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Risk management 

 

3 

• Financial risk management is the practice which uses financial instruments 

to manage exposure to risks, incl. market risk, liquidity risk, credit risk, 

operational risk etc. 

 

• To achieve this, a abstract mathematical representation (a model) is 

required to analyse the portfolio and make forecast of the likely losses that 

would be incurred for a variety of risks 

 

• The risk metrics can be: 

 Expected losses (provision) 

 Value at risk (VaR)  

 Economic capital: the unexpected losses, i.e. the difference between VaR 

and EL 

 

• Usages of the risk metrics: 

 Fulfil the regulatory requirements 

 Hedging 

 Pricing: i.e. XVA  

 



How risk models works in risk measuring 
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1. Models for 
risk factor + 
calibration  

2. Risk factor 
simulation and 

valuations 

3. Risk 
measurements 



Credit risk and loss valuation 
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• Credit risk: the possibility of a loss resulting from a borrower's failure to repay a loan or 

meet contractual obligations.  
 Probability of default (PD) 

 Loss given default (LGD) 

 Exposure at default EAD 

 Loss at time t: Lt = 1𝐷𝑡 ∗ LGD𝑡 ∗ EAD𝑡 

• Transition model: P𝑖→𝑗,𝑡 = P Ri,t → Rj,t+1 𝑋𝑠, 𝑠 ≤ 𝑡 , ∀ 𝑡, e.g. the logit model 

 P𝑖→𝑗,𝑡 ∝ 𝑔𝑖𝑗 ∗ exp 𝑍𝑖𝑗
⊤𝑋𝑡  

 𝑋𝑡 = 𝐴𝑋𝑡−1 + 𝜖𝑡 , 𝜖𝑡 ∼ 𝑁(0, Ω) 

 

• LGD model: collateral model LGD(𝑐𝑡) or structural model LGD(Xt) 
 

• EAD model: on- or off- balance  

 

• Valuation model: Lt = 𝑉𝑡 − 𝑉0, (NPV: 𝑉𝑡, coupon:  𝑠𝑡, principle at maturity 𝑇: 𝑃𝐶 ) 

𝑉𝑡
(𝑟)
= 𝛿𝑡𝑠𝑖

𝑡

𝑖

+  𝛿𝑘𝐸 1𝜏 𝑟 ∈ 𝑘−1,𝑘 1 − LGD𝑘 EAD𝑘 | 𝐹𝑡 

𝑇

𝑘=𝑡+1

+  𝛿𝑘𝑠𝑘𝐸 1𝜏 𝑟 >𝑘 | 𝑡 

𝑇

𝑘=𝑡+1

+ 𝛿𝑇𝑃𝐶𝐸 1𝜏 𝑟 >𝑘 | 𝐹𝑡  

   
 



Monte Carlo simulation 
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• The complexity of Monte Carlo simulation is 𝑂(Nsim𝑥 × Nclient) 

• If pooling: Lt = PD𝑡 ∗ LGD𝑡 ∗ EAD𝑡, still simulate the PD per scenario is 

very time consuming since it requires huge amout of matrix multiplication 

 



Pricing grids 
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• Instead of simulating and aggregating the realized losses over the whole 

time periods, the aggregated losses after the horizon (i.e. 1 year), are 

approximated by the expected losses  

 

• The expected loss depends on the rating at one year R1, the value of the 

state 𝑋1 and the value of collateral 𝑐1. Specifically 

𝐸 L1 R1, 𝑋1, 𝑐1] = 𝐸[

𝑡>1

PD(R1, 𝑋1, … , 𝑋𝑡) ∗ LGD(𝑐𝑡) ∗ EAD𝑡 R1, 𝑋1, 𝑐1  

• Therefore, these expected losses forms a pricing grid for the expected 

losses with grid points R1, 𝑋1, 𝑐1(actually loan to value at time 1) 

 

• This means the simulation stops at the 1 year.  

 For the losses within the first year: full MC applies 

 For the losses after one year: R1, 𝑋1, 𝑐1, the expected losses 

𝐸 L1 R1, 𝑋1, 𝑐1] approximated by using the pricing grid 
 



MC with pricing grid 
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• Issues remain: curse of dimensionality 

 Complexity of training the pricing grid increases rapidly with dimension increasing 

 While a higher dimensional model for the transition is desired in order to capture 

the transitions of the whole matrix 

 A dimension reduction approach is needed  



Dimension reduction approaches - Bayesian filtering (I)  
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• State equation 

𝑋𝑡 = 𝐹𝑡 𝑋𝑡−1 + 𝜂𝑡 ,  

• Measurement equation:  

𝑍𝑡  = ℎ𝑡(𝑋𝑡) + 𝜖𝑡 

 

 

 

 

 

 

 

 

 

1. Model update, i.e. based on estimation of the previous states, use the state equation to 

update the value or distribution of next states. This estimate is referred as the prior 

estimate 

 

2. Measurements update, i.e. use the observation to update the prior estimates. This estimate 

is referred as the posterior estimate 

 

 

X0 X1 X2 X3 X4 X5 

Z1 Z2 
Z3 Z4 Z5 



Dimension reduction approaches - Bayesian filtering (II) 
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• Kalman filter and its extensions 

 

• Particle filter 

 

• A Kalman particle filter for online parameter estimation with applications 

to affine models. He, J., Khedher, A. & Spreij, P.  Stat Inference Stoch 

Process 24, 353–403 (2021). https://doi.org/10.1007/s11203-021-09239-3 

 

• Time Series Analysis by State Space Methods. Durbin, James & Koopman, 

Siem Jan. (2001).  

 

 

https://doi.org/10.1007/s11203-021-09239-3
https://doi.org/10.1007/s11203-021-09239-3
https://doi.org/10.1007/s11203-021-09239-3
https://doi.org/10.1007/s11203-021-09239-3
https://doi.org/10.1007/s11203-021-09239-3
https://doi.org/10.1007/s11203-021-09239-3
https://doi.org/10.1007/s11203-021-09239-3
https://doi.org/10.1007/s11203-021-09239-3


Algorithm- Bayesian filter projection 
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Algorithm- risk metrics calculation 



Numerical experiments 
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• Four rating system: three performing ratings and one default rating 

• Number of clients of each rating: 100,000, 1,000, 300 

• PD:  logit model; LGD: Collateral model; EAD: unit amortizing loan, on-balance 

• PD and LGD are assumed to be independent to simplify the calculation  PD-LGD 

grid is not necessary  only need PD grid, ELGD has analytical BS formula 

• Simulated observed migrations  Calibration four, two and one factor model 

• The four factor model is the higher dimensional model for the transitions and the two 

or one factor models are for the valuation grid 

• The time span is 30 periods, i.e. T=30.  

• Pools only, i.e. the idiosyncratic migrations are ignored 

• Interest rates ignored: no discounting, no interest gains. 

• Grid: linear interpolation 

• One million scenarios, i.e. 𝑋𝑡 are simulated, the EL and VaR, per rating and per initial 

LTV, are computed based on the Bayesian and PCA projection approach. The PCA 

approach is used for comparison. 

• Benchmark: EL and VaR computed based on the four factor model. 

 

 



Results: EL 
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Results: VaR 
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