Dual Formulation of the Optimal Consumption Problem with Multiplicative Habit Formation

Thijs Kamma ${ }^{1,3}$ Antoon Pelsser ${ }^{1,2,3}$

${ }^{1}$ Maastricht University Maastricht, The Netherlands
${ }^{2}$ University of Amsterdam
Amsterdam, The Netherlands
${ }^{3}$ NETSPAR

Winter Seminar on Mathematical Finance
$24^{\text {th }}$ January 2022

Outline

- Introduction
- Duality Mechanism
- Optimal Consumption Problem
- Main Duality Result
- Relevant Implications
- Conclusion

Introduction

- Habit formation
- Individuals growing accustomed to a certain standard/level
- Depending on an individual's past savings/consumption decisions
- Subsistence level or standard of living
- Affect utility levels \rightarrow consumption behaviour
- Incorporate into consumption problems
- Adjustment of conventional preference qualification
- Exogenously or endogenously defined habit level
- Different implications on life-cycle investment/consumption
- Additive or multiplicative specification
- Economic relevance
- Mathematical complexity
- Presence in literature

Introduction: additive vs. multiplicative

- Additive or linear habits
- Draw utility from difference between consumption and habit
- Force individual to always consume above habit
- Endogeneity encumbers subsistence interpretation
- Mathematically easy (isomorphism)
- Ratio or multiplicative habits
- Draw utility from ratio of consumption to habit
- Individual may consume below habit
- Incentive to fix consumption near/above habit
- Economically very relevant \rightarrow mathematically troublesome
- In mathematical terms:
- Additive: $U\left(c_{t}-h_{t}\right) \Rightarrow c_{t}>h_{t}$ must hold
- Multiplicative: $U\left(c_{t} / h_{t}\right) \Rightarrow c_{t} / h_{t}>0$ must hold

Introduction: what do we do?

- Analytical difficulties
- Non-standard problem specification
- Problem not strictly concave
- Involves path-dependency
- No closed-form solutions available
- Remedies?
- Numerical methods: backward induction, grid search
- Approximations: Taylor expansions, cf. van Bilsen et al. (2020)
- Duality theory: no dual formulation known
- Our paper
- Transforms non-concave problem into concave problem
- Makes use of Fenchel Duality to derive dual formulation
- Simultaneously proves that strong duality holds
- Develops approximating/evaluation mechanism

Duality Mechanism: how should we view this?

Duality Mechanism: duality explained

- Dual formulation as shadow problem
- "Shadow": alternative to solving the primal problem
- Typically easier to solve than primal problem
- Conventional wisdom: allocation of resources vs. pricing of resources
- Finance: allocation of assets vs. market prices of risk
- Optimal controls "sandwiched" between primal and dual
- Minimising the dual \Leftrightarrow maximising the primal
- Dual renders upper bound on primal
- Difference is called the duality gap
- Why is this so useful? Mere theoretical implications?
- Provides alternative view on economic meaning
- Facilitates solution techniques (Brennan and Xia (2002))
- Applications: martingale method, super-replication, approximate methods, pricing of non-traded risk, shadow price (frictions), etc.

Duality Mechanism: situation for multiplicative habits

Dual

Optimal Consumption Problem

Primal problem

The optimal consumption problem is given by:

$$
\begin{align*}
& \sup _{\left\{c_{t}, \pi_{t}\right\}_{t \in[0, T]} \in \mathcal{A}_{X_{0}}} \mathbb{E}\left[\int_{0}^{T} e^{-\delta t} \frac{\left(\frac{c_{t}}{h_{t}}\right)^{1-\gamma}}{1-\gamma} \mathrm{d} t\right] \\
& \text { s.t. } \mathrm{d} X_{t}=X_{t}\left[\left(r_{t}+\pi_{t}^{\top} \sigma_{t} \lambda_{t}\right) \mathrm{d} t+\pi_{t}^{\top} \sigma_{t} \mathrm{~d} W_{t}\right]-c_{t} \mathrm{~d} t, \\
& h_{t}=\exp \left\{\beta \int_{0}^{t} e^{-\alpha(t-s)} \log c_{s} \mathrm{~d} s\right\} \forall t \in[0, T], X_{0} \in \mathbb{R}_{+} \text {. } \tag{1}
\end{align*}
$$

Optimal Consumption problem: difficulties

- Dependency of h_{t} on past consumption choices, $\left\{c_{s}\right\}_{s \in[0, t]}$
- Complicated value function $\mathbb{E}\left[\int_{0}^{T} e^{-\delta t} U\left(c_{t} / h_{t}\right) \mathrm{d} t\right]$
- Non-concave and cumbersome path-dependency
- Elimination?
- Isomorphism Schroder and Skiadas (2002)
- Re-define problem in terms of $\widehat{c}_{t}=\frac{c_{t}}{h_{t}}$
- Re-situation of path-dependency
- Relegated to static budget constraint: $\mathbb{E}\left[\int_{0}^{T} M_{t} \widehat{c}_{t} h_{t} \mathrm{~d} t\right] \leq X_{0}$
- Not very helpful
- Standard solution techniques fail to solve problem (1)
- Carries over to applications of standard duality methods
- \rightarrow dual formulation not available (yet)

Main Duality Result: recap

- Standard duality applications
- Make use of Legendre-Fenchel transformation
- $V(x)=\sup _{z \in \mathbb{R}_{+}}\left(e^{-\delta t} U(z)-x z\right)$
- Martingale method \rightarrow derived from this transform
- Useful inequality: $e^{-\delta t} U(x) \leq V(z)+x z$
- Legendre-Fenchel transformation not helpful
- $\mathbb{E}\left[\int_{0}^{T} e^{-\delta t} U\left(c_{t} / h_{t}\right) \mathrm{d} t\right] \leq \mathbb{E}\left[\int_{0}^{T} V\left(Z_{t}\right) \mathrm{d} t\right]+\mathbb{E}\left[\int_{0}^{T}\left(c_{t} / h_{t}\right) Z_{t} \mathrm{~d} t\right]$
- Impossible to infer something about $\mathbb{E}\left[\int_{0}^{T}\left(c_{t} / h_{t}\right) Z_{t} \mathrm{~d} t\right]$
- Process $\int_{0}^{T}\left(c_{t} / h_{t}\right) Z_{t} \mathrm{~d} t$ is not a positive martingale
- Fenchel Duality
- Alternative to Legendre duality
- Involves path-dependent linear transformations of controls
- Implies dual that differs from conventional ones

Main Duality Result: Fenchel Duality

Fenchel Duality

Let $f: X \rightarrow \mathbb{R} \cup\{\infty\}$ and $g: Y \rightarrow \mathbb{R} \cup\{\infty\}$ be two continuous and convex functions. Additionally, introduce the bounded linear map $A: X \rightarrow Y$. Here, X and Y outline two Banach spaces. Define:

$$
\begin{align*}
& p^{*}=\inf _{x \in X}\{f(x)+g(A x)\} \\
& d^{*}=\sup _{y^{*} \in Y}\left\{-f^{*}\left(A^{*} y^{*}\right)-g^{*}\left(-y^{*}\right)\right\}, \tag{2}
\end{align*}
$$

where, $f^{*}(x)=\sup _{z \in X}\{\langle x, z\rangle-f(z)\}, g^{*}(y)=\sup _{z \in Y}\{\langle y, z\rangle-g(z)\}$, for all $x \in X^{*}$ and $y \in Y^{*}$. Moreover, A^{*} is the adjoint of A. Strong duality, i.e. $p^{*}=d^{*}$, holds if A dom $f \cap$ cont $g \neq \phi$

Main Duality Result: identification I

Define the following function:

$$
\begin{align*}
\mathcal{J}\left(X_{0}, \log c_{t}, \eta\right) & \left.=\mathbb{E}\left[\int_{0}^{T} e^{-\delta t} \frac{e^{[1-\gamma]\left(\log c_{t}-\log h_{t}\right)}}{1-\gamma}\right) \mathrm{d} t\right] \tag{3}\\
& -\eta \mathbb{E}\left[\int_{0}^{T} e^{\log c_{t}} M_{t} \mathrm{~d} t\right]+\eta X_{0}
\end{align*}
$$

Then, the optimal consumption problem can be written as:

$$
\begin{equation*}
\inf _{\eta \in \mathbb{R}_{+}-\log } \sup _{c_{t} \in L^{2}(\Omega \times[0, T])} \mathcal{J}\left(X_{0},-\log c_{t}, \eta\right) \tag{4}
\end{equation*}
$$

Note here that:

$$
\begin{equation*}
\log h_{t}=\beta \int_{0}^{t} e^{-\alpha(t-s)} \log c_{s} \mathrm{~d} s \tag{5}
\end{equation*}
$$

Main Duality Result: identification II

Recall that: $d^{*}=\sup _{y^{*} \in Y}\left\{-f^{*}\left(A^{*} y^{*}\right)-g^{*}\left(-y^{*}\right)\right\}$. Therefore, we have $\sup _{-\log c_{t} \in L^{2}(\Omega \times[0, T])} \mathcal{J}\left(X_{0},-\log c_{t}, \eta\right)=d^{*}$, under:

$$
\begin{align*}
& -f^{*}\left(A^{*} y^{*}\right)=\mathbb{E}\left[\int_{0}^{T} e^{-\delta t} \frac{e^{-[1-\gamma] A^{*}\left(-\log c_{t}\right)}}{1-\gamma} \mathrm{d} t\right] \tag{6}\\
& -g^{*}\left(-y^{*}\right)=-\eta \mathbb{E}\left[\int_{0}^{T} e^{\log c_{t}} M_{t} \mathrm{~d} t\right]+\eta X_{0}
\end{align*}
$$

where the linear map A^{*} is given by:

$$
\begin{equation*}
A^{*}\left(-\log c_{t}\right)=-\log c_{t}+\beta \int_{0}^{t} e^{-\alpha(t-s)} \log c_{s} \mathrm{~d} s \tag{7}
\end{equation*}
$$

such that:

$$
\begin{equation*}
y^{*}=-\log c_{t} \quad \text { and } \quad Y=L^{2}(\Omega \times[0, T]) \tag{8}
\end{equation*}
$$

Main Duality Result: identification III

Now, recall that: $p^{*}=\inf _{x \in X}\{f(x)+g(A x)\}$. To be able to apply Fenchel duality, let $V(x)=x-x \log x$ and define:

$$
\begin{align*}
f(x) & =\mathbb{E}\left[\int_{0}^{T} e^{-\delta t} \frac{1}{1-\gamma} V\left(e^{\delta t} \psi_{t}\right) \mathrm{d} t\right] \tag{9}\\
g(A x) & =-\mathbb{E}\left[\int_{0}^{T} \eta M_{t} V\left(\frac{A \psi_{t}}{\eta M_{t}}\right) \mathrm{d} t\right]+\eta X_{0}
\end{align*}
$$

where the bounded linear map (and adjoint of A^{*}) A reads:

$$
\begin{equation*}
A \psi_{t}=\psi_{t}-\beta \mathbb{E}\left[\int_{t}^{T} e^{-\alpha(s-t)} \psi_{s} \mathrm{~d} s \mid \mathcal{F}_{t}\right] \tag{10}
\end{equation*}
$$

such that:

$$
\begin{equation*}
x_{t}=\psi_{t} \quad \text { and } \quad X=L^{2}(\Omega \times[0, T]) \tag{11}
\end{equation*}
$$

Main Duality Result: identification IV

In the sense of Fenchel Duality, it can be shown that we have $d^{*}=p^{*}$ for the following primal optimisation problem:

$$
\begin{align*}
&\left.d^{*}=\sup _{-\log c_{t} L^{2}(\Omega \times[0, T])} \mathbb{E}\left[\int_{0}^{T} e^{-\delta t} \frac{e^{[1-\gamma]\left(\log c_{t}-\log h_{t}\right)}}{1-\gamma}\right) \mathrm{d} t\right] \tag{12}\\
&-\eta \mathbb{E}\left[\int_{0}^{T} e^{\log c_{t}} M_{t} \mathrm{~d} t\right]+\eta X_{0},
\end{align*}
$$

and the corresponding dual problem:

$$
\begin{align*}
p^{*} & =\inf _{\psi_{t} \in L^{2}(\Omega \times[0, T])} \mathbb{E}\left[\int _ { 0 } ^ { T } \left\{e^{-\delta t} \frac{1}{1-\gamma} V\left(e^{\delta t} \psi_{t}\right)\right.\right. \\
& \left.\left.-\eta M_{t} V\left(\frac{\psi_{t}-\beta \mathbb{E}\left[\int_{t}^{T} e^{-\alpha(s-t)} \psi_{s} \mathrm{~d} s \mid \mathcal{F}_{t}\right]}{\eta M_{t}}\right)\right\} \mathrm{d} t\right]+\eta X_{0} . \tag{13}
\end{align*}
$$

Main Duality Result

Dual problem

Define $V(x)=x-x \log x$. Then, the dual formulation of the optimal consumption problem in (1), satisfying strong duality, reads:

$$
\begin{align*}
& \inf _{\psi_{t} \in L^{2}(\Omega \times[0, T]), \eta \in \mathbb{R}_{+}} \mathbb{E}\left[\int _ { 0 } ^ { T } \left\{e^{-\delta t} \frac{1}{1-\gamma} V\left(e^{\delta t} \psi_{t}\right)\right.\right. \\
& \left.\left.-\eta M_{t} V\left(\frac{\psi_{t}-\beta \mathbb{E}\left[\int_{t}^{T} e^{-\alpha(s-t)} \psi_{s} \mathrm{~d} s \mid \mathcal{F}_{t}\right]}{\eta M_{t}}\right)\right\} \mathrm{d} t\right]+\eta X_{0} \tag{14}
\end{align*}
$$

Main Duality Result: we found it!

Relevant Implications

- Strong duality result implies:
- Semi-analytical expressions for optimal primal and dual processes
- Discloses the interplay between primal and dual processes
- Opens doors to applications involving duality
- Measure accuracy of approximations
- Grid-search routine for "optimal" solution
- Hambel et al. (2021): routines like Bick et al. (2013)'s and Kamma and Pelsser (2021)'s more accurate
- Utilise strong duality to measure precision
- Strong duality \Leftrightarrow weak duality
- Duality gap \triangleq dual (D) - primal (P)
- Gap grows with inaccuracy of approximation

Relevant Implications: duality relation

Duality relation

The duality relations are given by:

$$
\begin{equation*}
c_{t}^{*}=\frac{\psi_{t}-\beta \mathbb{E}\left[\int_{t}^{T} e^{-\alpha(s-t)} \psi_{s} \mathrm{~d} s \mid \mathcal{F}_{t}\right]}{\eta M_{t}} \quad \text { and } \quad h_{t}^{*}=c_{t}^{*}\left(e^{\delta t} \psi_{t}\right)^{\frac{1}{\gamma-1}} . \tag{15}
\end{equation*}
$$

Suppose that ψ_{t}^{opt} defines the optimal dual control, satisfying $c_{t}^{*}=\widehat{c}_{t}^{*} h_{t}^{*}$. Then, optimal consumption can be characterised as:

$$
\begin{equation*}
c_{t}^{\mathrm{opt}}=\left(e^{\delta t} \psi_{t}^{\mathrm{opt}}\right)^{\frac{1}{1-\gamma}} \exp \left\{\frac{\beta}{1-\gamma} \int_{0}^{t} e^{-[\alpha-\beta](t-s)}\left[\log \left(e^{\delta s} \psi_{s}^{\mathrm{opt}}\right)\right] \mathrm{d} s\right\} . \tag{16}
\end{equation*}
$$

Relevant Implications: duality relation explained

- Technical mechanism
- Expressions for c_{t} and h_{t} not consistent
- Recall: $h_{t}=e^{\beta \int_{0}^{t} e^{-\alpha(t-s)} \log c_{s} \mathrm{~d} s}$
- \rightarrow Consumption does not imply expression for h_{t}
- Dual determines ψ_{t} in a manner such that c_{t} and h_{t} are consistent
- Economic mechanism
- Consumption is characterised as:

$$
\eta M_{t} c_{t}=\psi_{t}-\beta \mathbb{E}\left[\int_{t}^{T} e^{-\alpha(s-t)} \psi_{s} \mathrm{~d} s \mid \mathcal{F}_{t}\right]
$$

- Note: h_{t} depends on past values; cond. expectation on future values
- Consumption today affects via h_{t} consumption in the future
- Dependency of c_{t} on ψ_{t} and $\left\{\psi_{s}\right\}_{s \in(t, T]}$ resembles this (smoothing)
- Special case: no habits $(\alpha=\beta=0)$

Conclusion

- Non-standard specification of problem
- Path-dependent and concave
- Conventional Legendre duality fails
- Cannot cope with non-linearity and path-dependency
- Derive dual formulation
- Transform non-concave problem into concave problem
- Make use of Fenchel Duality
- Proof of strong duality
- Relevant implications:
- One step closer to closed-form expressions
- Interplay primal and dual controls
- Simplified applications possible \rightarrow martingale method
- Numerically friendly evaluation of approximations

References

Bick, B., Kraft, H., and Munk, C. (2013). Solving constrained consumption-investment problems by simulation of artificial market strategies. Management Science, 59(2):485-503.
Brennan, M. J. and Xia, Y. (2002). Dynamic asset allocation under inflation. The Journal of Finance, 57(3):1201-1238.
Hambel, C., Kraft, H., and Munk, C. (2021). Solving life-cycle problems with biometric risk by artificial insurance markets. Scandinavian Actuarial Journal, pages 1-21.
Kamma, T. and Pelsser, A. (2021). Near-optimal asset allocation in financial markets with trading constraints. European Journal of Operational Research, forthcoming.
Schroder, M. and Skiadas, C. (2002). An isomorphism between asset pricing models with and without linear habit formation. The Review of Financial Studies, 15(4):1189-1221.
van Bilsen, S., Bovenberg, A. L., and Laeven, R. J. (2020). Consumption and portfolio choice under internal multiplicative habit formation. Journal of Financial and Quantitative Analysis, 55(7):2334-2371.

Questions?

