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Motivation

The premise of financial engineering and financial mathematics:
1 an asset price process model is exogenously given.
2 trading strategies do not affect the price process.

However:
1 a lot of derivatives are issued, for which the hedging activities explain the

underlying asset movements ;
2 in the 1990s, Salomon Brothers suffered a huge loss due to volatility shrink

due to delta hedging strategies. (A demon of our own design, Bookstaber
(2008)).

3 ex. recent high volatility of Japanese market was attributed to the delta
hedging strategy for an enormous amount of call options bought by foreign
investors. (Nikkei)

4 Market crashes as the so called Flash-crash on May 6, 2010 have been
attributed to such feedback effects.
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Literature

Frey-Stremme (1997), Cvitanic-Ma (1996), Frey (1998):
hedging under exogenously modeled feedback.

Market impact
1 exogenously given order-flow see Garman (1976), Amihud and Mendelson

(1980), Ho and Stoll (1981), Ohara and Oldfield (1986). Exogenously
modeled instantaneous or temporary market impact models see Cetin et al.
(2014), Fukasawa (2014), Guéant (2014)

2 transient market impact see Schied and Gatheral and the references therein
3 permanent market impact see Almgren and Chriss (1999, 2000), Guéant

(2014) and Guéant and Pu (2015) among others
4 empirical analysis, Almgren et al. (2005), Tóth et al. (2016)
5 Bank and Baum (2004): In their model liquidity costs can approximately be

avoided
6 closest to our work is Bank and Kramkov (2013,2014) and Anthropelos et al.

(2021)
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Framework

We assume zero risk-free rates.

Let T > 0 be the end of an accounting period. Each agent evaluates her
utility based on her wealth at T .

Consider n securities whose value S i at T is exogenously determined.
Denote the value by S = (S1, . . . ,Sn) and regard it as an FT measurable
random variable defined on a filtered probability space (Ω,F ,P, {Ft })
generated by a d-dimensional Brownian motion W .

The price of these securities at T is trivially S, but the price at t < T should
be Ft measurable and will be endogenously determined by an utility-based
mechanism.
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Agents

There are two agents in our model: Large trader and Market.

The Market quotes a price for each volume of the securities. We have a limit
order book in mind. She can be risk-averse and so her quotes can be
nonlinear in volume and depend on her inventory of this securities.

The Large trader refers to the quotes and makes a decision. She cannot
avoid affecting the quotes by her trading due to the inventory consideration of
the Market, and seeks an optimal strategy under this endogenous market
impact.

This setting follows the works of Stoll (1978), Ho und Stoll (1981) und Bank
und Kramkov (2013,2014). This setting was also applied in Anthropelos et al.
(2021).

Under a Bertrand-type competition among liquidity suppliers, the Market (a
representative liquidity supplier) gives a quote according to the utility indifference
principle. (c.f. Bank-Kramkov)
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The representative liquidity
supplier
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Valuations

In the sequel, we assume that representative liquidity supplier evaluates a
payoff, X , using an evaluation method Π(X).

For instance, if the probabilistic model is known and the liquidity supplier
through trading with other liquidity suppliers can perfectly diversify her risks,
Π(X) might be given through Π(X) = EQ [X ].

In reality, however, this is quite a restrictive requirement: in many situations
the liquidity supplier might not be able to perfectly diversify her risks and may
face uncertainty about the true probabilistic model.

In the sequel we will assume that Π is given by a convex risk measure
(modulo a change of sign), see Artzner et al. (1999), Föllmer and Schied
(2002), Frittelli and Gianin (2002), etc.
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Convex Measures of Risk

A convex risk measure means that a random future reward, say X , is
evaluated according to

Πt(X) = inf
Q∈Q
{EQ [X |Ft ] + ct(Q)},

where Q = {Q |Q ∼ P} is the set of probabilistic models Q that share the
same null sets with a base reference model P, with each Q attaching a
different probability law to the future reward X and ct is a penalty function
specifying the plausibility of the model Q .

Models Q that have ‘low’ plausibility are associated with a high penalty, while
models that have ‘high’ plausibility yield a low penalty, with ct(Q) = ∞
corresponding to the case in which the model Q is considered fully
implausible.

By taking the infimum over Q a conservative worst-case approach occurs,
also typical in (deterministic) robust optimization.
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Examples

a) A first example is given by Π simply being a linear conditional expectation

Πt(X) = EQ[X |Ft ],

b) The more interesting example is an exponential utility :

Πt(X) = −
logE[exp{−γX}|Ft ]

γ
,

where γ > 0 is a parameter of risk-aversion. In this case c corresponds to the
Kulback-Leibler divergence also called the relative entropy, see Hansen and
Sargent (2008)

c) In the theory of no-arbitrage pricing, attempts have been made to narrow the
no-arbitrage bounds by restricting the set of pricing kernels considered. One
of these approaches is the good-deal bounds ansatz in Cochrane and
Saá-Requejo (2000) and Björk and Slinko (2006) defined as

Πt(X) = inf
Q∈M
EQ [X |Ft ],

whereM is the set of all pricing kernels excluding the ones which induce a
too high Sharpe ratio.
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In all of our examples above this is actually an alternative representation of
Π. Namely, each of these evaluation is connected, so a fixed function g(t , z)
which is convex in z with g(t , 0) = 0 such that for each suitable integrable X
there exists a square-integrable predictable process Z(X) such that

dΠt(X) = g(t ,Zt(X))dt − Zt(X)dWt . (1)

(Recall that ΠT (X) = X .)

Interpreting the right-hand-side of (1) as a non-linear conditional expectation
sometimes Πt(X) is called a g-expectation.

Alternatively (Π(X),Z(X)) is also called the solution of a backward stochastic
differential equation (BSDE). Alternatively to (1), a BSDE is often written as

Πt(X) = X −
∫ T

t
g(s,Zs(X))ds +

∫ T

t
Zs(X)dWs .

More general, One may see that any Π satisfying our assumptions is
equivalent to Π being a g-expectation modulo a compactness assumption.
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Examples

In our examples we obtain the following driver function g

a) in the case of Π being a conditional expectation g(s, z) = νsz

b) in the case of Π corresponding to an exponential utility function g(t , z) = |z|2

γ

c) in the case of Π corresponding to a lower good-deal bound g is the norm of a
projection of z on a suitable set, and g is positively homogeneous in the
sense that g(t , λz) = λg(t , z) for λ > 0.
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Conditions

We assume in the sequel that Π is given by a g-expectation with g(t , z) being
convex in z, g(t , 0) = 0, and that either g is Lipschitz in z or grows at most
quadratically in z. Additionally, in the following we will always assume that one of
the following assumptions holds:

(H1) Additive separability: suppose that g is of the form g(t , z) =
∑d

i=1 gi(t , z i) and
S i = s i(F i

T ) with F i being a Markov process driven by W i satifying a standard
SDE for i = 1, . . . , n.

(H2) g is positively homogeneous meaning that g(t , λz) = λg(t , z).
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Pricing and trading
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The utility indifference price

We assume that the Market is initially endowed with a risky asset HM while
the investor is holding an initial endowment of HL .

If the Market is holding a = (a1, . . . , an) units of the securities in question other
than HM as her inventory at time t ∈ [0,T ], then her utility is measured as
Πt(HM + aS). According to the utility indifference principle, the Market quotes a
selling price for y units of the securities by

Pt(a, y) := inf{p ∈ R; Πt(HM + aS − yS + p) ≥ Πt(HM + aS)}

=Πt(HM + aS) − Πt(HM + (a − y)S).

Example: In the risk-neutral case of Example a) Pt(a, y) = yEQ[S |Ft ].
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Nonlinear stochastic integral

Let us consider trading strategies S.

Denote by S0 the set of the simple, predictable, left-continuous processes Y
with Y0 = 0. (The set of the simple trading strategies.)

The price for the y units of the securities at time t is Pt(−Yt , y). (The Market
holds −Yt units due to the preceding trades.)

The profit and loss at time T associated with Y ∈ S0 is given by

IT (Y) := YT S −
∑

0≤t<T

Pt(−Yt ,∆Yt).
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Using definition (1) let Πy = Π(HM − yS) and Zy = Z(HM − yS) for y ∈ R. We set
Z(ω, t , y) = Zy

t (ω).

Proposition
If (trading strategies) θn ∈ Θ0, and θn → θ in L2(dP × dt) as n → ∞, we have

L2- lim
n→∞
IT (θ

n) = IT (θ) := HM − Π0(HM) −

∫ T

0
g(t ,Zθt )dt +

∫ T

0
Zθt dWt

where Zθt (ω) := Z(ω, t , θt(ω)).

Motivated by the above proposition we define the set of admissible strategies as

Θ :=

{
θ : Ω × [0,T ]→ R predictable with E

[ ∫ T

0
|Zθt |

2dt
]
< ∞

}
.

θt(ω) gives how much securities the trader at time t holds in the scenario ω.
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Results on optimal investment
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A forward-backward SDE system and utility maximization

We study the following utility maximization problem for the Large Trader

max
(θt ),t∈[0,T ]

E[U(X θT + HL)] (2)

where θt is the number of risky asset held at time t , X θ0 = x0 is the initial capital
and

X θT = x0 + I
θ
T ,

is the terminal wealth of the large investor arising from the securties
corresponding to the strategy θ. Here we assume that the utility function U is a
strictly increasing, concave and three times differential function satisfying Inada’s
condition limx→−∞ U′(x) = ∞ and limx→+∞ U′(x) = 0.
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Define Im(Z) = (Im(Zt(ω)))t∈[0,T ],ω∈Ω

Im(Zt(ω)) =

{
Zθt (ω)

∣∣∣∣∣∣θ ∈ Θ
}
.

To simplify notation we in this case define the extension of the function g beyond
the image space of Z as

ḡ(t , ω, z) =

g(t , ω, z) if z ∈ Im(Zt(ω))

∞ else,
, (3)
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A forward-backward SDE system and utility maximization

We are now able to characterize the optimal strategy in terms of a fully-coupled
forward-backward system. For that we need the following additional proposition.

Proposition

Under assumption (H1) there exists a unique P ⊗ B(Rn+2)-measurable function,
say
H(t ,X , ζ,M) = (H1(t ,X , ζ,M1), . . . ,Hn(t ,X , ζ,Mn)) : [0,T ]×Ω×R×R×Rn → Rn,
such that

0 ∈ −U′(X+ζ)∇ḡi(t ,H i(t ,X , ζ,M i))+U′′(X+ζ)
(
H i(t ,X , ζ,M i)+M i)

)
, i = 1, . . . , n,

(4)
with ∇ being the gradient with respect to the second component. Equality (4)
should hold for each (ω, t ,X , ζ,M) ∈ Ω × [0,T ] × R × R × Rn.

In the case of positive homogeneity we can define H similarly (and actually
explicit, see below)
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The next theorem gives necessary conditions for an optimal solution.

Theorem

If θ∗ is an optimal strategy then it holds that

Zθ
∗

t = H(t ,Xt , ζt ,Mt),

where (X , ζ,M) is a triple of adapted processes which solves the (coupled)
forward-BSDE(FBSDE)

Xt = x0 −
∑n

i=1

∫ t
0 gi(s,H i(s,Xs , ζs ,Ms))ds

+
∑n

i=1

∫ t
0 H

i(s,Xs , ζs ,Ms)dW i
s +Πt(HM) − Π0(HM),

ζt = HL −
∫ T

t MsdWs +
1
2

∫ T
t

{∑d
i=n+1

U(3)

U′′ (Xs + ζs)|+ M i
s |

2
}
ds

+
∫ T

t

{∑n
i=1

1
2

U(3)

U′′ (Xs + ζs)|H
i(s,Xs , ζs ,M i

s) − Z i
s(HM) + M i

s |
2

+gi(s,Z i(HM)) − gi(s,H i(s,Xs , ζs ,M i
s))

}
ds.

(5)
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Sufficient conditions for an optimum

Theorem

Let (X , ζ,M) be a triple of adapted processes which solves the FBSDE (5) and
satisfies

E[|U′(XT )|
2] < ∞; E[U(XT )] < ∞, E[

∫ T

0
|H(t ,Xt , ζt ,Mt)|

2dt] < ∞.

Assume that U′/U′′ and U′′′/U′′ are bounded and Lipschitz continuous. Then the
maximum is attained in an optimal strategy θ∗ if and only if
H(t ,Xt , ζt ,Mt) ∈ Im(Zt). In this case

Zθ
∗

t = H(t ,Xt , ζt ,Mt)

is an optimal strategy.
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Existence results & uniqueness for coupled FBSDEs

We note that since the coupled FBSDEs are quadratic (even with growth
constants which are unbounded) existence results in the literature are not
available. The following theorem heavily relies on the connections between the
FBSDEs & the optimal control problem

Theorem

Suppose that one of the following conditions holds:

(i) g grows at least quadratically meaning that there exists K1,K2 > 0 such that

g(t , z) ≥ −K1 + K2|z|2.

(ii) There exists an x0 ∈ R such that U(x) ≤ K1 − K2|x |2 with K1,K2 > 0 and
U(x) = constant for all x > x0

(iii) U is exponential meaning that U(x) = a − be−x/γ for a ∈ R and b , γ > 0

Then there exists a solution to the coupled FBSDE (5). Furthermore, if g is strictly
convex and U is strictly concave the solution of the coupled FBSDE is unique.

Mitja Stadje Investment under market impacts 25 / 34



Theorem

Suppose that V(t , x) = esssup
θ∈Θ̃,θs ,s∈[t ,T ]

E
[
U(x + It ,T (θ))

∣∣∣Ft

]
is a regular family

of semi-martinagles. Then V is a solution of the backward stochastic PDE

V(t , x) = V(0, x) +
∫ t

0
α(s, x)dWs +

∫ t

0
LV(s, x)ds, (6)

where the operator L is defined by

LV(t , x) := esssup
Z∈Image (Z·t )

(
− g(t ,Z)Vx(t , x) +

1
2
|Z|2Vxx(t , x) +Zαx(t , x)

)
,

with the essential supremum being attained in a progressively measurable
function v(t , x). A strategy θ∗ ∈ Θ with V(t ,X θ

∗

t ) being suitable integrable is
optimal if and only if Zθ

∗

t = υ(t ,X θ
∗

t ), Finally, given the solution of the BSPDE the
solution of the FBSDE can be defined in terms of the derivative of V .
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Corollary
Suppose that g(t , z) is convex with quadratic growth and satisfies gz(t , 0) = 0 or
in case of positive homogeneity 0 ∈ ∇g(t , 0). Then the optimal terminal wealth is
given by X∗T = x0. This means that it is optimal for the Large Trader to invest
nothing, i.e., H(t ,X∗t , ζ

∗
t ) = 0. In addition, the triple (X∗t = x0, ζ

∗
t = 0,M∗t = 0) is a

solution of the FBSDE system (5).

Definition
A market is complete if for any H at T , a perfect replication is possible, in the
sense that there exists (a, θ) ∈ R ×Θ such that

H = a + I(θ).
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Examples
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Explicit examples

We assume that the market is complete and the Market Maker evaluates the
market risks in terms of an exponential utility indifferent principle under an
equivalent measure Q ∼ P. More precisely,

Πt(X) =
1
γ
log

(
EQ[e−γX |Ft ]

)
,

where the constant γ > 0 is the risk aversion. Assume that

dQ
dP

= exp

{
−

1
2

∫ T

0
|ηt |

2dt −
∫ T

0
ηt dWt

}
:= ξT ,

where η is a deterministic and bounded process.
Define f as the inverse of the decreasing function U′(x)e−γxγ−1.
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Proposition

Assume that for any λ > 0, E[eγf(λξT )ξT ] < ∞. The optimal terminal wealth of
Problem (2) is then given by X∗T := f(λξT ), where λ is determined such that the
budget constraint is met. The optimal strategy can be characterized as the
strategy θ∗ that perfectly replicates the terminal optimal wealth X∗T , i.e.,

X∗t = x0 −
γ

2

∫ t

0
|Zθ

∗

s |
2ds +

∫ t

0
Zθ

∗

s dWQ
s , t ∈ [0,T ],

where Zθ
∗

t := 1
γ

(
β∗t
R∗t

+ ηt

)
with β∗t being the progressively measurable process

resulting from the martingale representation
R∗t := E[U′(X∗T )|Ft ] = U′(X∗T ) −

∫ T
t β

∗
sdWs . Furthermore, define

ζ∗t := I(R∗t ) −
1
γ
log

(
R∗t
γλξt

)
, M∗t :=

β∗t
U′′(X∗t + ζ∗t )

−
1
γ

(
β∗t
R∗t

+ ηt

)
.

Then the triple (X∗t , ζ
∗
t ,M

∗
t ) solves the FBSDE (5) and the optimality condition (4)

holds.
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Proposition
Assume U(x) = −e−γA x , for some constant γA > 0. The optimal wealth and
optimal investment strategy are then given by

X∗t = x0 −
γ

2

∫ t

0
|Zθ

∗

s |
2ds +

∫ t

0
Zθ

∗

s dWQ
s , t ∈ [0,T ],

with
Zθ

∗

t :=
ηt

γ + γA
.

Furthermore, the triple
(
X∗t , ζ

∗
t = 1

2(γ+γA )

∫ T
t |ηs |

2ds,M∗t = 0
)

is a solution of the

FBSDE system (5).
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Conclusion

We considered a continuous-time setting with permanent endogeneous price
impact induced by a change in the inventory of the market maker

We showed that trading in such a setting corresponds to non-linear
stochastic integrals

We gave necessary and sufficient conditions for an optimal strategy

Existence and uniqueness results for the underlying FBSDEs were given

Some explicit examples were given
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Many thanks for your attention!
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Connection to Decision Theory

Decision-making under ambiguity, with probabilities of events unknown to the
decision-maker, has been extensively studied in economics since the seminal
work of Ellsberg (1961).

Popular approaches to decision-making under ambiguity are provided by the
multiple priors preferences of Gilboa and Schmeidler (1989), also referred to
as maxmin expected utility, and the significant generalization of variational
preferences developed by Maccheroni, Marinacci and Rustichini (2006).

With linear utility, variational preferences reduces to a convex risk measure.

In macroeconomics such robustness critera were pioneered by Hansen and
Sargent in a series of papers.

Such preferences induce aversion to ambiguity. A version of multiple priors
was also studied by Huber (1981) in robust statistics; see also the early Wald
(1950).
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Definition of H in case of (H2)

In case that g is positively homogeneous we define
H i(t ,X , ζ,M) = θ(t ,X , ζ,M)Zt(−S) with

θ(t ,X , ζ,M) =
−Zt(−S)M + U′

U′′ (X + ζ)g(t ,Zt(−S))

|Zt(−S)|2
(7)

if the RHS of (7) is positive, and

θ(t ,X , ζ,M) = −
−Zt(S)M + U′

U′′ (X + ζ)g(t ,Zt(S))

|Zt(S)|2
, (8)

if the RHS of (8) is negative.
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Definition (regular family of semimartingales)

The process V(t , x), t ∈ [0,T ] is a regular family of semimartingales if

(a) V(t , x) is twice continuously differentiable with respect to x for any t ∈ [0,T ].

(b) For any x ∈ R, V(t , x), t ∈ [0,T ] is a special semimartingale with
progressively measurable finite variation part A(t , x) which admits the
representation A(t , x) =

∫ t
0 b(s, x)ds, where b(s, x) is progressively

measurable, i.e.,

V(t , x) = V(0, x) −
∫ t

0
b(s, x)ds +

∫ t

0
α(s, x)dWs .

(c) For any x ∈ R, the derivative process Vx(t , x) is a special semimartingale
with decomposition

Vx(t , x) = Vx(0, x) −
∫ t

0
bx(s, x)ds +

∫ t

0
αx(s, x)dWs ,

where αx denotes the derivative of α with respect to x.
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Theorem
The triple (X θ

∗

t , ζt ,Mt) defined by

ζt = I(Vx(t ,X θ
∗

t )) − X θ
∗

t , Mt =
υ(t ,X θ

∗

t )Vxx(t ,X θ
∗

t ) + αx(t ,X θ
∗

t )

U′′(X θ∗t + ζt)
− υ(t ,X θ

∗

t ),

is a solution of the FBSDE (5).
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