

Mathematical Institute

erc

Optimal Transport perspective on robustness of stochastic optimization problems to model uncertainty

JAN OBŁÓJ Mathematical Institute University of Oxford

joint works with DANIEL BARTL, SAMUEL DRAPEAU, JOHANNES WIESEL

20th Winter School on Financial Mathematics Soesterberg, 24/01/2023

Oxford Mathematics

St John's College

Model's neighbourhoods & Wasserstein distances

Model neighbourhood

Measure μ (or \mathbb{P}) will denote a model, such as

- $\mu = \hat{\mu}_N = \frac{1}{N} \sum_{i=1}^N \delta_{x^i}$ is the empirical measure of the observations/test set.
- μ comes from a mathematical modelling effort, e.g., an SDE;

Model neighbourhood

Measure μ (or \mathbb{P}) will denote a model, such as

- $\mu = \hat{\mu}_N = \frac{1}{N} \sum_{i=1}^N \delta_{x^i}$ is the empirical measure of the observations/test set.
- μ comes from a mathematical modelling effort, e.g., an SDE;

There are MANY ways to build a neighbourhood $B_{\delta}(\mu)$ of μ :

- data perturbation
- support estimates
- moments contraints
- density constraints
- Prokhorov distance
- Hellinger distance
- Kullback–Leibler divergence/entropy bounds
- and more...

Wasserstein distance

For $p\geq 1$, $\mu,
u \in \mathcal{P}(\mathcal{S})$ with $p^{ ext{th}}$ moments, set

$$W_p(\mu,\nu) = \inf\left\{\int_{\mathcal{S}\times\mathcal{S}} d(x,y)^p \,\pi(dx,dy) \colon \pi \in \operatorname{Cpl}(\mu,\nu)\right\}^{1/p},$$

where $\operatorname{Cpl}(\mu, \nu) = \{\pi : \pi(\cdot \times S) = \mu \text{ and } \pi(S \times \cdot) = \nu\}.$

metric d on $S \implies$ metric W on $\mathcal{P}(S)$

Observe historical returns r^1, \ldots, r^N assumed to follow a time-homogeneous ergodic Markov chain on \mathbb{R}^d with an invariant distribution μ . Should we work with

Source⁻ 1 Ebert. V. Spokoiny, A. Suvorikova arXiv:1703 03658

Wasserstein vs Euclidean mean (MNIST data)

Oxford Mathematics

Jan Obłój

Wasserstein vs Euclidean mean (MNIST data)

Wasserstein vs Euclidean

Small uncertainty limit

Key property: $\hat{\mu}_N \xrightarrow{W_{\rho}} \mu + \text{cnv rates}$, see FOURNIER & GUILLIN '14

ESFAHANI & KUHN '18 argue that using Wasserstein balls gives

- finite sample guarantees,
- asymptotic consistency,
- tractability (see also ECKSTEIN & KUPPER '19)

Large uncertainty limit

 $\operatorname{PFLUG}, \operatorname{PICHLER} \&$ WOZABAL '12 use Wasserstein balls for robust portfolio selection:

$$\inf_{\mathbf{a}:\langle \mathbf{a},1\rangle=1}\sup_{\nu\in\mathcal{B}_{\delta}(\mu)}\left(\mathbb{E}_{\nu}[\langle \mathbf{a},R\rangle]+\gamma\mathsf{Var}_{\nu}[\langle \mathbf{a},R\rangle]\right)$$

and show that

$$a^*(\delta) \stackrel{\delta \to \infty}{\longrightarrow} \left(\frac{1}{N}, \dots, \frac{1}{N}\right)$$

which may not be true for weaker or stronger metrics.

OT & DISTRIBUTIONALLY ROBUST OPTIMIZATION

based on Bartl, Drapeau, O. and Wiesel, *Proc. R. Soc. A* 477: 20210176, 2021 O. and Wiesel, *Math. Finance* 31(4): 1454–1493, 2021.

PROBLEM SETTING

Consider the following optimisation problem

$$V = \inf_{a \in \mathcal{A}} \int_{\mathcal{S}} f(a, x) \mu(dx),$$

where ${\cal A}$ is the set of controls, ${\cal S}$ is the state space and μ is the model.

Consider the following optimisation problem

$$V = \inf_{a \in \mathcal{A}} \int_{\mathcal{S}} f(a, x) \mu(dx),$$

where \mathcal{A} is the set of controls, \mathcal{S} is the state space and μ is the model. Examples:

- ▶ risk neutral pricing: $\mathbb{E}_{\mathbb{Q}}[f(S_T)]$,
- optimal investment: $\inf_{a \in \mathcal{A}} \mathbb{E}_{\mathbb{P}}[-U(x + \langle a, S_T S_0 \rangle)],$
- ▶ optimised certainty equivalents: $\inf_{a \in \mathbb{R}} \mathbb{E}_{\mathbb{P}}[a U(X + a)]$
- marginal utility pricing (Davis' price)...

Consider the following optimisation problem

$$V = \inf_{a \in \mathcal{A}} \int_{\mathcal{S}} f(a, x) \mu(dx),$$

where \mathcal{A} is the set of controls, \mathcal{S} is the state space and μ is the model. Examples:

- ▶ risk neutral pricing: $\mathbb{E}_{\mathbb{Q}}[f(S_T)]$,
- optimal investment: $\inf_{a \in \mathcal{A}} \mathbb{E}_{\mathbb{P}}[-U(x + \langle a, S_T S_0 \rangle)],$
- ▶ optimised certainty equivalents: $\inf_{a \in \mathbb{R}} \mathbb{E}_{\mathbb{P}}[a U(X + a)]$
- marginal utility pricing (Davis' price)...
- OLS regression: $\inf_{a \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^{N} (y^i \langle a, x^i \rangle)^2$,
- ▶ ML/NN: inf $\frac{1}{N} \sum_{i=1}^{N} |y^i ((A_2(\cdot) + b_2) \circ \sigma \circ (A_1(\cdot) + b_1))(x^i)|^p$ over $a = (A_1, A_2, b_1, b_2) \in \mathcal{A} = \mathbb{R}^{k \times d} \times \mathbb{R}^{d \times k} \times \mathbb{R}^k \times \mathbb{R}^d$, where $(x^i, y^i)_{i=1}^N$ is the training set.

Given our optimisation problem

$$V = \inf_{a \in \mathcal{A}} \int_{\mathcal{S}} f(a, x) \mu(dx),$$

we want to understand its dependence on the "model" μ .

We are interested in computing

 $\frac{\partial V}{\partial \mu}$ – the uncertainty sensitivity of the problem

- parametric programming and statistical inference see ArMACOST & FIACCO '76 ... BONNANS & SHAPIRO '13;
- qualitative/quantitative stability in μ see DUPAČOVÁ '90, RÖMISCH '03
- robust optimisation see BERTSIMAS, GUPTA & KALLUS '18

Distributionally Robust Optimisation (DRO) considers

$$V(\delta) = \inf_{a \in \mathcal{A}} \sup_{\nu \in B_{\delta}(\mu)} \int_{\mathcal{S}} f(a, x) \nu(dx),$$

see Scarf '58, \ldots , Rahimian & Mehrotra '19, where

 $B_{\delta}(\mu)$ is a δ -neighbourhood of the model μ .

Distributionally Robust Optimisation (DRO) considers

$$V(\delta) = \inf_{a \in \mathcal{A}} \sup_{\nu \in B_{\delta}(\mu)} \int_{\mathcal{S}} f(a, x) \nu(dx),$$

see Scarf '58, ..., Rahimian & Mehrotra '19, where

 $B_{\delta}(\mu)$ is a δ -neighbourhood of the model μ .

We propose to compute

$$\Upsilon:=V'(0)=\lim_{\delta\searrow 0}\frac{V(\delta)-V(0)}{\delta}\quad\text{and}\quad \beth:=\lim_{\delta\searrow 0}\frac{a^*(\delta)-a^*(0)}{\delta},$$

with $B_{\delta}(\mu)$ being Wasserstein balls around μ .

- Υ the sensitivity of the value w.r.t. $\Upsilon \pi o \delta \varepsilon \gamma \mu \alpha$, the Model.
 - ☐ the sensitivity of בקרה, the control, w.r.t. the Model.

The robust optimisation problem rewritten

Consider the simplified problem

$$\sup_{\nu\in B^{p}_{\delta^{1/p}}(\mu)}\int f(x) \ \nu(dx).$$

Theorem (Bartl, Drapeau & Tangpi '19; Blanchet, Kang & Murthy '19) For $f : \mathbb{R} \to \mathbb{R}$ bounded below

$$\sup_{\nu\in B^{\rho}_{\delta^{1/\rho}}(\nu)}\int f(x)\,\nu(dx)=\inf_{\lambda\geq 0}\left(\int f^{\lambda|\cdot|^{\rho}}(x)\,\mu(dx)+\delta\lambda\right),$$

where

$$f^{\lambda|\cdot|^p}(x) := \sup\left\{f(y) - \lambda|x-y|^p : y \in \mathbb{R}^d \text{ s.t. } f(y) < \infty
ight\}.$$

MAIN RESULTS

PART I: SENSITIVITY OF THE VALUE FUNCTION

UNIVERSITY OF OXFORD Mathematical Institute

Uncertainty Sensitivity of DRO problems

Recall our DRO problem (for simplicity $\mathcal{A} = \mathbb{R}^k$, $\mathcal{S} = \mathbb{R}^d$)

$$V(\delta) = \inf_{a \in \mathbb{R}^k} \sup_{\nu \in B_{\delta}(\mu)} \int_{\mathbb{R}^d} f(x, a) \ \nu(dx).$$

Uncertainty Sensitivity of DRO problems

Recall our DRO problem (for simplicity $\mathcal{A} = \mathbb{R}^k$, $\mathcal{S} = \mathbb{R}^d$)

$$V(\delta) = \inf_{a \in \mathbb{R}^k} \sup_{\nu \in B_{\delta}(\mu)} \int_{\mathbb{R}^d} f(x, a) \ \nu(dx).$$

Theorem For p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, and under suitable assumptions, we have $\Upsilon := V'(0) = \lim_{\delta \to 0} \frac{V(\delta) - V(0)}{\delta} = \inf_{a^* \in A^{\text{opt}}(0)} \left(\int_{\mathbb{R}^d} |\nabla_x f(x, a^*)|^q \, \mu(dx) \right)^{1/q},$

where $A^{opt}(\delta)$ denotes the set of optimisers for $V(\delta)$.

Υ : uncertainty sensitivity of the value function

We can restate the result as

$$\inf_{a \in \mathbb{R}^k} \sup_{\nu \in B_{\delta}(\mu)} \int_{\mathbb{R}^d} f(x, a) \ \nu(dx) \approx \inf_{a \in \mathbb{R}^k} \int_{\mathbb{R}^d} f(x, a) \ \mu(dx) + \Upsilon \delta + o(\delta)$$

where

$$\Upsilon = \inf_{a^* \in A^{\operatorname{opt}}(0)} \left(\int_{\mathbb{R}^d} |\nabla_x f(x, a^*)|^q \, \mu(dx) \right)^{1/q}.$$

Υ : uncertainty sensitivity of the value function

We can restate the result as

$$\inf_{a \in \mathbb{R}^k} \sup_{\nu \in B_{\delta}(\mu)} \int_{\mathbb{R}^d} f(x, a) \ \nu(dx) \approx \inf_{a \in \mathbb{R}^k} \int_{\mathbb{R}^d} f(x, a) \ \mu(dx) + \Upsilon \delta + o(\delta)$$

where

$$\Upsilon = \inf_{a^* \in A^{\operatorname{opt}}(0)} \left(\int_{\mathbb{R}^d} |\nabla_x f(x, a^*)|^q \, \mu(dx) \right)^{1/q}.$$

- extends to DRO problems with linear constraints, e.g., martingale;
- extends to general semi-norms;
- extends to sensitivity at a fixed $\delta > 0$: $V'(\delta+)$;
- no first order loss from using $a^*(0)$ instead of $a^*(\delta)$.

Sketch of the proof (1)

Sensitivity of the value function: " \leq "

$$V(\delta) - V(0) \leq \sup_{\pi \in C_{\delta}(\mu)} \int f(y, a^{*}) - f(x, a^{*}) \pi(dx, dy)$$

=
$$\sup_{\pi \in C_{\delta}(\mu)} \int \int_{0}^{1} \langle \nabla_{x} f(x + t(y - x), a^{*}), (y - x) \rangle dt \pi(dx, dy)$$

$$\leq \delta \sup_{\pi \in C_{\delta}(\mu)} \int_{0}^{1} \left(\int |\nabla_{x} f(x + t(y - x), a^{*})|^{q} \pi(dx, dy) \right)^{1/q} dt.$$

+ growth conditions + DCT.

Sketch of the proof (2) Sensitivity of the value function: " \geq "

$$T(x) := \frac{\nabla_x f(x, a^*)}{|\nabla_x f(x, a^*)|^{2-q}} \left(\int |\nabla_x f(z, a^*)|^q \, \mu(dz) \right)^{1/q-1}$$
$$\pi^{\delta} := [x \mapsto (x, x + \delta T(x))]_{\#} \mu \in C_{\delta}(\mu)$$

We can use π^{δ} to get a lower bound:

$$\frac{V(\delta) - V(0)}{\delta} \ge \frac{1}{\delta} \int f(x + \delta T(x), a^{\delta}) - f(x, a^{\delta}) \mu(dx)$$

= $\int \int_{0}^{1} \langle \nabla_{x} f(x + t \delta T(x), a^{\delta}), T(x) \rangle dt \mu(dx)$
 $\xrightarrow{\delta \to 0} \int \langle \nabla_{x} f(x, a^{*}), T(x) \rangle \mu(dx) = \left(\int |\nabla_{x} f(x, a^{*})|^{q} \mu(dx) \right)^{1/q}.$

Sketch of the proof (2) Sensitivity of the value function: " \geq "

$$T(x) := \frac{\nabla_x f(x, a^*)}{|\nabla_x f(x, a^*)|^{2-q}} \left(\int |\nabla_x f(z, a^*)|^q \, \mu(dz) \right)^{1/q-1}$$
$$\pi^{\delta} := [x \mapsto (x, x + \delta T(x))]_{\#} \mu \in C_{\delta}(\mu)$$

We can use π^{δ} to get a lower bound:

$$\frac{V(\delta) - V(0)}{\delta} \ge \frac{1}{\delta} \int f(x + \delta T(x), a^{\delta}) - f(x, a^{\delta}) \mu(dx)$$

= $\int \int_{0}^{1} \langle \nabla_{x} f(x + t\delta T(x), a^{\delta}), T(x) \rangle dt \mu(dx)$
 $\xrightarrow{\delta \to 0} \int \langle \nabla_{x} f(x, a^{*}), T(x) \rangle \mu(dx) = \left(\int |\nabla_{x} f(x, a^{*})|^{q} \mu(dx) \right)^{1/q}$

Sensitivity of the optimisers: similar but more involved + Langrange multipliers + min-max

Example 1: AV@R minimisation

Consider $X \sim \mu$ vector of returns in \mathbb{R}^d and $a \in \mathcal{A} \subset \mathbb{R}^d$ portfolio

$$V(0) = \inf_{a \in \mathcal{A}} \mathsf{AV@R}_{\alpha}(a \cdot X) = \inf_{a \in \mathcal{A}, m \in \mathbb{R}} \left\{ m + \frac{1}{\alpha} \int (a \cdot x - m)^{+} \mu(dx) \right\}$$

And its robust version reads

$$V(\delta) = \inf_{a \in \mathcal{A}} \mathcal{R}AV@R_{\alpha}(a \cdot X) = \inf_{a \in \mathcal{A}, m \in \mathbb{R}} \sup_{\nu \in B_{\delta}(\mu)} \left\{ m + \frac{1}{\alpha} \int (a \cdot x - m)^{+} \nu(dx) \right\},$$

Example 1: AV@R minimisation

Consider $X \sim \mu$ vector of returns in \mathbb{R}^d and $a \in \mathcal{A} \subset \mathbb{R}^d$ portfolio

$$V(0) = \inf_{a \in \mathcal{A}} \mathsf{AV}@\mathsf{R}_{\alpha}(a \cdot X) = \inf_{a \in \mathcal{A}, m \in \mathbb{R}} \left\{ m + \frac{1}{\alpha} \int (a \cdot x - m)^{+} \mu(dx) \right\}$$

And its robust version reads

$$V(\delta) = \inf_{a \in \mathcal{A}} \mathcal{R}AV@R_{\alpha}(a \cdot X) = \inf_{a \in \mathcal{A}, m \in \mathbb{R}} \sup_{\nu \in B_{\delta}(\mu)} \left\{ m + \frac{1}{\alpha} \int (a \cdot x - m)^{+} \nu(dx) \right\},$$

where $B_{\delta}(\mu) = \{\nu \in \mathcal{P}(\mathcal{S}) : W_{p}(\mu, \nu) \leq \delta\}$. A direct computation gives

$$\Upsilon = |a^*| \left(\frac{1}{\alpha^q} \int \mathbf{1}_{\{a^* \cdot x \ge V @ R_\alpha(a^* \cdot L)\}} \right)^{\frac{1}{q}} \mu(dx) = \frac{|a^*|}{\alpha^{1/p}} \quad \text{, or}$$
$$\inf_{a \in \mathcal{A}} \mathcal{R}AV @ R_\alpha(a \cdot X) = AV @ R_\alpha(a^* \cdot X) + \frac{|a^*|}{\alpha^{1/p}} \delta + o(\delta).$$

Example 2: Mean-variance optimal investment

Consider $X \sim \mu$ vector of returns in \mathbb{R}^d and $\mathcal{A} = \{ \mathbf{a} : \langle \mathbf{a}, 1 \rangle = 1 \}.$

$$V(0) = \inf_{a \in \mathcal{A}} \mathbb{E}[\langle a, X \rangle] + \gamma \mathsf{VAR}_{\mu}(\langle a, X \rangle) = \inf_{a \in \mathcal{A}} \sup_{Z : \mathbb{E}[Z] = 1, \mathbb{E}[Z^2] = 1 + \gamma^2} \mathbb{E}\Big[\langle a, X \rangle Z\Big]$$

And its robust version, for p = q = 2, reads

$$V(\delta) = \inf_{a \in \mathcal{A}} \sup_{(\xi, Z) : \mathbb{E}[\langle \xi, \xi \rangle] \le \delta^2, \mathbb{E}[Z] = 1, \mathbb{E}[Z^2] = 1 + \gamma^2} \mathbb{E}\Big[\langle a, X + \xi \rangle Z\Big]$$

A two-step computation recovers the result in PFLUG ET AL. '12:

$$\Upsilon = |\mathbf{a}^*| \sqrt{1 + \gamma^2}.$$

Ex 1: Decision making: prefs representation

Let X be agent's wealth/consumption. Savage '51, von Neuman & Morgenstern '53 give

 $\mathbb{P} \succeq \check{\mathbb{P}} \quad \Leftrightarrow \quad \mathbb{E}_{\mathbb{P}}[u(X)] \ge \mathbb{E}_{\check{\mathbb{P}}}[u(X)].$

Ex 1: Decision making: prefs representation

Let X be agent's wealth/consumption. Savage '51, von Neuman & Morgenstern '53 give

$$\mathbb{P} \succeq \check{\mathbb{P}} \quad \Leftrightarrow \quad \mathbb{E}_{\mathbb{P}}[u(X)] \ge \mathbb{E}_{\check{\mathbb{P}}}[u(X)].$$

An ambiguity averse agent of Gilboa & Schmeidler '89, might instead consider

$$\mathbb{P} \succeq_{\rho} \check{\mathbb{P}} \iff \min_{\tilde{\mathbb{P}} \in B_{\delta}(\mathbb{P})} \mathbb{E}_{\tilde{\mathbb{P}}}[u(X)] \geq \min_{\tilde{\mathbb{P}} \in B_{\delta}(\check{\mathbb{P}})} \mathbb{E}_{\tilde{\mathbb{P}}}[u(X)].$$

for $B_{\delta}(\mathbb{P})$ a δ -ball around \mathbb{P} in some metric ρ , (also called *constraint preferences* by Hansen & Sargent '01).

Variational prefs: relative entropy vs Wasserstein

The variational/constraint preferences with ρ -ball $B_{\delta}(\mathbb{P})$

$$\mathcal{U}(X) := \min_{\tilde{\mathbb{P}} \in B_{\delta}(\mathbb{P})} \mathbb{E}_{\tilde{\mathbb{P}}}[u(X)]$$

up to $o(\delta)$ are equivalent to:

 $\rho = \text{Rel. entropy}$

 $\rho = W_2$ WASSERSTEIN

 $\mathcal{U}(X) \approx \mathbb{E}_{\mathbb{P}}[u(X))] - \delta \sqrt{2 \operatorname{Var}_{\mathbb{P}}(u(X))}$

(cf. Lam '16)

 $\mathcal{U}(X) \approx \mathbb{E}_{\mathbb{P}}[u(X))] - \delta \sqrt{\mathbb{E}_{\mathbb{P}}[|u'(X)|^2]}$

(cf. our Υ -sensitivity)

Example 2: EUM & Optimal investment

 $X = \dot{S}_T - S_0 \sim \mu$ vector of returns in $S \subset \mathbb{R}^d$ and $\mathcal{A} \subseteq \mathbb{R}^d$ admissible strategies; wlog r = 0, initial capital x = 0.

 $u: \mathbb{R} \to \mathbb{R}$ strictly concave, continuously differentiable, bounded from above. Consider the expected utility maximisation problem:

$$V(0) = \sup_{a \in \mathcal{A}} \mathbb{E}_{\mu} \left[u\left(\langle X, a \rangle
ight)
ight]$$

The optimal $a^\star \in \mathcal{A}$ is characterised through the FOC

 $\mathbb{E}_{\mu}\left[X\cdot u'\left(\langle X,a^{\star}\rangle\right)\right]=0$

Example 2: EUM & Optimal investment

 $X = S_T - S_0 \sim \mu$ vector of returns in $S \subset \mathbb{R}^d$ and $A \subseteq \mathbb{R}^d$ admissible metrical strategies; wlog r = 0, initial capital x = 0.

 $u: \mathbb{R} \to \mathbb{R}$ strictly concave, continuously differentiable, bounded from above. Consider the expected utility maximisation problem:

$$V(\delta) = \sup_{a \in \mathcal{A}} \inf_{\nu \in B_{\delta}(\mu)} \mathbb{E}_{\nu} \left[u\left(\langle X, a \rangle \right) \right]$$

The optimal $a^\star = a^\star(0) \in \mathcal{A}$ is characterised through the FOC

 $\mathbb{E}_{\mu}\left[X\cdot u'\left(\langle X,a^{\star}\rangle\right)\right]=0$

and

$$V'(0)=-\left(\mathbb{E}_{\mu}\left[|u'(\langle X,a^{\star}
angle)|^{q}
ight]
ight)^{1/q}|a^{\star}|$$

is the sensitivity to ambiguity aversion. Note that V'(0) < 0 and is increasing in p.

Oxford Mathematics

Binomial model with an exponential utility

Figure: Sensitivities in function of the market's Sharpe ratio

Figure: Sensitivities for $p = \infty$ in function of the market's Sharpe ratio $\frac{m}{\sigma}$

Mathematica

Ex 3: Robust call pricing (martingale constraint)

We optimise over measures $\nu \in B_{\delta}(\mu)$ satisfying $\int x \nu(dx) = S_0$. A constrained version of our main results gives, for p = 2,

$$\Upsilon = \inf_{a^* \in A^{\operatorname{opt}}(0)} \left(\int \left(\nabla_x f(x, a^*) - \int \nabla_x f(y, a^*) \, \mu(dy) \right)^2 \, \mu(dx) \right)^{1/2},$$

i.e., Υ is the standard deviation of $\nabla_{x} f(\cdot, a^{*})$ under μ .

OXFORD Mathematical

Ex 3: Robust call pricing (martingale constraint)

We optimise over measures $\nu \in B_{\delta}(\mu)$ satisfying $\int x \nu(dx) = S_0$. A constrained version of our main results gives, for p = 2,

$$\Upsilon = \inf_{\boldsymbol{a}^* \in A^{\operatorname{opt}}(0)} \left(\int \left(\nabla_x f(x, \boldsymbol{a}^*) - \int \nabla_x f(y, \boldsymbol{a}^*) \, \mu(dy) \right)^2 \, \mu(dx) \right)^{1/2},$$

i.e., Υ is the standard deviation of $\nabla_x f(\cdot, a^*)$ under μ . Let $\mu \sim S_T/S_0$ with (S_t) from the BS (σ) model and

$$\mathcal{R}BS(\delta) = \sup_{\nu \in B_{\delta}(\mu)} \left\{ \int (S_0 x - K)^+ \nu(dx) \colon \int x \nu(dx) = 1 \right\}$$

so that $\mathcal{RBS}(0) = BSCall(S_0, K, \sigma)$. For p = 2 we find

 $\Upsilon(K) = S_0 \sqrt{\Phi(d_-)(1 - \Phi(d_-))}.$

Robust call: numerics

Exact value $\mathcal{RBS}(\delta)$, first-order (FO) approximation and the model (BS) price.

BS model with $S_0 = T = 1$, K = 1.2, r = q = 0, $\sigma = 0.2$. $\delta = 0.05$

Robust call: classical vs robust

Take r = q = 0, T = 1, $S_0 = 1$ and $\mu = BS(\sigma)$ log-normal.

$$\mathcal{RBS}(\delta) = \sup_{\nu \in B_{\delta}(\mu)} \int_{\mathcal{S}} (s - K)^+ \nu(ds).$$

PARAMETRIC APPROACH

NON-PARAMETRIC APPROACH

$$B_{\delta}(\mu) = \{\mathsf{BS}(\tilde{\sigma}) : |\tilde{\sigma} - \sigma| \le \delta\}$$

Then

 $\mathcal{R}BS'(0) = \mathcal{V} = S_0\phi(d_+).$

$$B_{\delta}(\mu) = \{\nu : W_2(\mu, \nu) \leq \delta\}$$

Then

$$\mathcal{R}BS'(0)=\Upsilon=S_0\sqrt{\Phi(d_-)(1-\Phi(d_-))}$$

BS Call: Vega(\mathcal{V}) vs Upsilon(Υ) Consider the simple example of a call option pricing. Take r = q = 0, T = 1, $S_0 = 1$ and $\mu = BS(\sigma)$ model.

Call Price Sensitivity: Vega vs Upsilon, sigma= 0.2

Hedging: Δ -Vega vs Δ - Υ (with S. Moliner '22)

Observe that $\Upsilon[aS_t + b] = 0$, i.e., cash and stock carry no uncertainty ute

Comparison of two hedging approaches:

- \blacktriangleright $\Delta\text{-Vega:}$ at rebalancing buy/sell stock + ATM Call so that $\Delta=0=\mathcal{V}$
- \blacktriangleright $\Delta-\Upsilon$: at rebalancing buy/sell stock + ATM Call so that $\Delta=0$ and Υ is minimized

		Δ	$ \Delta + \mathcal{V}$	$\mid \Delta + \Upsilon$
Mean	∥ -0	.001	0.0	-0.0
Std	∥ 0.	043	0.007	0.011
$V@R_{0.95}$	-0	.086	-0.009	-0.018
$\mathrm{ES}_{0.95}$	-0	.110	-0.016	-0.024

Table 1: Risk measures with Heston Model $S_0=T=1,\,K=1.05,$ $v_0=0.04,\,\kappa=1,\,\theta=0.09,\,\sigma=0.6,\,\rho=0.5$

Hedging: Δ -Vega vs Δ - Υ (with S. Moliner '22)

Observe that $\Upsilon[aS_t + b] = 0$, i.e., cash and stock carry no uncertainty at

Comparison of two hedging approaches:

- \blacktriangleright $\Delta\text{-Vega:}$ at rebalancing buy/sell stock + ATM Call so that $\Delta=0=\mathcal{V}$
- Δ - Υ : at rebalancing buy/sell stock + ATM Call so that $\Delta = 0$ and Υ is minimized

	$\parallel \Delta$	$\mid \Delta + \mathcal{V}$	$ \Delta + \Upsilon$
Mean	-0.015	-0.001	-0.002
Std	0.095	0.01	0.014
$V@R_{0.95}$	-0.190	-0.016	-0.028
$\mathrm{ES}_{0.95}$	-0.296	-0.032	-0.045

Table 2: Risk measures with Bates Model $S_0 = T = 1, K = 1.05, v_0 = 0.04, \kappa = 1, \theta = 0.09, \sigma = 0.6, \rho = 0.5, \lambda = 15, \mu_J = 0, \sigma_J = 0.1$

Example 4: NN & adversarial attacks

Consider data (x, y) from μ and a NN (θ) trained according to:

$$\inf_{\theta} \int |J(\theta, x, y)| \, \mu(dx, dy).$$

Source: Goodfellow, Shlens & Szegedy ICLR 2015

Consider data (x, y) from μ and a NN (θ) trained according to:

$$\inf_{\theta} \int |J(\theta, x, y)| \, \mu(dx, dy).$$

Then, sensitivity to adversarial data examples from $\hat{\mu} \in B_{\delta}(\mu)$ given by:

$$\left(\int |\nabla_{(x,y)}J(\theta^*,x,y)|^q \,\mu(dx,dy)\right)^{1/q}.$$

NN & adv attacks with X. Bai, G. He, Y. Jiang

For a strong classifier and cross-entropy training

$$J(\theta, x, y) = H(\mathbb{P}(x), \delta_y) \approx \begin{cases} \varepsilon & \text{if } y^* = y \\ K + \varepsilon & \text{if } y^* \neq y \end{cases}$$

where $K \approx +\infty$ is large and $\varepsilon \approx 0$ is small. This gives

$$V(0,\theta^*) = \int H(\mathbb{P}(x),\delta_y)\mu(dx,dy) \approx (K+\varepsilon)(1-A_{\text{clean}}) + \varepsilon A_{\text{clean}} = \varepsilon + K(1-A_{\text{clean}}),$$

where A_{clean} is the (clean) accuracy on the test set.

$$egin{aligned} \mathcal{A}_{ ext{adv}}^{\delta} - \mathcal{A}_{ ext{clean}} &pprox rac{1}{K} \left(V(0, heta^*) - V(\delta, heta^*)
ight) pprox - rac{\delta}{K} \Upsilon \end{aligned}$$

And hence the accuracy ratio

$$rac{A_{
m adv}^{\delta}}{A_{
m clean}} = 1 + rac{A_{
m adv}^{\delta} - A_{
m clean}}{A_{
m clean}} pprox 1 - rac{\delta}{K} rac{\Upsilon}{A_{
m clean}}$$

NN & adv attacks with X. BAI, G. HE, Y. JIANG

We need to get rid of K (i.e., normalise). Compute

$$\operatorname{Var}_{\mu}(H(\mathbb{P}(x), \delta_{y})) \approx K^{2}A_{\operatorname{clean}}(1 - A_{\operatorname{clean}})$$

And hence the accuracy ratio

$$\frac{A_{\text{adv}}^{\delta}}{A_{\text{clean}}} = 1 + \frac{A_{\text{adv}}^{\delta} - A_{\text{clean}}}{A_{\text{clean}}} \approx 1 - \frac{\delta}{K} \frac{\Upsilon}{A_{\text{clean}}} \approx 1 - \delta \underbrace{\frac{\Upsilon}{\sqrt{\text{Var}_{\mu}(H)}} \sqrt{\frac{1 - A_{\text{clean}}}{A_{\text{clean}}}}_{\tilde{T}}}_{\tilde{T}}$$

The LHS requires an adversarial attack training (expensive) while The PHS is computed instantly from the trained net (shear)

The RHS is computed instantly from the trained net (cheap).

NN & adv attacks with X. BAI, G. HE, Y. JIANG

- Adversarial attacks and defence is a large field in ML
- ROBUSTBENCH tracks over 3000 papers and maintains a leaderboard for CIFAR datasets

To prevent potential overadaptation of new defenses to AutoAttack, we also welcome external evaluations based on adaptive attacks, especially where AutoAttack flags a potential overestimation of robustness. For each model, we are interested in the best known robust accuracy and see AutoAttack and adaptive attacks as complementary.

News:

- May 2022: We have extended the common comprisions leaderbaard on ImageNet with 3D Common Comprisions fundingeNet-3DCC, ImageNet-3DCC, imageNet-
- May 2022: We fixed the preprocessing issue for ImageNet corruption evaluations: previously we used resize to 256x256 and central crop to 224x224 which wasn't necessary
 since the ImageNet-C imageNet-C images are already 224x224. Note that this changed the ranking between the top-1 and top-2 entries.

Unified access to 80+ state-of-the-art robust models via Model Zoo NN & adv attacks with X. BAI, G. HE, Y. JIANG Adversarial attacks and defence is a large field in ML

 ROBUSTBENCH tracks over 3000 papers and maintains a leaderboard for CIFAR datasets

MAIN RESULTS

PART II: SENSITIVITY OF THE OPTIMISERS

Sensitivity of optimisers

Theorem

For p = q = 2, under suitable regularity and growth assumptions,

$$\lim_{\delta\to 0}\frac{a^*(\delta)-a^*}{\delta}=-\frac{1}{\Upsilon}(\nabla^2_a V(0,a^*))^{-1}\int \nabla_x \nabla_a f(x,a^*)\nabla_x f(x,a^*)\,\mu(dx),$$

where $a^* := a^*(0)$.

The results extends to general p > 1 and semi-norms.

Example 1: Square-root LASSO Consider $||(x, y)||_* = |x|_r 1_{\{y=0\}} + \infty 1_{\{y\neq 0\}}, r > 1, (x, y) \in \mathbb{R}^k \times \mathbb{R}^{\text{Mathematical Institute}}_{\text{Institute}}$ Then (see BLANCHET, KANG & MURTHY '19)

$$\inf_{a\in\mathbb{R}^k}\sup_{\nu\in B_{\delta}(\hat{\mu}_N)}\int (y-\langle x,a\rangle)^2\,d\nu=\inf_{a\in\mathbb{R}^k}\left(\sqrt{\int (y-\langle a,x\rangle)^2\,d\mu}+\delta|a|_s\right)^2,$$

where 1/r + 1/s = 1. $\hat{\mu}_N = \frac{1}{N} \sum_{i=1}^N \delta_{(x^i, y^i)}$ encodes the observations. System is overdetermined so that $D = \int xx^T \mu(dx)$ is invertible. $\delta = 0$ case is the ordinary least squares regression: $a^* = \frac{1}{N}D^{-1}\int yxd\mu$. Example 1: Square-root LASSO Consider $||(x, y)||_* = |x|_r 1_{\{y=0\}} + \infty 1_{\{y\neq0\}}, r > 1, (x, y) \in \mathbb{R}^k \times \mathbb{R}^{\text{Mathematical Institute}}_{\text{Institute}}$ Then (see BLANCHET, KANG & MURTHY '19)

$$\inf_{a\in\mathbb{R}^k}\sup_{\nu\in B_{\delta}(\hat{\mu}_N)}\int (y-\langle x,a\rangle)^2\,d\nu=\inf_{a\in\mathbb{R}^k}\left(\sqrt{\int (y-\langle a,x\rangle)^2\,d\mu}+\delta|a|_s\right)^2,$$

where 1/r + 1/s = 1. $\hat{\mu}_N = \frac{1}{N} \sum_{i=1}^N \delta_{(x^i, y^i)}$ encodes the observations. System is overdetermined so that $D = \int xx^T \mu(dx)$ is invertible. $\delta = 0$ case is the ordinary least squares regression: $a^* = \frac{1}{N}D^{-1}\int yxd\mu$. $\delta > 0, s = 1 \rightsquigarrow \text{RHS} = \text{square-root LASSO regression Belloni ET AL. '11}$ $\delta > 0, s = 2 \rightsquigarrow \text{RHS} \approx \text{Ridge regression}$ Then $a^*(\delta)$ is approximately, for s = 1 and s = 2 (cf. TIBSHIRANI '96):

$$a^* - \sqrt{V(0)}D^{-1}\operatorname{sgn}(a^*)\delta$$
 and $a^*\left(1 - rac{\sqrt{V(0)}}{|a^*|_2}D^{-1}\delta
ight)$

Square-root LASSO: numerics Comparison of exact (o) and first-order (x) approximation of square-root LASSO. LASSO. Automatical coefficients for 2000 data generated from: (with all X_i , ε i.i.d. $\mathcal{N}(0, 1)$)

 $Y = 1.5X_1 - 3X_2 - 2X_3 + 0.3X_4 - 0.5X_5 - 0.7X_6 + 0.2X_7 + 0.5X_8 + 1.2X_9 + 0.8X_{10} + \varepsilon.$

covariate's index

Ex 2: Marginal utility (Davis') price

Recall the EUM setup. For a continuous payoff $g \ge 0$ consider

$$V(\varepsilon, p_d) := \sup_{a \in \mathcal{A}} \mathbb{E}_{\mu} \left[u \left(-\varepsilon + \langle X, a \rangle + \frac{\varepsilon}{p_d} g(X) \right) \right],$$

Definition

Suppose that for each $p_d > 0$, the function $\varepsilon \mapsto V(\varepsilon, p_d)$ is differentiable at $\varepsilon = 0$ and \hat{p}_d is a solution to

$$\partial_{\varepsilon}V(0,p_d)=0.$$

Then \hat{p}_d is called a marginal utility price of the option g.

Characterisation of the marginal utility price

Theorem (Davis (1997))

Under mild technical assumptions \hat{p}_d is unique and satisfies

$$\hat{p}_d = \frac{\mathbb{E}_{\mu} \left[u'(\langle X, a^{\star} \rangle) g(X) \right]}{\mathbb{E}_{\mu} \left[u'(\langle X, a^{\star} \rangle) \right]}.$$

In this way \hat{p}_d is the price under a subjective martingale measure:

$$X=S_{\mathcal{T}}-S_0$$
 and $\mathbb{E}_{\mu}\left[u'(\langle X,a^{\star}
angle)X
ight]=0.$

Robust marginal utility price

Definition Let us define

$$V(\delta,\varepsilon,p_d) = \sup_{a\in\mathcal{A}} \inf_{\nu\in B_{\delta}(\mu)} \mathbb{E}_{\nu} \left[u\left(-\varepsilon + \langle X,a\rangle + \frac{\varepsilon}{p_d}g(X) \right) \right].$$

Suppose that for each $p_d > 0$ the function $\varepsilon \mapsto V(\delta, \varepsilon, p_d)$ is differentiable. A number $\hat{p}_d(\delta)$, which satisfies

 $\partial_{\varepsilon} V(\delta, 0, \hat{p}_d(\delta)) = 0.$

is called a robust marginal utility price of g at the uncertainty level δ .

Characterisation of DR marginal utility price

Theorem

Fix $\delta \geq 0$, $p_d > 0$. Under mild technical assumptions the robust marginal utility price $\hat{p}_d(\delta)$ is given by

$$\hat{o}_d(\delta) = rac{\mathbb{E}_{\mu^\star} \left[u'(\langle X - X_0, a^\star_\delta
angle) \, g(X) \,
ight]}{\mathbb{E}_{\mu^\star} \left[u'(\langle X - X_0, a^\star_\delta
angle)
ight]}$$

for any pair of optimisers $a^{\star}_{\delta} \in \mathcal{A}$ and $\mu^{\star} \in B_{\delta}(\mu)$.

As before, $\hat{p}_d(\delta)$ is the price under a subjective martingale measure but which also depends on δ .

Characterisation of DR marginal utility price

Theorem

Fix $\delta \geq 0$, $p_d > 0$. Under mild technical assumptions the robust marginal utility price $\hat{p}_d(\delta)$ is given by

$$\hat{\sigma}_d(\delta) = rac{\mathbb{E}_{\mu^\star} \left[u'(\langle X - X_0, a^\star_\delta
angle) \, g(X) \,
ight]}{\mathbb{E}_{\mu^\star} \left[u'(\langle X - X_0, a^\star_\delta
angle)
ight]}$$

for any pair of optimisers $a^{\star}_{\delta} \in \mathcal{A}$ and $\mu^{\star} \in B_{\delta}(\mu)$.

As before, $\hat{p}_d(\delta)$ is the price under a subjective martingale measure but which also depends on δ .

Special cases: $\hat{p}_d = \hat{p}_d(\delta)$ for all $\delta > 0$, e.g., for $\mu = \mathcal{N}(m, \sigma^2)$, $p = \infty$ and an agent with an exponential utility.

Sensitivity of the marginal utility price

Theorem Under mild technical assumptions the following holds:

(i) If $a^* = 0$, then the Davis price $\hat{p}_d(\delta)$ satisfies

$$\hat{p}_d'(0) = -\left(\mathbb{E}_{\mu}\left[|
abla g(x)|^q
ight]
ight)^{1/q}.$$

(ii) If $a^* \neq 0$ then

$$\hat{p}_{d}'(0) = \frac{1}{\mathbb{E}_{\mu} \left[u'(\langle X, a^{\star} \rangle) \right]} \left(\mathbb{E}_{\mu} \left[u''(\langle X, a^{\star} \rangle) \cdot \left(\langle T(X), a^{\star} \rangle - \langle X, a'(0) \rangle \right) \right. \\ \left. \left. \left(\mathbb{E}_{\hat{\mu}} \left[g(X) \right] - g(X) \right) \right] \right) - \mathbb{E}_{\hat{\mu}} \left[\langle \nabla g(X), T(X) \rangle \right],$$

where $\frac{d\hat{\mu}}{d\mu} \propto u'(\langle X, a^* \rangle)$ and $T(x) \propto \frac{a^*}{|a^*|} |u'(\langle x, a^* \rangle)|^{q-1}$.

Oxford Mathematics

OT & DATA-DRIVEN APPROACH: RISK ESTIMATION EXAMPLE

$$(r_1,\ldots,r_N)\in\mathbb{R}^{dN}$$
 v.s. $\hat{\mathbb{P}}_N=rac{1}{N}\sum_{i=1}^N\delta_{r_i}\in\mathcal{P}(\mathbb{R}^d)$

based on O. and Wiesel, Ann. Stat. 49(1): 508-530, 2021.

Oxford Mathematics

Jan Obłój

Data set II: historical returns

Public information also includes historical stock returns. How can we use this information in a coherent and consistent way?

Data set II: historical returns

Public information also includes historical stock returns. How can we use this information in a coherent and consistent way?

Model specific: typically ignored. This is "physical measure" information hard to combine with "risk neutral measure"

Data set II: historical returns

Public information also includes historical stock returns. How can we use this information in a coherent and consistent way?

- Model specific: typically ignored. This is "physical measure" information hard to combine with "risk neutral measure"
- **Robust approach**: no \mathbb{P} vs \mathbb{Q} conflict.
 - indirect agents can use to form beliefs/private information.
 - direct non-parametric statistical estimation of superhedging prices (w/ Johannes Wiesel)

Take I: Plugin estimator

A simple setting: *d* assets, one-period, no other traded options. Information: historical returns r_1, \ldots, r_N assumed i.i.d. from \mathbb{P} .

Aim: Build an estimator for

 $\pi^{\mathbb{P}}(\xi) = \inf \left\{ x \in \mathbb{R} \mid \exists H \in \mathbb{R}^d \text{ s.t. } x + H(r-1) \ge \xi(r) \mathbb{P}\text{-a.s.} \right\}$
Take I: Plugin estimator

A simple setting: *d* assets, one-period, no other traded options. Information: historical returns r_1, \ldots, r_N assumed i.i.d. from \mathbb{P} .

Aim: Build an estimator for

$$\pi^{\mathbb{P}}(\xi) = \inf \left\{ x \in \mathbb{R} \mid \exists H \in \mathbb{R}^d \text{ s.t. } x + H(r-1) \geq \xi(r) \mathbb{P} ext{-a.s.}
ight\}$$

Theorem Let $\xi : \mathbb{R}^d_+ \to \mathbb{R}$ be Borel-measurable. Define the empirical measure $\hat{\mathbb{P}}_N = \frac{1}{N} \sum_{i=1}^N \delta_{r_i}$. Then

$$\lim_{N\to\infty}\pi^{\hat{\mathbb{P}}_N}(\xi)=\pi^{\mathbb{P}}(\xi)\qquad\mathbb{P}^\infty\text{-a.s.},$$

where \mathbb{P}^{∞} denotes the product measure on $\prod_{i=1}^{\infty} \mathbb{R}^{d}_{+}$.

Concave envelope in two dimensions

Figure: Concave envelope in 2 dimensions with $\mathbb{P} = \lambda|_{[0,2]^2}/4$, $\xi(r) = |r-1|\mathbb{1}_{\{|r-1| < 1/2\}} + (1-|r-1|)\mathbb{1}_{\{|r-1| \ge 1/2\}}$

Oxford Mathematics

OXFORD Mathematica Institute

Problems with the plugin estimator

The plugin estimator $\pi^{\hat{\mathbb{P}}_N}(\xi)$ is not robust!

- ▶ Not Financially: it underestimates the superhedging price $\pi^{\hat{\mathbb{P}}_N} \leq \pi^{\mathbb{P}}$.
- Not Statistically: (in the sense of Hampel). This applies to any estimator in fact:

Lemma

Let $\xi : \mathbb{R}^d_+ \to \mathbb{R}$ be continuous and fix \mathbb{P} on \mathbb{R}^d_+ . Any consistent estimator T_N of $\pi^{\mathbb{P}}(\xi)$ is robust at \mathbb{P} only if

$$\pi^{\mathbb{P}}(\xi) = \sup_{\mathbb{Q}\in\mathcal{M}} \mathbb{E}_{\mathbb{Q}}[\xi].$$

 \implies need to control the support \implies robustness w.r.t. \mathcal{W}^{∞} .

Positive results

- ▶ W^p-approach.
- \mathcal{W}^{∞} -robustness, estimating quantiles.
- Penalisation approach akin to risk measures.
- Convergence of superhedging strategies.
- Extension to law-invariant convex risk measures.
- Extension to multi-period models.

\mathcal{W}^{p} -approach

Fix $p \ge 1$. Assume we can find confidence bounds for the Glivenko-Cantelli theorem (see Dereich, Scheutzow, Schottstedt, 2011, Fournier, Guilllin, 2013):

$$\mathbb{P}^{N}(\mathcal{W}^{p}(\mathbb{P},\hat{\mathbb{P}}_{N}) \geq \varepsilon_{N}(\beta_{N})) \leq \beta_{N}.$$

Definition

For a sequence $(k_N)_{N\in\mathbb{N}}$ such that $k_N\to\infty$ and $k_N=o(1/\varepsilon_N(\beta_N))$ we define

$$\hat{\mathcal{Q}}_{N} = \left\{ \mathbb{Q} \in \mathcal{M} \ \middle| \ \exists \nu \in B^{p}_{\varepsilon_{N}(\beta_{N})}(\hat{\mathbb{P}}_{N}), \ \left\| \frac{d\mathbb{Q}}{d\nu} \right\|_{\infty} \leq k_{N} \right\}.$$

\mathcal{W}^{p} -approach: Consistency

Theorem Let g be Lipschitz continuous and bounded from below or continuous and bounded and $p \ge 1$. Pick a sequence $k_N = o(1/\varepsilon_N(\beta_N))$. Then

$$\lim_{N\to\infty}\sup_{\mathbb{Q}\in\hat{\mathcal{Q}}_N}\mathbb{E}_{\mathbb{Q}}[\xi]=\pi^{\mathbb{P}}(\xi)\quad \mathbb{P}^{\infty}-a.s.,$$

if $NA(\mathbb{P})$ holds.

Convergence of Wasserstein estimators

Figure: Wasserstein estimators with $g(r) = (1 - r)\mathbb{1}_{\{r \le 1\}} - \sqrt{r - 1}\mathbb{1}_{\{r > 1\}}$, $\mathbb{P} = \operatorname{Exp}(1)$ (left) and $g(r) = (r - 2)^+$, $\mathbb{P} = \exp(\mathcal{N}(0, 1))$ (right).

UNIVERSITY OF OXFORD Mathematical Institute

Robust Superhedging Price estimator

Take $k_N \to \infty$ and $k_N \varepsilon_N(\beta_N) \to 0$. Let

$$\pi_{\hat{\mathcal{Q}}_{N}}(\xi) = \sup_{\mathbb{P} \in B_{\varepsilon_{N}}^{p}(\hat{\mathbb{P}}_{N})} \sup_{\mathbb{Q} \in \mathcal{M}: \|d\mathbb{Q}/d\mathbb{P}\|_{\infty} \le k_{N}} \mathbb{E}_{\mathbb{Q}}[\xi]$$

UNIVERSITY OF OXFORD Mathematical Institute

Robust Superhedging Price estimator

 $\lambda = a a a d k = (R) \lambda 0 d a t$

Take
$$k_N \to \infty$$
 and $k_N \varepsilon_N(\beta_N) \to 0$. Let

$$\pi_{\hat{\mathcal{Q}}_N}(\xi) = \sup_{\mathbb{P} \in B_{\varepsilon_N}^{\rho}(\hat{\mathbb{P}}_N) \mathbb{Q} \in \mathcal{M}: ||d\mathbb{Q}/d\mathbb{P}||_{\infty} \le k_N} \mathbb{E}_{\mathbb{Q}}[\xi]$$

$$= \sup_{\mathbb{P} \in B_{\varepsilon_N}^{\rho}(\hat{\mathbb{P}}_N) ||d\mathbb{Q}/d\mathbb{P}||_{\infty} \le k_N} \inf_{H \in \mathbb{R}^d} \mathbb{E}_{\mathbb{Q}}[\xi - H(r-1)]$$

$$= \inf_{H \in \mathbb{R}^d} \sup_{\mathbb{P} \in B_{\varepsilon_N}^{\rho}(\hat{\mathbb{P}}_N) ||d\mathbb{Q}/d\mathbb{P}||_{\infty} \le k_N} \mathbb{E}_{\mathbb{Q}}[\xi - H(r-1)]$$

$$= \inf_{H \in \mathbb{R}^d} \sup_{\mathbb{P} \in B_{\varepsilon_N}^{\rho}(\hat{\mathbb{P}}_N)} AV @R_{\frac{k_N-1}{k_N}}^{\mathbb{P}}(\xi - H(r-1))$$

$$= \inf_{\{x \in \mathbb{R}| \exists H \in \mathbb{R}^d \text{ s.t. } \sup_{\mathbb{P} \in B_{\varepsilon_N}^{\rho}(\hat{\mathbb{P}}_N)} AV @R_{\frac{k_N-1}{k_N}}^{\mathbb{P}}(\xi - H(r-1) - x) \le 0\}}$$

Tales 10

\mathcal{W}^{p} -approach: Robustness

$\begin{array}{l} \text{Definition}\\ \text{Let }\mathfrak{P},\tilde{\mathfrak{P}}\subseteq\mathcal{P}(\mathbb{R}^d_+). \text{ We define } \textit{p}\text{-Wasserstein-Hausdorff metric} \end{array}$

$$\mathcal{W}^{p}(\mathfrak{P}, ilde{\mathfrak{P}})=\max\left(\sup_{\mathbb{P}\in\mathfrak{P}}\inf_{ ilde{\mathbb{P}}\in ilde{\mathfrak{P}}}\mathcal{W}^{p}(\mathbb{P}, ilde{\mathbb{P}}),\sup_{ ilde{\mathbb{P}}\in ilde{\mathfrak{P}}}\inf_{\mathbb{P}\in\mathfrak{P}}\mathcal{W}^{p}(\mathbb{P}, ilde{\mathbb{P}})
ight).$$

Theorem

The estimator $\sup_{\mathbb{Q}\in\hat{\mathcal{Q}}_N}\mathbb{E}_{\mathbb{Q}}[g]$ is robust with respect to the \mathcal{W}^p in the sense that

$$\sup_{g \in \mathcal{L}_1} \left| \sup_{\mathbb{Q} \in \hat{\mathcal{Q}}_N^1} \mathbb{E}_{\mathbb{Q}}[g] - \sup_{\mathbb{Q} \in \hat{\mathcal{Q}}_N^2} \mathbb{E}_{\mathbb{Q}}[g] \right| \leq \mathcal{W}^p(\hat{\mathcal{Q}}_N^1, \hat{\mathcal{Q}}_N^2),$$

where $\hat{\mathcal{Q}}_{N}^{i}$ are defined corresponding to $\mathbb{P}^{i} \in \mathcal{P}(\mathbb{R}^{d}_{+})$, i = 1, 2.

Superhedging with respect to risk measures (1)

Consider $\rho_{\mathbb{P}}$ with Kusuoka representation:

$$ho_{\mathbb{P}}(\xi) = \sup_{\mu \in \mathfrak{P}} \int_{0}^{1} \mathsf{AV}@\mathsf{R}^{\mathbb{P}}_{\alpha}(\xi) d\mu(\alpha)$$

for a set $\mathfrak P$ of probability measures on $[0,1]~(\Rightarrow$ law-invariant coherent risk measures). Introduce

$$\pi^{\rho}_{B^{\rho}_{\varepsilon_{N}(\beta_{N})}(\hat{\mathbb{P}}_{N})}(\xi)$$

:= $\inf \left\{ x \in \mathbb{R}^{d} \mid \exists H \in \mathbb{R}^{d} \text{ s.t. } \sup_{\nu \in B^{\rho}_{\varepsilon_{N}(\beta_{N})}(\hat{\mathbb{P}}_{N})} \rho_{\nu}(\xi - x - H(r - 1)) \leq 0 \right\}$

Theorem

Assume g satisfies $|\xi(r) - \xi(\tilde{r})| \leq L_{\gamma}|r - \tilde{r}|^{\gamma}$ for some $\gamma \leq 1$ and $L_{\gamma} \in \mathbb{R}$. Then

$$\lim_{n\to\infty}\pi^{\rho}_{B^{\rho}_{\varepsilon_{N}(\beta_{N})}(\hat{\mathbb{P}}_{N})}(\xi)=\pi^{\rho_{\mathbb{P}}}(\xi)\qquad\mathbb{P}^{\infty}\text{-}a.s.$$

Plugin estimator and option prices

Corollary

Let $\mathbb{P} \in \mathcal{P}(\mathbb{R}^d_+)$ and $\xi : \mathbb{R}^d_+ \to \mathbb{R}$ be Borel-measurable. In addition to the assets S, assume that there are \tilde{d} traded options with continuous payoffs $f_1(r)$ and prices f_0 in the market. Then, if the observations r_1, r_2, \ldots are i.i.d. samples from \mathbb{P} , and under NA, we have

 $\lim_{N \to \infty} \inf \{ x \in \mathbb{R} \mid \exists H, \tilde{H} \text{ s.t. } x + H(r_i - 1) + \tilde{H}(f_1 - f_0) \ge \xi(r_i) \; \forall i = 1, \dots, N \}$ $= \sup_{\mathbb{Q} \sim \mathbb{P}, \; \mathbb{Q} \in \mathcal{M}, \; \mathbb{E}_{\mathbb{Q}}(f_1) = f_0} \mathbb{E}_{\mathbb{Q}}[\xi].$

Estimates for $\pi^{\text{AV@R}^{\tilde{\mathbb{P}}}_{0.95}}((r-1)^+)$

Rolling window of 50 data points, average of the last 10 estimates. The data is from $\mathbb{P}\sim GARCH(1,1).$

Oxford Mathematics

Estimates for $\pi^{AV@R_{0.95}^{\tilde{\mathbb{P}}}}((r-1)^+)$

Rolling window of 50 data points, average of the last 10 estimates. The data is from $\mathbb{P}\sim GARCH(1,1).$

Oxford Mathematics

Estimates for $\pi^{\operatorname{AV@R}_{0.95}^{\tilde{\mathbb{P}}}}((r-1)^+)$

Rolling window of 50 data points, average of the last 5 estimates. Weekly S&P500 returns.

Estimates for $\pi^{\operatorname{AV}{\mathbb{Q}}{\mathbb{R}}^{\widetilde{\mathbb{P}}}_{0.95}}((r-1)^+)$

Rolling window of 50 data points, average of the last 5 estimates. Weekly S&P500 log-returns.

Estimation divergence as an information signal Mathematica Institute Upper NA Bound AV@R Estimator

Tyssen ATM 1W Call: AV@R Estimator vs Bloomberg's IVol Synthetic bounds.

Conclusions

- Robust approach builds risk estimates from market data without any modelling assumptions.
- OT allows to conceptualise and quantify the impact of model uncertainty
- Data/Information is used to endogenously specify models.
- The case of information on traded options' prices leads to an Optimal Transport problem with a martingale constraint. We develop numerical methods to solve it.
- DRO conceptually appealing. Applications in finance, statistics, UQ, ML and more!
- Wasserstein balls lead to statistical estimators for robust outputs directly from historical returns

THANK YOU

papers available at www.maths.ox.ac.uk/people/jan.obloj