Completeness, arbitrage and optimal portfolio strategy in an Itô-Markov additive market

Anna Sulima

Wrocław University of Economics and Business
anna.sulima@ue.wroc.pl

Winter Seminar on Mathematical Finance, January 24, 2022

Joint work with prof. Z. Palmowski and prof. L. Stettner.

Market model

Let

- $(\Omega, \mathcal{F}, \mathbb{P})$ be complete probability space,
- $\mathbb{T}:=[0, T]$, for fixed $0<T<\infty$,
- $J:=\{J(t): t \in \mathbb{T}\}$ be the observable and continuous-time Markov chain with a finite, canonical state space $E:=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{N}\right\}$,
- $\left[\lambda_{i j}\right]_{i, j=1}^{N}$ be the intensity matrix of the Markov chain J.

Risk-free asset

We describe the dynamic of the price process of risk-free asset B as follows:

$$
\mathrm{d} B(t)=r(t) B(t) \mathrm{d} t, \quad B(0)=1
$$

Here r is the interest rate of B and it is modulated by Markov chain J

$$
r(t):=\langle\mathbf{r}, J(t)\rangle=\sum_{i=1}^{N} r_{i}\left\langle\mathbf{e}_{i}, J(t)\right\rangle
$$

where $\mathbf{r}=\left(r_{1}, \ldots, r_{N}\right)^{\prime} \in \mathbb{R}_{+}^{N}$ and $\langle\cdot, \cdot\rangle$ is a scalar product in \mathbb{R}^{N}. The value $r_{i}>0$ represents the value of the interest rate when the Markov chain is in the state space \mathbf{e}_{i}.

Itô-Markov additive process

We define the process X as follows:

$$
X(t)=\overline{\bar{X}}(t)+\bar{X}(t)
$$

where

$$
\overline{\bar{X}}(t):=\sum_{i=1}^{N} \Psi_{i}(t)
$$

for

$$
\Psi_{i}(t):=\sum_{n \geqslant 1} U_{n}^{(i)} \mathbf{1}_{\left\{J\left(T_{n}\right)=\mathbf{e}_{i}, T_{n} \leqslant t\right\}}
$$

and for the jump epochs $\left\{T_{n}\right\}$ of J. Here $U_{n}^{(i)}(n \geqslant 1,1 \leqslant i \leqslant N)$ are independent random variables such that for every fixed i, the random variables $U_{n}^{(i)}$ are identically distributed. We can express the process Ψ_{i} as follows:

$$
\Psi_{i}(t)=\int_{0}^{t} \int_{\mathbb{R}} x \Pi_{U}^{i}(\mathrm{~d} s, \mathrm{~d} x)
$$

for the point measure

$$
\Pi_{U}^{i}([0, t], \mathrm{d} x):=\sum_{n \geqslant 1} \mathbf{1}_{\left\{U_{n}^{(i)} \in \mathrm{d} x\right\}} \mathbf{1}_{\left\{J\left(T_{n}\right)=\mathbf{e}_{i}, T_{n} \leqslant t\right\}}, \quad i=1, \ldots, N .
$$

Itô-Markov additive process

An Itô-Lévy process has the following decomposition:

$$
\bar{X}(t):=\bar{X}(0)+\int_{0}^{t} \mu_{0}(s) \mathrm{d} s+\int_{0}^{t} \sigma_{0}(s) \mathrm{d} W(s)+\int_{0}^{t} \int_{\mathbb{R}} \gamma(s-, x) \bar{\Pi}(\mathrm{d} s, \mathrm{~d} x),
$$

where W denotes the standard Brownian motion independent of J and $\bar{\Pi}(\mathrm{d} t, \mathrm{~d} x):=\Pi(\mathrm{d} t, \mathrm{~d} x)-\nu(\mathrm{d} x) \mathrm{d} t$ is the compensated Poisson random measure which is independent of J and W. Furthermore,

$$
\begin{gathered}
\mu_{0}(t):=\left\langle\boldsymbol{\mu}_{0}, J(t)\right\rangle=\sum_{i=1}^{N} \mu_{0}^{i}\left\langle\mathbf{e}_{i}, J(t)\right\rangle, \quad \sigma_{0}(t):=\left\langle\sigma_{0}, J(t)\right\rangle=\sum_{i=1}^{N} \sigma_{0}^{i}\left\langle\mathbf{e}_{i}, J(t)\right\rangle, \\
\gamma(t, x):=\langle\gamma(x), J(t)\rangle=\sum_{i=1}^{N} \gamma_{i}(x)\left\langle\mathbf{e}_{i}, J(t)\right\rangle
\end{gathered}
$$

for some vectors $\mu_{0}:=\left(\mu_{0}^{1}, \ldots, \mu_{0}^{N}\right)^{\prime} \in \mathbb{R}^{N}, \sigma_{0}:=\left(\sigma_{0}^{1}, \ldots, \sigma_{0}^{N}\right)^{\prime} \in \mathbb{R}_{+}^{N}$ and the vector-valued measurable function $\gamma(x):=\left(\gamma_{1}(x), \ldots, \gamma_{N}(x)\right)$.
A bivariate process (J, X) with above decomposition is called Itô-Markov additive process.

Risky asset

We assume the evolution of the price process of the risky asset S_{0} is governed by the Itô-Markov additive process as follows:

$$
\left\{\begin{aligned}
\mathrm{d} S_{0}(t)= & S_{0}(t-)\left[\mu_{0}(t) \mathrm{d} t+\sigma_{0}(t) \mathrm{d} W(t)+\int_{\mathbb{R}} \gamma(t-, x) \bar{\Pi}(\mathrm{d} t, \mathrm{~d} x)\right. \\
& \left.+\sum_{i=1}^{N} \int_{\mathbb{R}} x \bar{\Pi}_{U}^{i}(\mathrm{~d} t, \mathrm{~d} x)\right] \\
S_{0}(0)= & s_{0}>0
\end{aligned}\right.
$$

We interpret the coefficient μ_{0} as the appreciation rate and σ_{0} as the volatility of the risky asset for each $i=1, \ldots, N$.

Markovian jump securities

We define a marked point process Φ_{j} by

$$
\Phi_{j}(t):=\Phi\left([0, t] \times \mathbf{e}_{j}\right)=\sum_{n \geqslant 1} 1_{\left\{J\left(T_{n}\right)=\mathbf{e}_{j}, T_{n} \leqslant t\right\}}, \quad j=1, \ldots, N .
$$

Let ϕ_{j} be the compensator of Φ_{j}, thus the process

$$
\bar{\Phi}_{j}(t):=\Phi_{j}(t)-\phi_{j}(t), \quad j=1, \ldots, N
$$

is a martingale and it is called the j th Markovian jump martingale.
The dynamics of prices of the Markovian jump securities S_{j} (for $\mathrm{j}=1$, is described as follows:

$$
\left\{\begin{array}{l}
\mathrm{d} S_{j}(t)=S_{j}(t-)\left[\mu_{j}(t) \mathrm{d} t+\sigma_{j}(t-) \mathrm{d} \bar{\Phi}_{j}(t)\right] \\
S_{j}(0)>0
\end{array}\right.
$$

where the appreciation rate μ_{j} and the volatility σ_{j} are determined by the Markov chain J as previously.

Markovian power-jump securities

We introduce the power-jump processes as follows:

$$
X^{(k)}(t):=\sum_{0<s \leqslant t}(\Delta \bar{X}(s))^{k}, \quad k \geqslant 2
$$

where $\Delta \bar{X}(s)=\bar{X}(s)-\bar{X}(s-)$. We set $X^{(1)}(t)=\bar{X}(t)$. We have

$$
\mathbb{E}\left[X^{(k)}(t) \mid \mathcal{J}_{t}\right]=\int_{0}^{t} \int_{\mathbb{R}} \gamma^{k}(s-, x) \nu(\mathrm{d} x) \mathrm{d} s<\infty
$$

\mathbb{P} - a.e. for $k \geqslant 2$ and $\mathcal{J}_{t}:=\sigma\{J(s): s \leqslant t\}$. Hence the processes

$$
\bar{X}^{(k)}(t):=X^{(k)}(t)-\int_{0}^{t} \int_{\mathbb{R}} \gamma^{k}(s-, x) \nu(\mathrm{d} x) \mathrm{d} s, \quad k \geqslant 2
$$

are martingales.
The price process of Markovian kth-power-jump assets $S^{(k)}$ is described by:

$$
\left\{\begin{array}{l}
\mathrm{d} S^{(k)}(t)=S^{(k)}(t-)\left[\mu^{(k)}(t) \mathrm{d} t+\sigma^{(k)}(t-) \mathrm{d} \bar{X}^{(k)}(t)\right] \\
S^{(k)}(0)>0
\end{array}\right.
$$

where the coefficients are determined by the Markov chain J as previously,

Impulse regime switching securities

We define

$$
\Psi_{i}^{(l)}(t):=\sum_{n \geqslant 1}\left(U_{n}^{(i)}\right)^{\prime} \mathbf{1}_{\left\{J\left(T_{n}\right)=\mathbf{e}_{i}, T_{n} \leqslant t\right\}} .
$$

The compensated version of $\Psi_{i}^{(I)}$ is called an impulse regime switching martingale:

$$
\bar{\Psi}_{i}^{(I)}(t):=\Psi_{i}^{(I)}(t)-\mathbb{E}\left(U_{n}^{(i)}\right)^{\prime} \phi_{i}(t)
$$

We characterize the evolution of impulse regime switching securities $S_{i}^{(I)}$ as follows:

$$
\left\{\begin{array}{l}
\mathrm{d} S_{i}^{(I)}(t)=S_{i}^{(I)}(t-)\left[\mu_{i}^{(I)}(t) \mathrm{d} t+\sigma_{i}^{(I)}(t-) \mathrm{d} \bar{\Psi}_{i}^{(I)}(t)\right] \\
S_{i}^{(I)}(0)>0
\end{array}\right.
$$

where the coefficients are determined by the Markov chain J as previously.

A enlarged Itô-Markov additive market

$$
\left\{\begin{aligned}
& \mathrm{d} B(t)=r(t) B(t) \mathrm{d} t \\
& \mathrm{~d} S_{0}(t)=S_{0}(t-)\left[\mu_{0}(t) \mathrm{d} t+\sigma_{0}(t) \mathrm{d} W(t)+\int_{\mathbb{R}} \gamma(t-, x) \bar{\Pi}(\mathrm{d} t, \mathrm{~d} x)\right. \\
&\left.\quad+\sum_{i=1}^{N} \int_{\mathbb{R}} x \bar{\Pi}_{U}^{i}(\mathrm{~d} t, \mathrm{~d} x)\right] \\
& \mathrm{d} S_{j}(t)=S_{j}(t-)\left[\mu_{j}(t) \mathrm{d} t+\sigma_{j}(t-) \mathrm{d} \bar{\Phi}_{j}(t)\right] \\
& \mathrm{d} S^{(k)}(t)=S^{(k)}(t-)\left[\mu^{(k)}(t) \mathrm{d} t+\sigma^{(k)}(t-) \mathrm{d} \bar{X}^{(k)}(t)\right] \\
& \mathrm{d} S_{i}^{(l)}(t)=S_{i}^{(l)}(t-)\left[\mu_{i}^{(l)}(t) \mathrm{d} t+\sigma_{i}^{(l)}(t-) \mathrm{d} \bar{\Psi}_{i}^{(l)}(t)\right]
\end{aligned}\right.
$$

for $i, j=1, \ldots, N, k \geqslant 2$ and $I \geqslant 1$.

Asymptotic completeness of the enlarged market

A market is said to be complete if each claim can be replicated by a strategy, that is, the claim can be represented as a stochastic integral with respect to the asset prices.
In the case of market models with an infinite number of assets, we define completeness in terms of approximate replication of claims.
A market is asymptotically complete in the sense that for every contingent claim A we can set up a sequence of finite self-financing portfolios whose final values converge to A.

Theorem 1. [Palmowski Z., Stettner L., S. A., 2019]
The enlarged Itô-Markov additive market is asymptotically complete.

Asymptotic arbitrage

We say that there is an asymptotic arbitrage opportunity if we have a sequence of strategies such that, for some real number $c>0$, the value process V^{n} on a finite market satisfies:

- $V^{n}(t) \geqslant-c$ for each $0<t \leqslant T$ and for each $n \in \mathbb{N}$,
- $V^{n}(0)=0$ for each $n \in \mathbb{N}$,
- $\liminf _{n \rightarrow \infty} V^{n}(T) \geqslant 0, \mathbb{P}$-a.s,
- $\mathbb{P}\left(\liminf _{n \rightarrow \infty} V^{n}(T)>0\right)>0$.

Proposition 1. [Björk, T. and Näslund, B., 1998] If there exists a martingale measure \mathbb{Q} equivalent to \mathbb{P} then the market is asymptotic-arbitrage-free.

Density process for the martingale measure \mathbb{Q}

Let $\mathcal{L}^{2}(W)$ be the set of all predictable, $\left\{\mathcal{F}_{t}\right\}$-adapted processes ξ such that $\mathbb{E} \int_{0}^{T} \xi^{2}(s) \mathrm{d} s<\infty$ and $\xi \in \mathcal{L}^{1}\left(\phi_{j}\right)$ iff ξ is predictable, $\left\{\mathcal{F}_{t}\right\}$-adapted and satisfies $\mathbb{E} \int_{0}^{T}|\xi(s)| \lambda_{j} \mathrm{~d} s<\infty$.
Proposition 2. [Boel, R. and Kohlmann, M., 1980]
Let $\psi_{0} \in \mathcal{L}^{2}(W), \psi_{j} \in \mathcal{L}^{1}\left(\phi_{j}\right)$ for all $j=1, \ldots, N$ and $\psi_{j}(s)>-1$. Then

$$
\begin{gathered}
\ell(t):=\exp \left[\int_{0}^{t} \psi_{0}(s) \mathrm{d} W(s)-\frac{1}{2} \int_{0}^{t} \psi_{0}^{2}(s) \mathrm{d} s-\sum_{j=1}^{N} \int_{0}^{t} \psi_{j}(s) \phi_{j}(\mathrm{~d} s)\right] \\
\times \prod_{j=1}^{N} \prod_{\substack{J(t-) \neq J(t) \\
J(t)=\mathbf{e}_{j}}}\left(1+\psi_{j}(t)\right)
\end{gathered}
$$

is a non-negative local martingale. If additionally $\mathbb{E} \ell(t)=1$ then it is a true martingale. Let \mathbb{Q} be the probability measure defined by the Radon-Nikodym derivative

$$
\ell(t)=\left.\frac{\mathrm{d} \mathbb{Q}}{\mathrm{~d} \mathbb{P}}\right|_{\mathcal{F}_{t}} .
$$

Girsanov's theorem for jump-diffusion processes

Theorem 2. [Boel, R. and Kohlmann, M., 1980] The process \bar{X} under the new martingale measure \mathbb{Q} has the form

$$
\bar{X}^{\mathbb{Q}}(t)=\int_{0}^{t} \sigma_{0}(s) \mathrm{d} W^{\mathbb{Q}}(s)+\int_{0}^{t} \int_{\mathbb{R}} \gamma(s-, x) \bar{\Pi}(\mathrm{d} s, \mathrm{~d} x),
$$

where

$$
W^{\mathbb{Q}}(t)=W(t)-\int_{0}^{t} \psi_{0}(s) \mathrm{d} s
$$

is a standard \mathbb{Q}-Brownian motion.
Moreover,

$$
\begin{gathered}
\Phi_{j}^{\mathbb{Q}}(t)=\Phi_{j}(t)-\int_{0}^{t}\left(1+\psi_{j}(s)\right) \phi_{j}(\mathrm{~d} s), \\
\phi_{j}^{\mathbb{Q}}(t)=\int_{0}^{t}\left(1+\psi_{j}(s)\right) \phi_{j}(\mathrm{~d} s) .
\end{gathered}
$$

and

$$
\bar{\Psi}_{j}^{(I), \mathbb{Q}}(t)=\Psi_{j}^{(I)}(t)-\mathbb{E}\left(U_{n}^{(i)}\right)^{\prime} \phi_{j}^{\mathbb{Q}}(t) .
$$

Theorem 3. [Palmowski Z., Stettner L., S. A., 2019]
Assume that $\mu_{j}^{j}=r_{j}$ for all $j=1, \ldots, N$ and

$$
\left\{\begin{array}{l}
\psi_{0}(t)=\frac{r(t-)-\mu_{0}(t-)}{\sigma_{0}(t-)}, \\
\psi_{j}(t)=\frac{r(t-)-\mu_{j}(t-)}{\sigma_{j}(t-) \lambda_{j}(t)}, \quad j=1, \ldots, N .
\end{array}\right.
$$

Then, the discounted price processes of the securities, in the enlarged Itô-Markov additive market, are martingales under \mathbb{Q} and this market is asymptotic-arbitrage-free.

Optimal portfolio selection in a complete Itô-Markov additive market

We denote a portfolio strategy by

$$
\pi(t)=\left(\pi_{0}(t), \pi_{1}(t), \ldots, \pi_{N}(t), \pi^{(2)}(t), \ldots, \pi_{1}^{(1)}(t), \pi_{2}^{(1)}(t), \ldots\right)
$$

The wealth process R_{π}^{K} for the first K assets is governed by:

$$
\begin{aligned}
& \frac{\mathrm{d} R_{\pi}^{K}(t)}{R_{\pi}^{K}(t-)}:=\left(r(t)+\sum_{j=0}^{N} \pi_{j}(t)\left(\mu_{j}(t)-r(t)\right)+\sum_{k=2}^{K} \pi^{(k)}(t)\left(\mu^{(k)}(t)-r(t)\right)\right. \\
& \left.+\sum_{i=1}^{N} \sum_{l=1}^{K} \pi_{i}^{(I)}(t)\left(\mu_{i}^{(I)}(t)-r(t)\right)\right) \mathrm{d} t+\pi_{0}(t) \sigma_{0}(t-) \mathrm{d} W(t) \\
& +\int_{\mathbb{R}}\left(\pi_{0}(t) \gamma(t-, x)+\sum_{k=2}^{K} \pi^{(k)}(t) \sigma^{(k)}(t-) \gamma^{k}(t-, x)\right) \bar{\Pi}(\mathrm{d} t, \mathrm{~d} x) \\
& +\sum_{i=1}^{N} \int_{\mathbb{R}}\left(x \pi_{0}(t)+\sum_{l=1}^{K} x^{\prime} \pi_{i}^{(I)}(t) \sigma_{i}^{(I)}(t-)\right) \bar{\Pi}_{U}^{i}(\mathrm{~d} t, \mathrm{~d} x) \\
& +\sum_{j=1}^{N} \pi_{j}(t) \sigma_{j}(t-) \mathrm{d} \bar{\Phi}_{j}(t) .
\end{aligned}
$$

Portfolio selection problem

Let U denote a utility function of the investor.
Then the value function of the investor's portfolio selection problem is defined by

$$
V\left(t, z, \mathbf{e}_{i}\right):=\sup _{\pi \in \mathcal{A}} V^{\pi}\left(t, z, \mathbf{e}_{i}\right)=\sup _{\pi \in \mathcal{A}} \mathbb{E}_{t, z, i}\left[U\left(R_{\pi}(T)\right)\right]
$$

where $\mathbb{E}_{t, z, i}$ is the conditional expectation given $R_{\pi}(t)=z$ and $J(t)=\mathbf{e}_{i}$ under \mathbb{P}.

Logarithmic utility $U(z)=\log (z)$

Theorem 4. The optimal portfolio strategy for the portfolio selection problem with logarithmic utility function of wealth satisfy following equations:

$$
\begin{aligned}
r(t-)-\mu_{0}(t-)= & \pi_{0}^{\star}(t) \sigma_{0}^{2}(t-)+\sum_{i=1}^{N} \frac{r(t-)-\mu_{i}^{(1)}(t-)}{\sigma_{i}^{(1)}(t-)}+\int_{\mathbb{R}} \gamma(t-, x)((1 \\
& \left.\left.+\pi_{0}^{\star}(t) \gamma(t-, x)+\sum_{k=2}^{\infty} \pi^{(k) \star}(t) \sigma^{(k)}(t-) \gamma^{k}(t-, x)\right)^{-1}\right) \nu(\mathrm{d} x), \\
\pi_{j}^{\star}(t)= & \frac{\mu_{j}(t-)-r(t-)}{\left(r(t-)-\mu_{j}(t-)\right) \sigma_{j}(t-)+\lambda_{j}(t) \sigma_{j}^{2}(t-)}, \\
\frac{r(t-)-\mu^{(k)}(t-)}{\sigma^{(k)}(t-)}= & \int_{\mathbb{R}} \gamma^{k}(t-, x)\left(\left(1+\pi_{0}^{\star}(t) \gamma(t-, x)\right.\right. \\
& \left.\left.+\sum_{k=2}^{\infty} \pi^{(k) \star}(t) \sigma^{(k)}(t-) \gamma^{k}(t-, x)\right)^{-1}-1\right) \nu(\mathrm{d} x), \\
\frac{r(t-)-\mu_{i}^{(l)}(t-)}{\sigma_{i}^{(I)}(t-)}= & \int_{\mathbb{R}} x^{\prime}\left(\left(1+x \pi_{0}^{\star}(t)+\sum_{l=1}^{\infty} \pi_{i}^{(l) \star}(t) \sigma_{i}^{(l)}(t-) x^{\prime}\right)^{-1}-1\right) \eta(\mathrm{d} x) .
\end{aligned}
$$

Power utility $U(z)=z^{\alpha}$ for $\alpha \in(0,1)$

Theorem 5. The optimal portfolio strategy for the portfolio selection problem with power utility function of wealth satisfy following equations:

$$
\begin{aligned}
r(t-)-\mu_{0}(t)= & (\alpha-1) \pi_{0}^{\star}(t) \sigma_{0}^{2}(t-)+\sum_{i=1}^{N} \frac{\mu_{i}^{(1)}(t-)-r(t-)}{\sigma_{i}^{(1)}(t-)}+\int_{\mathbb{R}}\left(\left(\pi_{0}^{\star}(t)\right.\right. \\
& \left.\left.+\sum_{k=2}^{\infty} \pi^{(k) \star}(t) \sigma^{(k)}(t-) \gamma^{k}(t-, x)\right)^{\alpha-1}-1\right) \nu(\mathrm{d} x) \\
\pi_{j}^{\star}(t)= & \frac{\left(1-\frac{\mu_{j}(t-)-r(t-)}{\lambda_{i}(t) \sigma_{j}(t-)}\right)^{\frac{1}{\alpha-1}}-1}{\sigma_{j}(t-)}, \\
r(t-)-\mu^{(k)}(t)= & \int_{\mathbb{R}} \sigma^{(k)}(t-) \gamma^{k}(t-, x)\left(\left(1+\pi_{0}^{\star}(t) \gamma(t-, x)\right.\right. \\
& \left.\left.+\sum_{k=2}^{\infty} \pi^{(k) \star}(t) \sigma^{(k)}(t-) \gamma^{k}(t-, x)\right)^{\alpha-1}-1\right) \nu(\mathrm{d} x) \\
r(t-)-\mu_{i}^{(l)}(t)= & \int_{\mathbb{R}} \sigma_{i}^{(l)}(t-) x^{\prime}\left(\left(\sum_{l=1}^{\infty} \pi_{i}^{\star(l)}(t) x^{\prime} \sigma_{i}^{(I)}(t-)\right)^{\alpha-1}-1\right) \lambda_{i}(t) \eta(\mathrm{d} x) .
\end{aligned}
$$

References

\square Palmowski, Z., Stettner, L. and Sulima A. (2019) Optimal Portfolio Selection in an Itô-Markov Additive Market, Risks, vol. 7, nr 1, p.1-32.Palmowski, Z., Stettner, L. and Sulima A. (2018) A note on chaotic and predictable representations for Itô-Markov additive processes, Stochastic Analysis and Applications, vol. 36, p. 622-638.
目
Boel, R. and Kohlmann, M. (1980) Semimartingale models of stochastic optimal control, with applications to double Martingales. SIAM Journal on Control and Optimization, vol. 18, p. 511-533.

Thank you for your attention!

