with natural (canonical) ordering. Thus, for
example, positive cone in Rn is formed by n-tuples with non-negative coordinates,
positive cone in Lp by non-negative random variables etc. Note that a claim
(1;0; 0) 2 R3 is strictly positive in the canonical ordering on R3 but at the same
time it is equal to zero with positive probability, therefore ‘strictly positive in X’
is not to be confused with strictly positive with probability one. The term ‘strictly
positive’ will only be used when we have in mind the canonical ordering on X:
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A virtually desirable claim at zero or negative price constitutes a virtually
good deal. When markets are frictionless the presence of a virtually good deal
implies the existence of a good deal, simply by re-scaling the portfolio which
gives the virtually good deal. Thus the absence of good deals implies absence
of virtually good deals and vice versa.

Proposition 1.5. There are no good deals if and only if there are no virtually
good deals.

Geometrically the set of all virtually desirable claims is the convex cone
with vertex at 0 generated as a convex hull of 0 and the set of desirable claims
K.

0

x2

x1

A’

A

K

Fig. 1. The cone of virtually good deals C (AOA0) generated by the set of good
deals K

To bene…t fully from the analogy between arbitrage and good deals we have
to realize that, similarly to X+ ; the cone C ´ C++ [ f0g de…nes ordering on
the space of all contingent claims by putting x1 º x2 when x1 ¡ x2 2 C and
x1 Â x2 when x1 ¡ x2 2 C++ : Similarly as in De…nition 1.2 we can speak
of C-positive functionals and C -strictly positive functionals. The key point is
that the link between no arbitrage and strictly positive pricing rule carries
over to good deals.

Theorem 1.6. Suppose that there is a (virtually) desirable marketed claim
and the price correspondence p on the marketed subspace M gives no good
deals. Then p : M ! R is a C-strictly positive linear functional, i.e. p(m) is
unique for all m 2 M; p(m1 + m2) = p(m1) + p(m2) for all m1; m2 2 M and
p assigns strictly positive price to all (virtually) desirable marketed claims.

Proof. The proof follows from the proof of Theorem 1 in [7] when X+ is
replaced with C , or equivalently > with Â.
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Since we are guaranteed that p is a linear functional we can de…ne a sub-
space M0(p) of all claims with zero price which plays essential role in the
extension theorem:

2 Extension theorem

2.1 The idea

The extension theorem states that an incomplete market without good deals
can be augmented by adding new securities in such a way that the resulting
complete market has no good deals. The important point is that the set of
complete market state prices which provide no good deals is independent both
of the basis and the focus assets present in the market. The pricing theorem
uses the above fact to provide a complete characterization of the no-good-deal
price region since any no-good-deal price of a focus asset must be supported
by a complete market no-good-deal pricing functional.

The pricing function on the marketed subspace de…nes a yet smaller sub-
space of marketed claims with zero price, denoted M0(p):

De…nition 2.1. For a given strictly positive pricing functional p on M we
say that

M0(p) = fm 2 M : p(m) = 0g
is a zero investment marketed subspace6 .

In the absence of good deals this subspace must be disjoint from the set
of good deals K;

M0(p) \ K = ;:

As the …gure 2 suggests it is quite natural to expect that if M0(p) is disjoint
from K then there is a hyperplane H containing M0(p) and still disjoint from
K. The separating hyperplane H is interpreted as the zero investment sub-
space of the completed market. The fact that H is disjoint from K guarantees
that there are no good deals in the completed market.

2.2 Technicalities

Mathematicians distinguish among three types of separation of two convex
sets. Weak separation means the separating hyperplane may touch both sets.
Strict separation signi…es that the separating hyperplane does not touch either
of the convex bodies but can come arbitrarily close to each of them. Strong
separation occurs when there is a uniform gap between the separating hyper-
plane and both of the convex sets. It is hard to …nd references to semistrict
6 The term ‘zero investment portfolio’ was introduced by [13], alternatively one

could use the term ‘zero cost marketed subspace’.
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M0(p)

H

K

Fig. 2. Illustration to the Extension Theorem

separation, which is what we need here, because the separating hyperplane
will touch M0(p) but we would like it to be disjoint from K.

By drawing pictures in R2 one is tempted to conjecture that semistrict
separation is always possible in …nite dimension. However, this conjecture is
false, as a three dimensional example in Lemma A.1 shows. Thus the situation
in …nite dimension is quite clear: K and M0(p) can always be weakly sepa-
rated, and it follows from Lemma A.1 that in general one cannot expect more.
When K is closed and bounded the two sets can be strongly separated, and
when K is open the two sets can be separated semistrictly, see for example
[2].

In in…nite dimension not even weak separation is available automatically,
for a nice counterexample see [21]. Weak separation is available when K has
non-empty interior and semistrict separation is possible when K is open.
Strong separation becomes possible when K is compact. These facts moti-
vate the following de…nition.

De…nition 2.2. We say that the set of desirable claims K is boundedly gen-
erated if there is a closed bounded set B ½ K such that any desirable claim
in K can be obtained as a scalar multiple of a desirable claim in B:

For boundedly generated sets of desirable claims we obtain a clear-cut
result both for the extension and pricing theorem thanks to weak compactness
of bounded sets in standard probability spaces.

Theorem 2.3 (Extension Theorem). Suppose X = Lq(; F ; P ); 1 < q <
+1; the set of good deals K is closed and boundedly generated and the zero
investment marketed subspace is closed. Then there is a C -strictly positive
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continuous linear extension of the pricing rule p on the marketed subspace to
the whole market if and only if there is no good deal.

Proof. See Appendix A.

De…nition 2.4. Suppose we …x a set of desirable claims K with the implied
cone C of virtually desirable claims. A continuous C-strictly positive func-
tional on X is called a no-good-deal pricing functional7 . The set of all such
functionals is denoted C¤

++

C¤
++ = f' 2 X¤ : '(x) > 0 for all x 2 Kg :

Making use of the Extension Theorem we can completely characterize the
no-good-deal price region for several focus assets jointly8 .

Theorem 2.5 (Pricing Theorem). Suppose X is an Lp space , 1 < p <
+1, and the set of desirable claims is closed and boundedly generated. Let us
have a closed marketed subspace M in which prices are given by a C-strictly
positive and continuous linear functional Á. Let there be further m focus assets
with payo¤s y1; y2; : : : ; ym ; no-good-deal price of which we want to …nd: Then

a) the no good deal price region P for these claims is given as

P =
©
('(y1); : : : ; '(ym)) 2 Rm : ' 2 C¤

++ and 'jM = Á
ª

;

where 'jM is the restriction of ' to M;

b) P is a convex set in Rm;
c) de…ning N ´ span(M;y1; y2; : : : ; ym) the dimension of the price region

P satis…es

dim P = codimN M (1)

which is the codimension of the marketed subspace in the enlarged marketed
subspace N:

d) the no-good-deal price of yi is unique if and only if yi is redundant, that
is yi 2 M

e) let K1 and K2 be two boundedly generated sets of desirable claims,
K1 + "B1 ½ K2 for some " > 0, where B1 is a unit bal l in X in strong
topology. Let P1 and P2 be the corresponding no-good-deal price regions. Then

clP2 ½ rel ¡ intP1:

Proof. See Appendix A

7 In practical applications it is unusual to work with abstract linear functionals. For
di¤erent representations of complete market pricing rules see e.g. [9], page 104.

8 For discussion of these results see Theorem 4.1.
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3 Desirable claims and agent preferences

The results derived so far were concerned with an abstract set of good deals.
In this section we will show how desirable claims can be determined by agent
preferences, in particular by expected utility, and examine when good deals
de…ned in this way include all arbitrage opportunities. This approach allows to
formulate a whole range of equilibrium restrictions as we choose K smaller or
larger. We discuss two limiting cases of no-good-deal pricing – the no-arbitrage
pricing and representative agent equilibrium. We only have a complete answer
for X …nite dimensional, so we stick to this case from the beginning, leaving
the technical issues related to in…nite dimension to section 4.2.

Consider a preference relation º¤ which is a) convex, in the sense that
the level set fx 2 X : x º¤ yg is convex for all y 2 X ; b) X++ strictly
increasing, i.e. x ¡ y 2 X++ implies x Â¤ y; c) continuous, i.e. both sets
fx 2 X : x Á¤ yg; fx 2 X : x Â¤ yg are open.

For any strictly increasing utility function U the preference relation

x Â¤ y , EU(x + wr) > EU (y + wr) (2)

satis…es the conditions a), b) and c). The reference point wr is very often
taken as wealth resulting from the risk-free investment, with x and y be-
ing excess returns. The analysis remains valid, however, even when reference
wealth level wr is stochastic. We may want to think of wr ; for example, as the
representative agent’s optimal wealth derived from investing into basis assets
only.

Let 1 be a claim that pays 1 unit of the numeraire in each state of the
world. Let us take a non-negative number a and de…ne K(a) as the upper
level set

K(a) = fx 2 X : x º¤ a1g:

Thus we obtain a family of sets of desirable claims indexed by the desirability
level a9 : The quantity a is interpreted as the certainty equivalent gain over
and above the reference wealth level wr . Monotonic transformations of a de…ne
various, but in essence equivalent, reward for risk measures10 .

Note that if a claim x is desirable then all claims x + X+ are desirable
too, which is a natural property that all ‘good’ sets of desirable claims should
satisfy.
9 This works well for smooth utility functions. Bernardo and Ledoit use Domar-

Musgrave (piecewise linear) utility function which gives K (a) = K(b) for all a >
0; b > 0: The widening of the set of desirable claims is not achieved by changing
the parameter a but rather by changing the shape of the utility function, that is
by varying the gain-loss ratio – the ratio of slopes of the two linear parts of the
function.

10 Not to be confused with ‘coherent risk measures’, of [1]. As noted in [12], the
lower good-deal bound is a coherent risk measure in the sense of Arztner et al.,
whereby the set of ‘acceptable risks’ is identi…ed with the set of desirable claims.
See also [14]



10 Aleš µCerný and Stewart Hodges

0

a
b
c

Kc

Fig. 3. Sets of desirable claims Ka ¾ Kb ¾ Kc indexed by desirability levels a <
b < c

The key question is, whether, or under what assumptions, the set of de-
sirable claims is boundedly generated. First, let us discuss situations when it
is not.

De…nition 3.1. The set K (a) has an asymptote x 2 X if f¸xj¸ 2 Rg\K(a) =
; and for any " > 0 f¸xj¸ 2 Rg\K(a ¡ ") 6= ;:

Clearly, unless K(a) is asymptote-free one cannot hope, in general, that
it will be boundedly generated. With this observation in mind we proceed
to examine sets of desirable claims generated by Von Neumann-Morgenstern
preferences.

3.1 Arbitrage subsumed by good deals

In order for no-good-deal pricing to be economically meaningful the absence of
good deals must imply the absence of arbitrage. For this to be true each strictly
positive claim must be virtually desirable, mathematically C++(a) ¶ X++ :
In general not all arbitrage opportunities will be covered by virtually good
deals. This leads us to the following de…nition:

De…nition 3.2. We say that the preference relation º¤is arbitrage-sensitive
if and only if for any desirability level a and any strictly positive11 claim x a
su¢ciently large scalar multiple of x is preferred to the claim a1.

In other words arbitrage sensitivity requires that a su¢ciently high posi-
tion in any arbitrage opportunity gives an (arbitrarily) good deal. A simple
example of strictly increasing preferences that do not satisfy this requirement
is given below.

11 Note again that strictly positive does not mean strictly positive with probability
one, but rather non-negative and di¤erent from zero. See also the footnote in
section 1.



The Theory of Good-Deal Pricing in Financial Markets 11

0 x

y

K

Fig. 4. Set of desirable claims K such axes x and y are not virtually desirable

The indi¤erence curve has two asymptotes, one vertical and one horizontal.
In such a case the set of virtually good deals will contain the interior of the
positive quadrant but not the axes x and y:

In the case of von Neumann-Morgenstern preferences the arbitrage sen-
sitivity condition is met by unbounded utility functions (Lemma B.3), but
it is violated by al l bounded utility functions, because strictly positive claims
which pay nothing with su¢ciently high probability do not constitute virtu-
ally desirable claims, see Lemma B.2. At the same time the ‘inside’ of positive
orthant (that is all claims which are strictly positive with probability 1) is
virtually desirable. Thus to prevent arbitrage opportunities one must take

C+ = cl
[

¸>0

¸K

instead of

C+ =
[

¸>0

¸K:

Although this strengthening of no-good-deal equilibrium is purely cosmetic
from the practical point of view, it highlights a di¤erent problem. Since one
is not guaranteed that C+ % X+, the no-good-deal price bounds generated
by bounded utility functions are not necessarily tighter than the no-arbitrage
bounds. This problem is pointed out in Bernardo and Ledoit (2000) and it
is present equally in Sharpe Ratio restrictions of [8] and generalized Sharpe
Ratio analysis of [12].

3.2 Arbitrage as a limiting case of good deals

Suppose now that the preferences are arbitrage sensitive; i.e. C++(a) ¶ X++

for all a 2 R. At the same time the sets C++(a) become progressively smaller
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as the desirability level a increases. It is interesting to see under what condi-
tions good deals reduce to arbitrage in the limit, that is under what circum-
stances do we have \

a¸0

C++(a) = X++:

De…nition 3.3. We say that the preference relation º¤ is downside-sensitive
if each ray generated by a non-positive claim is dominated by a claim a1
where a is a su¢ciently large positive number.

As an immediate consequence we have

Proposition 3.4. For preferences which are arbitrage-sensitive no arbitrage
is a limiting case of no good deal equilibria as a ! 1 if and only if the
preference relation is downside-sensitive.

For von Neumann-Morgenstern preferences to be downside-sensitive the
generating utility function must discount negative outcomes su¢ciently heav-
ily,

lim
x!¡1

x

U (x)
= 0 (3)

as demonstrated in Lemma B.4. This condition is satis…ed by all frequently
used utility functions, except for the Domar-Musgrave utility, see footnote 9.

More importantly, by virtue of Lemma B.1 the downside sensitivity prop-
erty (3) guarantees that the sets of desirable claims are boundedly generated.

Theorem 3.5. For any unbounded utility function satisfying

lim
x!¡1

x

U (x)
= 0

the set of desirable claims K(a) is boundedly generated for any a 2 R.

Proof. See Appendix B.

3.3 Representative agent equilibrium as a limiting case

Suppose for simplicity that the reference wealth level is wr = 0: As a ! 0
the cone of virtually good deals is getting wider and eventually becomes a
hyperplane provided that the indi¤erence surface is su¢ciently smooth. At
the same time the cone of complete market state prices becomes narrower
until it …nally collapses into the gradient of indi¤erence surfaces.

In the presence of basis assets we …rst …nd the market portfolio wM that
achieves the maximum certainty equivalent gain aM : It is clear that if we add
more assets then the attainable certainty equivalent gain will be at least aM .
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aa
a > 0

C¤(a)

C(a)

K (a)
0

a = 0

C¤(0) = fg0g

a
K(0)

0

C(0)

Fig. 5. Set of desirable claims K (a) for a! 0

The condition a · aM is now equivalent to requiring that the new asset does
not shift the e¢cient frontier

EU (Z + wM ) ¡ EU(wM ) · 0; (4)

where Z is the excess return of the new asset with respect to the market
portfolio. For Z su¢ciently small and U su¢ciently smooth we have EU (Z +
wM ) ¡ EU (wM) ¼ EU 0(wM )Z = 0, the last equality being the consequence
of the no-good-deal condition (4). This implies that the new claim must be
priced with the change of measure proportional to the marginal utility of the
representative agent. When there are no basis assets this amounts to risk-
neutral pricing12 because U 0(Rf w0) is constant. We formalize this intuition
in the following section.

4 No-good-deal pricing theorem for utility-based
equilibrium restrictions

4.1 Finite state space

In a …nite state model with equilibrium restrictions generated by an un-
bounded utility function one obtains a clear-cut characterization of no-good-
deal price bounds.

Theorem 4.1. Suppose dim X < +1. Let us have a downnside-sensitive
unbounded (arbitrage-sensitive) utility function U, which is once di¤erentiable
and strictly concave. Denote the set of all claims with desirability level a or

12 Not to be confused with the pricing under risk-neutral probabilities. Here we mean
the risk-neutral valuation under objective probabilities, one which is frequently
used in macroeconomics.
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higher as K(a): Let there be a marketed subspace M in which there is no
arbitrage and denote M0 the set of marketed claims with zero price. Assume
that there is a risk-free security with return Rf . Let there be further m focus
assets with payo¤s y1; y2; : : : ; ym; and let us denote P (a) ½ Rm the region
of prices of the focus assets such that no claim in the extended market has
desirability level exceeding a: Then

a)
sup

w2M0

U(w) ´ aM < +1

is achieved in M0. Let us denote the unique argmax wM – the market portfolio.
b) P (a) is empty for a < aM and it is a non-empty convex set for a ¸ aM ;
c) de…ning N ´ span(M;y1; y2; : : : ; ym) the dimension of the price region

P (a) satis…es
dim P (a) = codimN M (5)

for a > aM , whereas P (aM ) is a singleton

P (aM ) = f
µ

EmMy1

Rf
;
EmMy2

Rf
; : : : ;

EmM ym

Rf

¶
g (6)

with mM =
U 0(wM)

EU 0(wM)

d) if codimN M > 0; that is if at least one focus asset is non-redundant,
then for all a and b such that aM · a < b

clP (a) ½ rel ¡ intP (b);

that is for a < b the no-good-deal price region P (a) is strictly smaller than
P (b)

e) denoting PNA the no-arbitrage price region for the focus assets we have

lim
a!+1

P (a) = PN A

that is [a2RP (a) = PN A:
f) if codimN M > 0 then for any desirability level a the no-good-deal price

region is strictly smaller than the no-arbitrage price region.

Remark 4.2. 1. One needs an unbounded utility function to make sure that
good deals include all arbitrage opportunities. A bounded utility function
leaves out strictly positive claims which are equal to zero with su¢ciently
high probability. For the same reason the set of good deals de…ned by a
bounded utility function need not be asymptote-free, in which case one
cannot expect property d) to hold.

2. The condition
lim

x!¡1
x

U (x)
= 0

is necessary (and su¢cient) for no-good-deal restrictions to reduce to no-
arbitrage restrictions in the limit. For unbounded utility functions this



The Theory of Good-Deal Pricing in Financial Markets 15

condition implies that the sets of good deals are asymptote-free. In …nite
dimension asymptote-free set is always boundedly generated (see the proof
of Theorem 4.1).

3. Existence of a risk-free security simpli…es the pricing formula (6) but
this assumption is not necessary. It su¢ces to have a marketed claim x0

which is strictly positive, in fact desirable would su¢ce, see the proof of
Theorem 2. The pricing formula has to be adjusted accordingly, replacing

Rf with
EU 0(wM)

x0
p0

EU 0(wM) ; where p0 > 0 is the price of x0.
4. Smoothness of U is necessary (and su¢cient) to obtain the singleton prop-

erty of P (aM ). Strict concavity is su¢cient but not necessary, in addition
it implies uniqueness of the market portfolio wM . The smoothness as-
sumption is relaxed in [3], whose results imply that in general P (aM ) is
non-empty but not necessarily a singleton when X = L1:

4.2 In…nite state space

We do not know how to rephrase Theorem 5 in an in…nitely dimensional state
space. Let us at least summarise some of the important di¤erences that make
the problem in in…nite dimension harder and more interesting.

1. Continuity: Expected utility in …nite dimension is automatically contin-
uous. In in…nite dimension continuity is determined by the left tail of the
utility function and the topology. For example, for a utility function with

lim
x!¡1

U 0(x)

jxj±¡1
= const

the expected utility is continuous in Lp; p ¸ ± ¸ 1. With continuous ex-
pected utility Extension Theorem is available via Hahn-Banach theorem.
Similarly, with U de…ned on the whole real line the expected utility is
continuous in L1 ;this fact is used in [3].

2. No arbitrage vs. bounded attractivness: In …nite dimension no ar-
bitrage implies that maximum certainty equivalent gain attainable in the
marketed subspace is always …nite. In in…nite dimension this is no longer
true, one can have no arbitrage but yet the attractiveness of self-…nanced
investment opportunities may be unbounded. Consider, for example, a
complete market where the state of the world is determined by the ran-
dom variable X with Â2(1) distribution. Assume that the risk-free rate
is 0 and suppose the state prices are given by the following state price
functional (change of measure)

m(X) = const
e

X
2

1 + X
:

Since E e
X
2

1+X is …nite the constant above can be set to satisfy

Em = 1:
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It is known, see for example [6], that the certainty equivalent gain for the
negative exponential utility in a complete market is

aM = Em ln m:

However in this case aM = 1 as the integral

Em ln m =

Z 1

0

e
x
2

1 + x
[x ¡ ln(1 + x)]

e¡ x
2

p
x

dx

diverges at the upper bound. As we pointed out above, expected utility is
continuous in this case.

3. Asymptotes: As in …nite dimension, asymptotes can only be strictly
positive, and such asymptotes can exist only when utility is bounded. For
unbounded utility satisfying limx!¡1 x

U(x)
= 0 any set of desirable claims

is asymptote-free. However, unlike in …nite dimension, this does not imply
that the set of desirable claims is boundedly generated. One can easily see
this by examining a sequence of strictly positive rays which have non-zero
payo¤ with increasingly smaller probabilities. In other words, the positive
cone in in…nite dimension is not boundedly generated by von Neumann-
Morgenstern preferences. This is really caused by the upper tail of the
utility function, thus it has nothing to do with continuity of preferences.

5 Geometric illustration - Sharpe ratio restrictions

The simplest illustration of the duality between the set of desirable claims
and the set of no-good-deal complete market pricing functionals comes from
the mean-variance framework. The term ‘good deal’ was introduced by [8] in
a speci…c situation where desirable claims are those with high Sharpe ratio
of the excess return. This particular application of no-good-deal equilibrium
provides a very nice geometric illustration of the theory developed in sections
1 and 2.

It is convenient to have X ´ L2: Denoting h the bound on Sharpe ratios
which are acceptable in equilibrium the set of desirable claims is given as

K(h) = fx 2 X :
Exp

Ex2 ¡ (Ex)2
¸ hg:

We note that the cone of virtually desirable claims C++(h) is identical to
K(h) and it can be rewritten more conveniently as

C(h) = K(h) = fx 2 X :
Ex

jjxjj ¸ hp
1 + h2

g;

where jj ¢ jj is the L2 norm. The geometry of the cone of desirable claims is
simple – it is a circular cone with the axis formed by vector 1 2 L2 and the
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angle at the vertex is ®; such that cos® = hp
1+h2 ; and consequently cot® = h,

see Figure 2.
Recall that no-good-deal price functionals ' must satisfy '(K) > 0 and

that each continuous linear functional ' on L2 is uniquely represented by a
random variable m 2 L2 as follows

'(x) = Emx:

Thus the cone of no-good-deal pricing rules can be identi…ed with the cone of
discount factors

~C ¤
++(h) = fm 2 L2 : Emx > 0 for all x 2 C++(h)g:

Note that every no-good-deal discount factor must be at sharp angle with
every desirable claim: But since the shape of C++(h) is very simple we can
characterize ~C ¤

++(h) explicitly.

i

A

A’

O

` ¯

®

B

B’

`
Fig. 6. Cone of good deals K (AOA’) and the cone of discount factors ~C¤ (BOB’)
determined by maximum attainable Sharpe ratio h = cot®.

As the picture shows the cone of no-good-deal discount factors is again a
circular cone with the axis 1 2 L2 and with the angle at the vertex ¯ = ¼

2
¡®;

that is

~C ¤(h) = fm 2 L2 :
Emp

Em2 ¡ (Em)2
> cot(

¼

2
¡ ®) = tan® =

1

cot®
=

1

h
g:

In other words any discount factor m 2 L2 that prevents Sharpe Ratios higher
than h must satisfy Em

V(m)
¸ 1

h
which is the condition obtained by [11].

5.1 Preventing arbitrage

The above relationship describes the duality between C++(h) and C¤
++(h) but

it does not guarantee that the functionals in C ¤(h) are strictly positive. To
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…x this problem one has to rule out both high Sharpe ratios and all arbitrage
opportunities. However, one cannot take C++(h)[X++ as the set of desirable
claims because this set is not convex and the extension property would be
immediately lost. Cochrane and Saá -Requejo therefore take convex hull of
C++(h)[ X++ as the set of desirable claims, which means they are ruling out
not only high Sharpe ratios and arbitrage opportunities but also all convex
combinations of the two, that are generally neither arbitrage opportunities
nor high Sharpe ratios. It can be shown, however, that this set of desirable
claims is generated by a truncated quadratic utility function, and that it can
be associated to a level of a generalized Sharpe ratio, see [6].

6 Conclusions

The theory presented here shows that pricing techniques which impose equi-
librium restrictions stronger than no arbitrage can be seen as a generaliza-
tion of no-arbitrage pricing. We derived the Extension and Pricing Theo-
rem in no-good-deal framework and showed that the Extension Theorem cap-
tures the trade-o¤ between equilibrium outcomes and discount factor restric-
tions. We have shown that equilibrium restrictions implied by von Neumann-
Morgenstern preferences contain no-arbitrage and representative agent equi-
librium as the two opposite ends of a spectrum of possible restrictions. In …nite
state models we have settled the question of how tight are the no-good-deal
price bounds generated by a utility function. It is somewhat surprising that
price bounds implied by strictly increasing utility functions are not always
tighter than the no-arbitrage bounds. At the same time our results moderate
the Bernardo-Ledoit critique of CRRA bounds – in …nite state models these
are always tighter than the no-arbitrage bounds.
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µCerný’s doctoral dissertation, which was supported by the European Commis-
sion’s PHARE ACE Programme 1995. Both authors wish to thank Antonio
Bernardo, John Cochrane, Martin Cripps, Marcus Miller, David Oakes and
the participants at the 1st World Congress of Bachelier Finance Society for
helpful comments.
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Appendix A

Proof of Theorem 2.3
Since K is boundedly generated, there is a closed bounded set B ½ K

such that K ½
S

¸>0 ¸B: Therefore, it is enough to strictly separate B and
M0(p):

With 1 < p < 1 Lp is a re‡exive space. By Theorem 19 C in Holmes1 3

M0(p) and B can be strictly separated by a continuous linear functional, i.e.
there is ' 2 X¤ such that '(M0(p)) = 0 and '(B) > 0: However, this implies
'(C++) > 0:

By standing assumption 1 there is a marketed strictly positive claim x0.
De…ne H , M0('). Because H does not intersect C++ , and therefore X++ ,
we have x0 =2 H . Finally, because H is a hyperplane we have the spanning
property X = H © Span[x0]; so that each claim y 2 X has a unique de-
composition y = yH + ¸yx0, where yH 2 H: By construction p(y) , ¸yp(x0)

is a no-good-deal price of claim y. It is easily seen now that ~p =
p(x0)
'(x0)

' is
an extension of the original pricing rule p. Since ' is C-strictly positive and
continuous ~p must be C -strictly positive and continuous which completes the
proof.

Proof of Theorem 2.5
a) By Theorem 2 there is no good deal in N if and only if there is a C \N -

strictly positive continuous pricing functional ' in N: It is the continuity that
we are worried about. We will show that no good deal in N implies that N0(')
is closed and disjoint from K. Then the assertion follows from the Extension
Theorem.

Functional ' has to price correctly all claims in M; 'jM = Á: This implies
(N ¾)N0(') ¾ M0(Á): Note, however, that codimN M0(Á) · m + 1 and
hence codimN0(')M0(Á) · m + 1: In other words N0(') = M0(Á) © L where
dimL is …nite. Since Á is continuous and M is closed, the zero investment
marketed subspace M0(Á) is closed in X: Then also N0(') = M0(Á) © L is
closed because L is …nite dimensional. Now ' is K \ N -strictly positive and
therefore N0(') \ K = ;:

b) The convexity of the no-good-deal price region follows from the convex-
ity of complete market no-good-deal state prices and the part a). Namely, if
p1; p2 2 P then by assertion a) there exist functionals '1; '2 2 C¤

++ ; 'i(y) =

13 For completeness we provide the proof of that part of the theorem which is relevant
to us and which Holmes leaves as an exercise: It is known that the unit ball U (X)
in a normed re‡exive space is weakly compact (Theorem 16 F). Furthermore for
convex sets ‘closed’ is equivalent to ‘weakly closed’ (Corollary 12 A). J is closed,
convex and bounded, therefore weakly compact. N is convex, closed and therefore
weakly closed. The separation theorem for one closed and one compact convex set
(Corollary 11 F) asserts that N and J can be strictly separated by a weakly
continuous functional Ã, however such functional is continuous in the original
topology on X as well (Theorem 12 A).
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pi ; that price correctly all claims in M: Of course, the functional ¸'1 + (1 ¡
¸)'2 2 C ¤

++ prices claims in M correctly, too, and therefore by assertion a)

(¸'1 + (1 ¡ ¸)'2)(y) = ¸p1 + (1 ¡ ¸)p2 2 P:

c) To prove the last statement we will …rst demonstrate that the cone of
no-good-deal pricing functionals C¤

++ is open. Let us take B as in the proof
of Theorem 2 and denote · = supx2B jjxjj.

i) Take an arbitrary ' 2 C ¤
++ and denote "(') = infx2B '(x): We claim

that " > 0: For the purpose of contradiction suppose that " = 0: Then there
is a sequence xn 2 B such that lim '(xn) = 0: Since B is closed, convex
and bounded, from the re‡exivity of X follows that B is weakly sequentially
compact (Holmes, Theorem 16F and Corollary 18 A). Hence there is a sub-
sequence xk converging weakly to x 2 B implying '(x) = 0: However, x 2
B ½ C++ contradicts ' 2 C ¤

++ :
Thus '(K ) ¸ " > 0: Taking an arbitrary functional Ã 2 X ¤ such that

jjÃjj < "
2· and x 2 X++ we have

(' + Ã)(x) > '(x) ¡ jjÃ jj jjxjj > " ¡ "

2·
· > 0

which means that ' +Ã 2 X¤
++ whenever jjÃjj < "

2· . Since ' is arbitrary this
means that X¤

++ is open in the norm topology on X¤.

ii) Let us …rst assume that codimN M = m. Applying Hahn-Banach theo-
rem to the subspace span(M [ fy1; : : : ; yj¡1; yj+1; : : : ; ymg) and the point yj

one can …nd linear functionals Ãj ; j = 1; : : : ; m such that Ãj (M) = 0 for all j
and Ãj(yi) = ± ij (Kronecker’s delta). By the Extension Theorem the pricing
rule on M can be extended to a strictly positive functional '0 that correctly
prices securities in M: Note that functionals '0 + ¸Ãj too price these securi-
ties correctly and moreover for j j̧ su¢ciently small ' + ¸Ã j will be a strictly
positive functional by the result in i). Thus the price vectors '0(y) + ¸Ãj(y)
give no-good-deal prices for securities y = (y1; : : : ; ym ) consistent with the
predetermined prices of securities in M: By construction Ãj(y) are linearly
independent vectors in Rm and recall that dimP is de…ned as the dimension
of the a¢ne hull of P ¡'0(y) (which is a linear subspace) thus the dimension
of the price region P is at least rank(Ã1(y); : : : ; Ãm(y)) = m; and of course it
cannot be more than m:

iii) In a general case a certain number of vectors yi; say m ¡ l ; will lie
in the marketed subspace M: However, for any ~' that prices correctly claims
in M the di¤erence ~'(yi) ¡ '0(yi) will be zero, hence if yi 2 M it will not
contribute to the dimensionality of the price region.

That leaves l claims that do not belong to the marketed subspace and
these we partition into two groups – the …rst ~m claims c0

1 = (y1; : : : ; y ~m) that
are linearly independent and the remaining l ¡ ~m claims c0

2 = (y ~m+1; : : : ; yl )
that can be expressed as a linear combination of the …rst ~m claims, c2 = Dc1

with D 2 R(l¡ ~m)£ ~m.
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First of all it is clear that there cannot be more than ~m linearly inde-
pendent vectors of the type Ã(y1); : : : ; Ã(yl ): If there were more, one could
…nd a non-trivial linear combination of these vectors that annuls the …rst ~m
coordinates,

P
i i̧Ãi(c1) = 0. However, such a linear combination annuls the

remaining l ¡ ~m coordinates as well since

X

i

¸iÃi(c2) =
X

i

¸iÃi(Dc1) =
X

i

i̧DÃi(c1) = D

Ã
X

i

¸iÃi(c1)

!
= 0:

On the other hand one can …nd ~m linearly independent prices of the desired
form by the procedure described in ii). Thus dim P = ~m and by construction
~m = codimN M:

d) Suppose there is just one security to be priced, say security yi and
denote its no-good-deal price region P ½ R1: We set N = span(M [ fyig)
and have codimN M = 0 if and only if yi 2 M: By de…nition the no-good-deal
price of yi is unique if and only if dimP = 0: Then the assertion c) implies
that y is uniquely priced if and only if y is redundant.

e) i) De…ne B1, B2 and ·1, ·2 in analogy to B and · in c). We want to
show that for all '2 2 C¤

2++ and for all Ã 2 X¤ such that jjÃjj < "º
2·1

we have

'2 + Ã 2 C ¤
1++ .

Let us take an arbitrary '2 2 C¤
2++ which implies '2(J1 + "Ball(0; 1)) > 0

and consequently
'2(J1) ¡ "jj'2jj > 0: (A.1)

Furthermore, if '2 prices correctly all the basis assets then jj'2jj ¸ jjÁjj = º:
The standing assumption 1 implies º > 0: Taking an arbitrary Ã 2 X¤ such
that jjÃjj < "º

2·
and making use of (A.1) we have

('2 + Ã)(J1) ¸ "jj'2jj ¡ jjÃjj· ¸ "º ¡ "º

2·
· > 0,

QED.
ii) We can now construct linear functionals Ãi as in c) ii) and denote

c ´ maxi=1;:: :;m jjÃijj. Let ~B± be a ±-ball in Rm with L2 norm. By construction
of functionals Ã i we have

f
mX

i=1

µiÃi(y)j(µ1; : : : ; µm) 2 ~B±g = ~B± (A.2)

On the other hand
°°°°°

mX

i=1

µiÃi

°°°°° ·
mX

i=1

jµij jjÃ ijj = c
mX

i=1

jµij = cjjµjj1 · c
p

mjjµjj2.
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With ± = "º
2·1c

p
m

therefore k
Pm

i=1 µiÃik · "º
2·1

for µ 2 ~B± . Combining this
result with e) i) we have for an arbitrary '2 2 C ¤

2++

Ã
'2 +

mX

i=1

µiÃi

!
(y) 2 P1 for µ 2 ~B± . (A.3)

Let p2 2 clP2 then there is '2 2 C¤
2++ such that jj'2(y) ¡ p2jj2 < ±

2 . By
virtue of (A.2) and (A.3) we then have

p2 + ~B ±
2

½ P1:

QED.

Lemma A.1. Let

A = f(x; y; z)jz ¸ 1

x +
p

y
; x +

p
y > 0; y ¸ 0; x · 1g

B = f(0; 0; z)jz 2 Rg

Then A and B are two disjoint closed convex sets and they cannot be semi-
strictly separated, e.i. there does not exist a vector (n1; n2; 0) such that for all
(x; y; z) 2 A we have n1x + n2y > 0.

Proof. Available from authors on request.

Appendix B

Proof of Theorem 3.5 Suppose to the contrary that the set of desir-
able claims K(a) is not boundedly generated. Then there must be a sequence
fxng, jjxnjj ! +1; xn 2 K (a) with the property that ¸xn =2 K(a) for ¸ < 1.
Nonetheless, X being …nite dimensional the sequence xn

jjxnjj must converge
(if necessary by passing to a subsequence). Let us denote the limit z. From
Lemma B.1 we know that P (z < 0) = 0. By virtue of Lemma B.3 for su¢-
ciently large constant · the claim ·® 2 K(2a) and therefore, ·®+±B1 2 K(a)
for ± su¢ciently small, because the expected utility is a continuous function
on X . Furthermore, xn

jjxnjj ! ® implies that there is n0 such that for all n > n0

xn

jjxnjj 2 ® + ±
·
B1 and therefore

·xn

jjxnjj 2 ·® + ±B1 2 K(a):

Since jjxnjj ! +1 there is n1 such that for all n > n1 jjxnjj > ·:Thus for
n > n1

·

jjxnjjxn 2 K(a) and
·

jjxnjj < 1

which contradicts our assumption that ¸xn =2 K(a) for ¸ < 1: QED.
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Proof of Theorem 4.1:
a) i) Suppose, to the contrary, that supw2M0

EU(w) = +1. Then there is
a sequence fwng 2 M0 such that fEU(wn)g is increasing and unbounded from
above. If fjjwnjjg were bounded then there would be a convergent subsequence
fwnk g ! w 2 X and EU would not be continuous at w. Thus it must be that
fjjwnjjg is unbounded. In that case, however, fwng is an unbounded sequence
of desirable claims and because X is …nite-dimensional we can …nd a common
direction (if necessary passing to a subsequence)

n
wn

jjwnjj

o
! z 2 X; in fact

z 2 M0 because M0 is closed. By Lemma B.1 z is strictly positive and z 2 M0

contradicts the assumption of no arbitrage. Q.E.D.
ii) We have shown supw2M0

EU (wr + w) , EU(wr + aM ) < +1: By
de…nition of supremum there is a sequence fwng 2 M0 such that fEU (wr +
wn)g ! EU(wr +aM ): Now because the sets of desirable claims are boundedly
generated and M0 is a linear subspace, we can always choose fwng bounded.
This implies fwng ! wM 2 M0 (again using a subsequence if necessary)
and by continuity of expected utility EU(wr + wM ) = EU (wr + aM ). The
uniqueness of wM follows from the strict concavity of the (expected) utility
function. Q.E.D.

b) The …rst part follows from a). For the second part of the statement it is
enough to consider a = aM : By Hahn-Banach Theorem one can strongly sep-
arate M0 and the interior of K(aM ) by a hyperplane N0; and because K (aM )
is closed the same hyperplane separates K(aM) and M0 weakly. By standing
assumption 1 there is a marketed strictly positive claim x with positive price
p(x) > 0. Because N0 does not contain internal points of K(aM) we must have
supw2N0

EU (wr + w) = EU(wr + aM ): For the same reason N0 \ X++ = ;
and therefore x =2 N0. Finally, because N0 is a hyperplane we have the span-
ning property X = N0 © Span[x]; so that each claim y 2 X has a unique
decomposition y = y0 + ¸yx, where y0 2 N0: By construction p(y) , ¸yp(x)
is a no-good-deal price of claim y. Convexity of the price region follows from
the argument presented in the proof of Theorem 2.5, part b).

c) The …rst part follows from Theorem 2.5. For the second part, it is clear
from a) that the separating hyperplane has to cross K(aM ) at wM : It follows
from Theorem 1.29 in [2] that EU has a unique supergradient at wM ; by direct
calculation this supergradient is

³ = (Pr(!1)U
0 [wr(!1) + wM (!1)] ; : : : ; Pr(!dimX )U 0 [wr(!k) + wM (!k )]);

where k = dim X . By de…nition the supergradient has the property

EU(wr+wM+4w) · EU (wr+wM )+³4w = EU(wr+wM)+EU 0(wr+wM)4w:

As long as EU 0(wr + wM )4w = 0 for all 4w 2 N0 we have

EU(wr + wM + N0) · EU (wr + wM )
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and there is no good deal in the completed market. The normalisation dis-
cussed in the proof of Theorem 2 shows that the pricing functional is

p(y) = p(x0)
EU 0(wr + wM )y

EU 0(wr + wM)x0
:

When x0 is a risk-free asset this formula simpli…es to

p(y) =
E

U 0(wr+wM)
EU 0(wr+wM)y

R
:

To show uniqueness realize that by Theorem 1.30 in Beavis and Dobbs EU
is continuously di¤erentiable at wr + wM : The Taylor expansion of the form
f (x) = f (x0)+fx(¸x0+(1¡¸)x)(x¡x0) for some 0 < ¸ < 1 with f = EU and
x0 = wr +wM implies that the hyperplane de…ned by ³ is the only hyperplane
passing through wM that does not intersect the interior of K(aM).

d), e), f) K(a) is boundedly generated by bounded closed set Ba ½ K (a);
likewise K(b) is generated by Bb ½ K(b). Because Bb is compact, EU is uni-
formly continuous on Bb . Therefore there is " > 0 such that Bb +Ball(0; ") ½
K(a): If Bb + Ball(0; ") * Ba then we can always rede…ne Ba as the closed
convex hull of Ba [ [Bb + Ball(0; ")] : Then the assumption of Theorem 2.5 e)
is satis…ed and the rest follows.

Lemma B.1. Suppose X is a probability space, dim X < 1; :and U is a
downside-sensitive utility. If an unbounded sequence of desirable claims has a
common direction, then this direction is strictly positive. Mathematically, if
; jjxnjj ! 1;

jjxnjj
xn

! z and EU (wr + xn) ¸ EU(wr + a) for a …xed a 2 R,
then z ¸ 0; Pr(z > 0) > 0:

Proof
Let us de…ne wmin = minwr , wmax = max wr and analogously xmin , xmax.

Since we have …nitely many states there is a state with the smallest probability
pmin .

i) For x to be a desirable claim we must have

EU(wr + x) ¡ EU (wr + a) ¸ 0:

We can rewrite this statement using conditional distribution

Pr(x < 0)E [U (wr + x)jx < 0] + Pr(x ¸ 0)E [U (wr + x)jx ¸ 0] ¸ EU (wr + a):
(B.1)

Let us appraise the left hand side from above. Denoting » the supergradient
of U in wmin we can write

EU (wr + xjx ¸ 0) · U(wmax) + »E[xjx ¸ 0] =

= U (wmax ) + »
Ex+

Pr(x ¸ 0)
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Assuming that xmin < 0 we obtain

Pr(x < 0)E [U (wr + x)jx < 0] · pminU (wmax+xmin)+[Pr(x < 0) ¡ pmin ] U(wmax):

Plugging the last two expressions in the equation (B.1) we obtain

pminU (wmax + xmin) + »Ex+ ¸ °

° = EU (wr + a) ¡ Pr(x ¸ 0)U(wmax) ¡ [Pr(x < 0) ¡ pmin ] U(wmax)

° ¸ EU (wr + a) ¡ U (wmax) ´ c(a)

Thus for x to be desirable we must have

pminU (wmax + xmin) + »Ex+ ¸ c(a) (B.2)

where pmin, wmax, », and c(a) do not depend on x.
ii) Let us now take a sequence of desirable claims jjxnjj ! 1; jjxnjj

xn
! z.

If zmin were negative then by continuity (xn)min
jjxnjj1 ! ®min and hence (xn)min !

¡1. At the same time xn 2 K(a) and (B.2) implies that

pminU(wmax + (xn)min) + »Ex+
n ¸ c(a):

where c(a) < 0 without loss of generality. After rearranging the terms we
arrive at

wmax + (xn)min

U(wmax + (xn)min)

(xn)min

(wmax + (xn)min)pmin
¸

¡ (xn)min

»Ex+
n ¡ c(a)

:

The right hand side can be appraised from below

¡ (xn)min

»Ex+
n ¡ c(a)

¸ Ex¡
n

»Ex+
n ¡ c(a)

:

The limit of the left hand side is, by the dominance condition (3), equal to
zero. Because the numerator on the right hand side goes to +1; it must be
that Ex+

n ! +1: This however implies that

0 = lim
n!+1

Ex¡
n

»Ex+
n ¡ c(a)

= lim
n!+1

Ex¡
n

Ex+
n

1

» ¡ c(a)

Ex+
n

=
1

»
lim

n!+1
Ex¡

n

Ex+
n

0 = lim
n!+1

Ex¡
n

Ex+
n

=
E®¡

E®+

which contradicts P (® < 0) > 0.

Lemma B.2. Suppose that U : R ! R is a strictly increasing concave func-
tion such that u = supx2R U (x) < 1. Suppose further that x 2 Lp is strictly
positive. Then

lim
¸!1

EU(x + ¸y) = u

if and only if y 2 Lp is strictly positive with probability 1:
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Proof. i) Firstly, let us take y 2 Lp such that P (y · 0) = ¼ > 0: Then we
have

EU(x + ¸y) · (1 ¡ ¼)u + ¼ (EU (x)jy · 0) :

Since U is strictly increasing, we must have U (t) < u for all t 2 R and hence
also E [U (x)jy · 0] = ~u < u: Consequently

lim
¸!1

EU (x + ¸y) · (1 ¡ ¼)u + ¼~u < u

ii) Now consider y 2 Lp such that P (y · 0) = 0: De…ne

¼0 = P (y ¸ 1)

¼n = P (
1

n
> y ¸ 1

n + 1
) for n = 1; 2; : : :

pn =
nX

0

¼k

By assumption limn!1 pn = 1: Now we have

EU (x + ¸y) ¸ pnU (
¸

n + 1
)

and therefore
lim

¸!1
EU (x + ¸y) ¸ pnu for all n

Since limn!1 pn = 1 it must be true that lim¸!1 EU (x + ¸y) ¸ u:

Lemma B.3. Suppose that U : R ! R is strictly increasing, concave and
unbounded from above. Suppose further that x 2 Lp is bounded below. Then

lim
¸!1

EU(x + ¸y) = 1

for all strictly positive y 2 Lp:

Proof. De…ne ¼k as above and set xmin = ess inf x. Since by assumption
P (y > 0) > 0 there must be k 2 N such that ¼k > 0: Then

EU(x + ¸y) ¸ pkU (xmin +
¸

k + 1
)

and letting ¸ ! 1 we have

lim
¸!1

EU (x + ¸y) = 1:

Lemma B.4. Von Neumann-Morgenstern preferences are downside-sensitive
if and only if the generating utility function satis…es

lim
x!¡1

x

U (x)
= 0:
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Proof. First we show the ‘if’ part. Let us take y 2 Lp such that y =2 L
p
+ ; i.e.

P (y < 0) = " > 0: Then one of the numbers

¼0 = P (y < ¡1)

¼n = P (¡ 1

n
· y < ¡ 1

n + 1
) for n = 1;2; : : :

has to be positive, otherwise P (y < 0) = 0:
Without loss of generality we can assume that ¼k > 0: Denoting » the left

hand side derivative of U in zero and taking ¸ > 0 we obtain

EU (¸y) = E [U(¸y)jy < 0] P (y < 0) + E [U (¸y)jy ¸ 0] P (y ¸ 0) =

· ¼kU (¡ ¸

k + 1
) + (1 ¡ ¼k )U(0) + »¸Ey+ ´ v(¸):

Note that v(¸) is a continuous function on R+ and thus sup¸¸0 v(¸) = 1 if
and only if lim¸!1 v(¸) = 1: However, instead we have

lim
¸!1

v(¸)

¸
= »Ey+ ¡ lim

x!¡1
¼k

k + 1

U(x)

x
= ¡1

and hence lim¸!1 v(¸) < 1; sup¸¸0 v(¸) < 1; and consequently sup¸¸0 EU(¸y) <
1 for all y =2 L

p
+ which completes the proof.

The ‘only if’ part is shown easily once we realize that U(x)
x is a decreasing

function of x: We can take a random variable with two atoms P (y = ¡1) = ¼
and P (y = 1) = 1 ¡ ¼: Then

EU (¸y) = ¼U (¡¸) + (1 ¡ ¼)U(¸)

and

lim
¸!1

EU (¸y)

¸
= ¡¼ lim

x!¡1
U (x)

x
+ (1 ¡ ¼) lim

x!1
U(x)

x
: (B.3)

Now limx!¡1
U(x)

x
is …nite and if limx!1

U(x)
x

is positive one can always take
¼ small enough so that the limit (B.3) is positive. But then lim¸!1EU (¸y) =
+1:
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