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Introduction Data driven models

Data driven models in finance

Highly parametric and overparametrized models gain in importance: instead
of a few parameters, learn the model’s characteristics as a whole from data.
Relying on different universal approximation theorems yields different classes
of models. We consider here ...

⇒ Signature based models: the model itself or its characteristics are
parameterized as linear functions of the signature of a primary underlying
process, e.g.

I a classical driving signal, e.g. Brownian motions or Lévy processes;
I more general tractable processes describing well observable quantities.

Compare e.g. with
I I. Perez Arribas, C. Salvi, L. Szpruch “Sig-SDEs for quantitative

finance”
I T. Lyons, S. Nejad and I. Perez Arribas “Nonparametric pricing and

hedging of exotic derivatives”
Other recent applications of signature methods in finance: Bayer et al. (’21)
Bühler et al. (’20), Ni et al. (’20)), etc.
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Part I

Signature based models for finance - theory
and calibration

mainly based on

“Signature based models for finance - theory and calibration” (joint
work in progress with Guido Gazzani and Sara Svaluto-Ferro)
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A very brief overview on signatures

Key facts about signature - Universal approximation
Signature (see K. Chen (’57)) plays a prominent role in rough path theory
(T. Lyons (’98), P. Friz & N. Victoir (’10), P. Friz & M. Hairer (’14)). It serves
as linear regression basis for continuous path functionals.

Signature is point-separating:
I The signature of a d-dimensional geometric rough path, including

continuous semimartingales, uniquely determines the path up to
tree-like equivalences (see H. Boedihardjo et al.(’16)).

I These tree-like equivalences can be avoided by adding time.
Linear functions on the signature form an algebra that contains 1:

I Every polynomial on signature may be realized as a linear function via
the so-called shuffle product �.

⇒ By the Stone-Weierstrass theorem continuous (with respect of to a variation
distance of the lifted path) path functionals on compact sets can be
uniformly approximated by a linear function of the time extended signature.

⇒ Universal approximation theorem (UAT).
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A very brief overview on signatures

Signature in a nutshell

The signature takes values in the extended tensor algebra T ((Rd )) given by

T ((Rd )) := {(a0, a1, . . . , an, . . .) | for all n ≥ 0, an ∈ (Rd )⊗n}.

Elements of T ((Rd )) are denoted in bold face, e.g. a = (a0, a1, . . . , an, . . .).

Let I = (i1, . . . , in) be a multi-index with entries in {1, . . . , d} and denote by
eI = ei1 ⊗ · · · ⊗ ein the basis elements of (Rd )⊗n .
We write 〈eI , a〉 to extract the I th component from an. More generally we
often write u(x) = 〈u, x〉 if

∑
I |uIxI | <∞ and call this linear maps in x.

Definition
The coordinate signature indexed by I = (i1, . . . , in) of an Rd -valued
semimartingale X̂ is defined via iterated Stratonovic/Marcus integrals (denoted
by ◦)

〈eI , X̂T 〉 :=
∫

0<t1<···<tn<T
◦dX̂ i1

t1
· · · ◦ dX̂ in

tn
,

Hence, X̂T = 1 +
∑∞

n=1
∑
|I|=n〈eI , X̂T 〉eI ∈ T ((Rd )).
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Model framework

Model ingredients

Goal: provide a good model for a set of traded assets S = (S1, . . . ,Sm)

Main ingredient: market’s primary (underlying) process X̂t = (Xt , t), where
X is a (continuous, multivariate) Itô-semimartingale such that its signature
X̂ serves a linear regression basis for S.
Examples for X :

I Market inferred Brownian motion (under Q, i.e. P-BM + market price
of risk) or Lévy process

I assets whose dynamics are well understood and which can be described
by so-called Sig-SDEs of the form

dXt = b(X̂t)dt +
√

a(X̂t)dBt , (SigSDE)

where B is a Brownian motion, (X̂t)t≥0 denotes the signature of
t 7→ (Xt , t) and b and a are linear maps.

⇒ Truly general class of diffusions whose coefficients can depend on the
whole path.
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Model framework

Model framework

The model
The traded assets (S1, . . . ,Sm) are modeled via

S j
t(`j) = `j(X̂t) = `j0 +

∑
0<|I|≤n

`jI〈eI , X̂t〉, j = 1, . . . ,m, (Sig-model)

X̂ is the signature of X̂ ,
n ∈ N is degree of truncation
`j denotes a linear map. Here, `j0, `

j
I ∈ R the corresponding

coefficients with respect to the basis elements 1 and eI of the tensor
algebra.

The parameters ` can also be taken time-dependent.
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Model framework

Properties of signature based models

Universality Any classical model driven by Brownian motion can be arbitrarly
well approximated; extensions to Lévy/Poisson random measure
driven models are possible.
This is because the solution map of an SDE is a continuous map of the signature of the driving signal.

No arbitrage ... can be easily guaranteed.
The model can also be expressed in terms of stochastic integrals with respect to local martingales, from
which conditions for no-arbitrage can be easily deduced.

Calibration by regression when calibrating to time series data.

Calibration to options via precomputed Monte-Carlo samples of X̂ exploiting
linearity of the model

Tractable option pricing formulas relying on approximations via so-called
signature payoffs of the form 〈eJ , ŜT (`)〉.
Generic primary processes X̂ of form (SigSDE) are projections of a extended tensor algebra valued affine
and polynomial process.
⇒ EQ [̂ST (`)] can thus be computed via polynomial technology, i.e. by solving a (usually infinite
dimensional) linear ODE.
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driven models are possible.
This is because the solution map of an SDE is a continuous map of the signature of the driving signal.

No arbitrage ... can be easily guaranteed.
The model can also be expressed in terms of stochastic integrals with respect to local martingales, from
which conditions for no-arbitrage can be easily deduced.

Calibration by regression when calibrating to time series data.

Calibration to options via precomputed Monte-Carlo samples of X̂ exploiting
linearity of the model

Tractable option pricing formulas relying on approximations via so-called
signature payoffs of the form 〈eJ , ŜT (`)〉.
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Data driven signature models - calibration

Calibration to time-series data

Goal: match N market prices (SM
t1
, . . . ,SM

tN
)

Assumption: Time series data X̂t1 , . . . , X̂tN is available.

Procedure:
I Compute from X̂t1 , . . . , X̂tN the path of the signature X̂.
I Use the path of X̂ as linear regression basis to find ` by matching the

prices, i.e.

argmin
`

N∑
i=1

S0 +
d∑

k=1

∑
0≤|I|≤n

`I,k〈eI , X̂ti 〉 − SM
ti

2

I Important: since the dimension of ` is typically high, introducing a
regularization (Lasso, Ridge) is necessary.
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Data driven signature models - calibration

Results for a Heston and a SABR market model

Learn a Heston and a SABR market using the signature of estimated
Q-Brownian motions (i.e. P-BM with market price of risk)

Compare the learned (Sig-model) with new Heston/SABR trajectories.

Figure: Out of sample comparison of the price trajectories
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Data driven signature models - calibration

Multivariate Case - 4 dimensional correlated B&S model
Learn a 4 dimensional Black and Scholes market using the signature
of Ŵ up to order 5.

Compare the learned (Sig-model) with new trajectories.
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Data driven signature models - calibration

Calibration to options

Goal: match N option prices (π1, . . . , πN) with payoffs Fi (STi ), i = 1, . . . ,N.
Typically we calibrate to call and put options with different strikes and
maturities, whose prices are expressed in terms of implied volatility.

Assumption: Monte-Carlo samples of X̂j
T1
, . . . , X̂j

TN
for j = 1, . . .M (under a

pricing measure Q) are available.
Procedure: The calibration can then be formalized via

argmin
`

N∑
i=1

w i

(
1
M

M∑
j=1

Fi (`(X̂j
Ti

))− πi

)2

,

where w i are weights, e.g. vega-weights to match implied volatility well.
Advantages:

I All Monte-Carlo samples can be easily precomputed, no Monte-Carlo
simulation in each optimization step!

I For ` such that 1
M
∑M

j=1 Fi (`(X̂j
Ti

)) ≥ πi the optimization is convex for
convex payoffs.
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Data driven signature models - calibration

Calibration to real data

Goal: reproduce S&P 500 volatility surface (here from 17-03-21) using as
primary underlying process X̂t = (W 1

t ,W 2
t , t).

We consider here an extension of the model with time-dependent parameters
and achieve a nearly perfect fit.
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Data driven signature models - calibration

Calibration to real data - error analysis

With 13 parameters per maturity the absolute error is in the range of 0 to
15 basis points.

Christa Cuchiero (University of Vienna) Sig-SDEs⇔ affine & polynomial processes January 2022 14 / 30



Data driven signature models - calibration

Pricing of signature payoffs
Theorem (C.C, G. Gazzani, S.Svaluto-Ferro (’21))
The price of a signature payoff 〈eJ , ŜT(`)〉 can be expressed as

EQ[〈eJ , ŜT (`)〉] = 〈e(J , `),EQ[X̂T ]〉 =
∑

I
pI(J , `)〈eI ,EQ[X̂T ]〉,

where pI(J , `) are polynomials in the coefficients of `.

Path-dependent payoffs like Asian forwards correspond to signature payoffs.

How can we compute EQ[X̂T ]?
I Case of X̂ = Ŵ: T. Fawcett (’04)
I Semimartingale case: P. Friz, P. Hager & N. Tapia (’21)
I An affine and polynomial process point view works for generic primary

processes X̂ of form (SigSDE).
⇒ EQ[X̂T ] can be computed via polynomial technology, i.e. by solving
(usually infinite dimensional) linear ODEs.
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EQ[〈eJ , ŜT (`)〉] = 〈e(J , `),EQ[X̂T ]〉 =
∑

I
pI(J , `)〈eI ,EQ[X̂T ]〉,

where pI(J , `) are polynomials in the coefficients of `.

Path-dependent payoffs like Asian forwards correspond to signature payoffs.

How can we compute EQ[X̂T ]?
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Part II

An affine and polynomial perspective to
signature based models

based on

Universality of affine and polynomial processes (joint work in progress
with S. Svaluto-Ferro and J. Teichmann)

Signature based affine and polynomial jump diffusions (joint work in
progress with F. Primavera and S. Svaluto-Ferro)
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Introduction to affine and polynomial processes

Motivation

A plethora of stochastic models stem from the class of affine and
polynomial processes, even though this is not always visible at first sight.

⇒ Universal model classes?

⇒ Mathematically precise statements for this universality?

⇒ Can we embed signature based models in this framework?
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Introduction to affine and polynomial processes

Definition of affine and polynomial processes
Simplest setting (for illustrative purposes): Itô diffusion in one dimension with
state space S, some (bounded or unbounded) interval of R:

dXt = b(Xt)dt +
√

a(Xt)dBt , X0 = x , (∗)

with a : R→ R+ and b : R→ R continuous functions and B a Brownian motion.

Definition
A weak solution X of (∗) is called polynomial process if

b is an affine function, i.e. b(x) = b + βx for some constants b and β and

a is a quadratic function, i.e. a(x) = a + αx + Ax2 for some constants a, α
and A.

If additionally A = 0, then the process is called affine.a

aIn this diffusion setting all affine processes are polynomial (in general this
only holds true under moment conditions).
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Introduction to affine and polynomial processes

Key properties of affine and polynomial processes
From this definition, ...

... they appear as a narrow class.

... follow some remarkable implications.
I All marginal moments of a polynomial process, i.e. E[X n

t ] can be
computed by solving a system of linear ODEs, i.e. the Feynman-Kac
PDE reduces to a linear ODE.

I Additionally, exponential moments of affine processes, i.e. E[exp(uXt)]
for u ∈ C can be expressed in terms of solutions of Riccati ODEs
whenever E[| exp(uXt)|] <∞, i.e. the Cole-Hopf transform of the
Feynman-Kac PDE reduces to a Riccati ODE.

For much more generality and details about these processes classes we refer to
D. Duffie, D. Filipović & W. Schachermayer (’03); D. Filipović &
E. Mayerhofer (’09);
C., M. Keller-Ressel & J. Teichmann (’12); D. Filipovic & M. Larsson (’16).
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Introduction to affine and polynomial processes

Linear processes

We consider here an even simpler subset of affine (hence polynomial)
processes where b(x) = βx and a(x) = αx are just linear functions and call
the corresponding stochastic processes linear processes.

Their infinitesimal generator if given by Af (x) = f ′(x)βx + 1
2 f ′′(x)αx and

acts on f (x) = exp(ux) and polynomials f (x) =
∑k

i=0 ci x i as follows

I Affine property: A exp(ux) = exp(ux)R(u), R(u) = 1
2αu2 + βu

I Polynomial property:
A
(∑k

i=0 ci x i
)

=
∑k

i=1(iciβ+ 1
2 (i+1)ici+1α1{i≤k+1})x i =

∑k
i=1 L(c)i x i

with matrix L applied to the vector c = (c0, c1, . . . , ck)>

L =


0 · · · 0
0 β α 0 · · · 0
0 0 2β 3α 0 · · · 0
...

...
...

...
...

...
...

iβ (i+1)i
2 α

...
...

...
...

...
...

...
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Introduction to affine and polynomial processes

Affine transform formula and moment formula

Theorem (Duffie, Filipovic, Schachermayer (’03), C.C., Keller-Ressel,
Teichmann (’12))

Let T > 0 be fixed and let X be a linear process.

Let u ∈ C such that E[| exp(uXT )|] <∞ and denote by ψ(t) the solution of
the following Riccati ODE

∂tψ(t) = R(ψ(t)), ψ(0) = u.

Then E [exp(uXT )] = exp(ψ(t)X0)

Denote by c(t) = (c0(t), . . . , ck(t))> the solution of the following linear
ODE

∂tc(t) = Lc(t), c(0) = c ∈ Rk+1.

Then its moments are given by
E
[∑k

i=0 ci X i
T

]
=
∑k

i=0 ci (T )x i =
∑k

i=0(exp(LT )c)i X i
0.
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One dimensional diffusions with analytic characteristics

One dimensional diffusions with analytic characteristics

Consider a one-dimensional diffusion process X on S given by
dXt = b(Xt)dt +

√
a(Xt)dBt , X0 = x0,

where the functions b and a are real analytic of the form

b(x) =
∞∑

n=0
bnxn and a(x) =

∞∑
n=0

anxn, x ∈ S,

converging on an open neighborhood of S.
Note that up to a slight reparametrization analytic functions are linear
functions in the signature of X as Xt = (1,Xt − x0,

(Xt−x0)2

2 , (Xt−x0)3

3! , . . .).
Let

U := {u ∈ T ((R)) : |
∞∑

n=0
|unxn| <∞ for all x ∈ S + Bε(0), ε > 0}

and denote by ? the discrete convolution, i.e.
(u ? c)i :=

∑
j1+j2=i

uj1 cj2 , u, c ∈ T ((R)).
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One dimensional diffusions with analytic characteristics

Affine case
Theorem (C.C, S. Svaluto-Ferro, J. Teichmann (’22))
The process X := (1,X ,X 2, . . . ,X n, . . .) is affine with respect to the operator
R : U → T ((R)) given by

R(u) = b ? u(1) + 1
2a ?

(
u(2) + u(1) ? u(1)), u(`)

k := uk+`
(k + `)!

k! ,

meaning that A exp(
∑∞

n=0 unxn) = exp(
∑∞

n=0 unxn)
∑∞

n=0 Rn(u)xn.

Suppose
that the sequence valued Riccati equation

∂tψ(t) = R(ψ(t)), ψ(0) = u

admits an U-valued (weak) solution and that certain exponential moment
conditions hold true. Then

E

[
exp

( ∞∑
n=0

unX n
T

)]
= exp

( ∞∑
n=0

ψn(T )X n
0

)
.
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One dimensional diffusions with analytic characteristics

Examples: Brownian motion & geometric Brownian motion

Let B be the set of entire functions f such that |f | ≤ exp(a(| · |+ 1)) on R
for some a ∈ R+ and D := {f ∈ B : f ′, f ′′ ∈ B}.
Let f ∈ D such that f (x) = exp(

∑∞
n=0 unxn). Then

E[exp(
∞∑

n=0
un(x + Bt)n)] = exp(

∞∑
n=0

ψn(T )xn).

with R(u) = 1
2 (1, 0, . . .) ?

(
u(2) + u(1) ? u(1)).

Choose f (x) = exp((iλ− κ) exp(x)) for λ ∈ R and κ ∈ R+, to obtain an
expression for the Fourier-Laplace transform of geometric Brownian motion
St = exp(x + Bt)

E[exp((iλ−κ)St)] = E[exp((iλ−κ)
∞∑

n=0

(x + Bt)n

n! ] = exp(
∞∑

n=0
ψn(T ) log(S0)n)

with ψn(0) = iλ−κ
n! .

We approximate the solution of the sequence-valued Riccati ODE by neural
networks and deep learning methods for ODEs.
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One dimensional diffusions with analytic characteristics

Polynomial case

Theorem (C.C, S. Svaluto-Ferro, J. Teichmann (’22))
The process X := (1,X ,X 2, . . . ,X n, . . .) is polynomial with respect to the
operator L : U → T ((R)) given by

L(u) = b ? u(1) + 1
2a ? u(2), u(`)

k := uk+`
(k + `)!

k! ,

meaning that A(
∑∞

n=0 unxn) =
∑∞

n=0 Ln(u)xn.

Suppose that the sequence
valued linear ODE

∂tc(t) = L(c(t)), c(0) = u

admits an U-valued (weak) solution and that certain moment conditions hold
true. Then

E

[ ∞∑
n=0

unX n
T

]
=
∞∑

n=0
cn(T )X n

0 .
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One dimensional diffusions with analytic characteristics

Examples
For the following examples we can e.g. compute the moment generating function

E[exp(uXT )] =
∞∑

n=0
cn(T )X n

0

for appropriate u by solving the above infinite dimensional linear ODE with inital
value u = (1, u, u

2 , . . . ,
uk

k! , . . .).

Polynomial processes on compact state spaces
Classically non-affine and non-polynomial examples:

I dXt =
√

Xt(1− Xt)dBt on [0, 1]
I dXt = κ

∑∞
i=1 π(X i

t − Xt)dt +
√

Xt(1− Xt)dBt on [0, 1]
Affine Feller diffusion: dXt =

√
a1XtdBt on R+. For u < 0, the solution of

the linear ODE leads to the well known expression for the Laplace transform

E[exp(uXT )] =
∞∑

n=0

un

(1− a1
2 uT )nn!︸ ︷︷ ︸

cn(T )

X n
0 = exp( uX0

1− a1
2 uT ).
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Signature based models as affine and polynomial processes

Relation to signature based models?
Question: can the signature process of generic SDEs be treated as an infinite
dimensional affine and/or polynomial process?

Answer: very often this is the case!

Indeed, if X is of the truly generic form

dXt = b(X̂t)dt +
√

a(X̂t)dBt , X0 ∈ S ⊆ Rd (SigSDE)

where (X̂t)t≥0 is the signature of t 7→ (Xt , t) and b and a are linear maps, then

⇒ Ito’s formula yields that the characteristics of (X̂t)t≥0 are linear
⇒ A exp(〈u, x〉) = exp(〈u, x〉)〈R(u), x〉 and A(〈u, x〉) = 〈L(u), x〉, x ∈ S(S)

R(u) = b� u(1) + 1
2 tr(a� (u(2) + u(1)

� u(1))),

L(u) = b� u(1) + 1
2 tr(a� u(2))

⇒ (X̂t)t≥0 is a T ((Rd )) valued linear, hence affine and polynomial process.
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Signature based models as affine and polynomial processes

Sig-SDEs as affine and polynomial processes

This means that under appropriate conditions...
I ... E[X̂T ] can be computed via polynomial technology, i.e. by solving

an infinite dimensional linear ODE.
I ... logE[exp(〈u, X̂T 〉)] can be computed via affine technology, i.e. by

solving an infinite dimensional Riccati ODE.

The SigSDE setting goes beyond Markovian settings due to possibly
path-dependent coefficients. The signature itself remains Markovian with
linear characteristics, which is the essential feature.

Special cases of (SigSDE) are Makovian SDEs with b and a analytic in X .
The infinite dimensional linear PDE for the expected signature (valid for any
Markovian diffusion) reduces to an infinite dimensional linear ODE.

If b and a only depend on the signature up to order 1 and 2 respectively,
then (X̂≤N

t )t≥0 is a finite dimensional polynomial process. This holds true in
particular for X being a classical polynomial processes.
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Signature based models as affine and polynomial processes

Jump Sig-SDEs as affine and polynomial processes
In the case of jumps we use the Marcus signature, given as solution of

dX̂ =
d∑

i=1
X̂⊗ �dX̂ i , X̂0 = (1, 0, 0, . . . ) ∈ T ((Rd )),

where � denotes the Marcus integral (giving rise to a first order calculus)∫ t

0
f (Zs ) � dZs :=∫ t

0
f (Zs−)dZs + 1

2

∫ t

0
f
′

(Zs−)d[Zc , Zc ]s +
∑

0<s≤t
∆Zs
(∫ 1

0
f (Zs− + θ∆Zs )− f (Zs− )dθ

)
.

Then analogous statements hold true for Sig-SDEs with jumps of the form

dXt = b(X̂t)dt +
√

a(X̂t)dBt +
∫
ξ(µX (dξ, dt)−K(X̂t , dξ)dt),

where the compensator K is such that x 7→ K(x, dξ) is a linear map.

⇒ (X̂t)t≥0 is a T ((Rd )) valued affine and polynomial process.

⇒ If X is a classical polynomial process, then (X̂≤N
t )t≥0 is a finite

dimensional polynomial process. The infinite dimensional linear PIDE
for the expected signature becomes a finite dimensional ODE.
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Conclusion

Conclusion

Signature based models distinguish themselves in
I universality, as the dynamics of all classical models can be approximated
I criteria for no-arbitrage
I efficient pricing, hedging and calibration (also extension to VIX

options).
Extension to Lévy type signature models is possible (joint work with
F.Primavera and S.Svaluto-Ferro).
Generic classes of SDEs can be proved to be affine and polynomial, in
particular SDEs with analytic coefficients ⇒ one step in the direction of
universality of affine processes
For (jump) SigSDEs

I its expected signature can be computed via polynomial technology
I the Fourier-Laplace transform of its signature can be computed via

affine technology

Thank you for your attention!
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