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Optimal transport
Fluid mechanics formulation

Transfer material from one site to another while minimising transportation costs.

Monge (1781), Kantorovich (1948): Monge-Kantorovich problem

Benamou & Brenier (2000): continuous-time formulation

Optimal transport, continuous-time formulation

Minimising the cost function F under given initial density ρ0 and final density ρ1

inf
ρ,v

∫
Rd

∫ 1

0

ρ(t, x)F (v(t, x)) dtdx,

subject to the continuity equation

∂tρ(t, x) +∇ · (ρ(t, x)v(t, x)) = 0,

and the initial and final distributions

ρ(0, x) = ρ0, ρ(1, x) = ρ1.
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Stochastic optimal transport

Tan & Touzi (2013) (also Mikami & Thieullen (2006), Huesmann & Trevisan (2017),
Backhoff et al. (2017)): Consider probability measures P such that X is a semimartingale,

dXt = βP
t dt+ (αP

t )
1/2 dW P

t .

Stochastic optimal transport problem

We want to minimise

V (µ0, µ1) = inf
P∈P(µ0,µ1)

EP
∫ 1

0

F (αP, βP) dt,

where P(µ0, µ1) contains probability measures satisfying

P ◦X−1
0 = µ0, P ◦X−1

1 = µ1.

Note that the cost function F is convex and may depend on (t,X) as well.
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Stochastic optimal transport
Dual formulation

Tan & Touzi (2013) established the following duality result

Dual formulation

The primal problem is equivalent to

V (µ0, µ1) = sup
φ1

∫
φ1 dµ1 − φ0 dµ0,

where

φ0(x) := sup
P∈P(δx)

EP
(
φ1(X1)−

∫ 1

0

F (αP, βP) dt

)
.

and for Ft = F (t,Xt, α
P
t , β

P
t ) characterised φ0 via PDEs.

Guo and Loeper (2018) extended this to path dependent constraints and cost.
Path-dependent PDEs & functional Itô used to describe the dual.
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Stochastic OT & Calibration

SOT induces a projection onto a subset of (semi)-martingales.

Use for calibration:

Gather market data G
Fix a favourite reference model P̄
Consider a cost F given by

F (P) =

{
dist(P, P̄) if P is calibrated to G,
+∞ otherwise.

ensuring convexity to get duality

Solve the dual via a non-linear (P)PDE

P∗ recovered via ∇F ∗(. . .).
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Overview
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Jan Ob lój OT and Calibration Soesterberg, 24/01/2023 6 / 77



SPX & VIX Calibration
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SPX and VIX

S&P 500 Index (SPX): a stock market index that measures the stock performance of
500 large companies listed in the US stock market.

CBOE Volatility Index (VIX): a volatility index that measures the market’s
expectation of the volatility of SPX over the following 30 days.

Figure: Historical SPX and VIX data. (Source: Schaeffer’s Investment Research)
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Why joint calibration?

VIX futures and options are very popular hedging instruments.
e.g., Szado (2009) shows that VIX call options are better than S&P 500 put options
as a hedging instrument against the financial crisis in 2008.

An arbitrage argument (Guyon 2020): existence of a liquid market
⇒ need for models that jointly calibrate to the option prices of SPX and VIX
⇒ avoid arbitrage between financial institutions (or even within the same institution)

Joint calibration problem: build a (stochastic volatility) model that jointly calibrates
to the prices of SPX options, VIX futures and VIX options.

Very challenging problem, especially for short maturities.
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Selected previous works

Previous works:

Continuous-time diffusion models (without jump):
Gatheral (2008): double CEV model
Goutte–Ismail–Pham (2017): Regime-switching Heston model
Fouque–Saporito (2018): Heston stochastic vol-of-vol

Continuous-time jump-diffusion models: many works including

Cont–Kokholm (2013), Lian–Zhu (2013), Baldeaux–Badran (2014),
Kokholm–Stisen (2015), Pacati–Pompa–Reno (2018), ...

However, even with jumps, these models have yet to achieve an exact fit.

Recent works:

Guyon (2020): nonparametric discrete-time model calibrated by martingale optimal
transport

Gatheral–Jusselin–Rosenbaum (2020): (parametric) quadratic rough Heston model
(no efficient calibration method yet)

⇒ This work: nonparametric continuous-time model calibrated by semimartingale
optimal transport
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Modelling

Assumption: zero interest rates & dividends.

Let St be the SPX price:

St = S0 +

∫ t

0

σsSs dWs.

Consider a time grid 0 < t0 < t1 < · · · < tn = T and an annualisation factor AF ,
e.g., if ti corresponds to daily observations, then AF = 1002 × 252/n.

The realised variance of St during [t0, T ]:

AF
n∑
i=1

(
log

Sti
Sti−1

)2

→ 1002

T − t0

∫ T

t0

σ2
t dt, a.s.

The VIX index at t0:

V IX(t0, T ) =

√
E
(

1002

T − t0

∫ T

t0

σ2
t dt

∣∣∣∣Ft0)
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Modelling — Standard approach

Underlying assets:

St = S0 +

∫ t

0

σsSs dWs

V IX(t0, T ) =

√
E
(

1002

T − t0

∫ T

t0

σ2
t dt

∣∣∣∣Ft0)

Calibrating instruments:

SPX calls: uSPX,c = E((ST −K)+)
SPX puts: uSPX,p = E((K − ST )+)

VIX futures: uV IX,f = E(V IXt0)
VIX calls: uV IX,c = E((V IXt0 −K)+)
VIX puts: uV IX,p = E((K − V IXt0)+)

Many previous works involve modelling (St, σt) or (St, σ
2
t )

⇒ the term V IX is a square root of conditional expectation
⇒ numerically difficult to compute the prices of VIX futures and VIX options.
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Modelling — Our approach

Consider a two dimensional stochastic process X = (X1, X2), let X1 be the logarithm of
St:

X1
t := logSt = X1

0 −
1

2

∫ t

0

σ2
s ds+

∫ t

0

σs dWs.

Let X2 be a half of the expected forward quadratic variation of X1 over [t, T ] observed
at t:

X2
t = E

(
1

2

∫ T

t

σ2
s ds

∣∣∣∣Ft) .
Calibrating instruments: for τ ≤ T ,

SPX calls: uSPX,c = E((exp(X1
τ )−K)+) =: E(GSPX,c(Xτ ))

SPX puts: uSPX,p = E((K − exp(X1
τ ))+) =: E(GSPX,p(Xτ ))

VIX futures: uV IX,f = E(100
√

2X2
t0
/(T − t0)) =: E(GV IX,f (Xt0))

VIX calls: uV IX,c = E((100
√

2X2
t0
/(T − t0)−K)+) =: E(GV IX,c(Xt0))

VIX puts: uV IX,p = E((K − 100
√

2X2
t0
/(T − t0))+) =: E(GV IX,p(Xt0))

All payoffs depend on only the marginal distributions of X at fixed times
⇒ suitable for the calibration framework via optimal transport.
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Modelling — a Heston model example

The Heston model:

dSt =
√
νtSt dW

1
t ,

dνt = −κ(νt − θ) dt+ ω
√
νt dW

2
t ,

〈dW 1, dW 2〉t = η dt.

We can derive that

X2
t = E

(
1

2

∫ T

t

νs ds

∣∣∣∣Ft) =
1− e−κ(T−t)

2κ
(νt − θ) +

1

2
θ(T − t).

Define A(t, κ) := (1− e−κ(T−t))/κ and ν(t,X2
t , κ, θ) := A(t, κ)−1(2X2

t − θ(T − t)) + θ,
then the Heston model in terms of (X1, X2) is

dX1
t = −1

2
ν(t,X2

t , κ, θ) dt+
√
ν(t,X2

t , κ, θ) dW
1
t ,

dX2
t = −1

2
ν(t,X2

t , κ, θ) dt+
1

2
A(t, κ)ω

√
ν(t,X2

t , κ, θ) dW
2
t ,

〈dW 1
t , dW

2
t 〉 = η dt.
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Framework — Semimartingale optimal transport

Consider probability measures P under which X is a semimartingale:

dXt = αP
t dt+ (βP

t )
1
2 dW P

t .

Semimartingale optimal transport with discrete constraints

Minimise

inf
P∈P(X0,τ,G,c)

EP
∫ T

0

F (αP
t , β

P
t ) dt,

where P(X0, τ, G, c) contains probability measures P satisfying

P ◦X−1
0 = δX0 and EPGi(Xτi) = ci, i = 1, . . . ,m.

Note that the cost function F is convex in (αP, βP). It may depend on (t,X) as well.
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Framework — Cost function

The cost function plays a regularisation role to ensure that X has the correct dynamics.

We want X to have the following dynamics:

X1
t = X1

0 −
1

2

∫ t

0

σ2
s ds+

∫ t

0

σs dWs, X2
t = E

(
1

2

∫ T

t

σ2
s ds

∣∣∣∣Ft) .
The above dynamics can be captured by P such that

(αP
t , β

P
t ) =

([
− 1

2
σ2
t

− 1
2
σ2
t

]
,

[
σ2
t (βt)12

(βt)12 (βt)22

])
, 0 ≤ t ≤ T,

where (βt)12 = d〈X1, X2〉t / dt and (βt)22 = d〈X2〉t / dt and with the additional
property that X2

T = 0 P-a.s.

Given β̄, a reference for β, define the cost function:

F (α, β) =


2∑

i,j=1

(βij − β̄ij)2 if α1 = α2 = − 1
2
β11,

+∞ otherwise.
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Framework — Discrete constraints

The additional property X2
T = 0, P-a.s. and the prices of calibrating instruments are

imposed on X as discrete constraints ⇒ exact calibration

We want to calibrate X to:

m number of SPX options with payoffs G = (G1, . . . , Gm), maturities τ ∈ (0, T ]m

and prices uSPX ∈ Rm+ , e.g.,

EPGi(Xτi) = uSPXi , i = 1, . . . ,m,

a VIX futures with payoff J(x) = 100
√

2x2/(T − t0), maturity t0 and price
uV IX,f ∈ R, e.g.,

EPJ(Xt0) = uV IX,f ,

n number of VIX options with payoffs H = (H1, . . . , Hn), maturity t0 and prices
uV IX ∈ Rm+ , e.g.,

EP(Hi ◦ J)(Xt0) = uV IXi , i = 1, . . . , n,

a contract with payoff ξ(x) = 1− exp(−(x2)2), maturity T and zero price, e.g.,

EPξ(XT ) = 0.

The last calibrating instrument ensures that X2
T = 0, P-a.s. Since its price is always zero,

we call it a singular contract.
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Framework — Reformulation of the joint calibration problem

For simplicity, we represent all the discrete constraints by

EPGi(XTi) = ci, i = 1, . . . ,m+ n+ 2,

where

G = (G1, . . . , Gm︸ ︷︷ ︸
m SPX options

, H1 ◦ J, . . . ,Hn ◦ J︸ ︷︷ ︸
n VIX options

, J︸︷︷︸
VIX futures

, ξ︸︷︷︸
singular contract

),

and T and c are defined in a similar manner.

Define a set of the probability measures Pjoint such that

Pjoint := {P : P ◦X−1
0 = δX0 and EPGi(XTi) = ci, i = 1, . . . ,m+ n+ 2}

The joint calibration problem

Minimise V := inf
P∈Pjoint

EP
∫ T

0

F (αP
t , β

P
t ) dt.

If we find an optimal solution P̃ and V < +∞, then we have a well-calibrated model

Xt = X0 +

∫ t

0

αP̃
s ds+

∫ t

0

(βP̃
s )

1
2 dW P

s .
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Framework — Markovian projection

Markovian projection: use a (Markovian) diffusion process mimic an Itô process by
matching its marginals at fixed times. (Gyöngy (1986) and Brunick–Shreve (2013))

Lemma (Figalli (2008) and Trevisan (2016))

Let ρPt = P ◦X−1
t be the marginal distribution of Xt under P, t ≤ T , then ρP is a weak

solution to the Fokker–Planck equation: ∂tρ
P
t +∇x · (ρPtEP

t,xα
P
t )−

1

2

∑
i,j

∂ij(ρ
P
t (EP

t,xβ
P
t )ij) = 0 in [0, T ]× R2,

ρP0 = δX0 in R2.

Moreover, there exists another probability measure P′ under which X has the same
marginals, ρP

′
= ρP, and is a Markov process solving

dXt = αP′(t,Xt)dt+ (βP′(t,Xt))
1
2 dW P′

t , 0 ≤ t ≤ T,

where W P′ is a P′-Brownian motion, αP′(t, x) = EP
t,xα

P
t and βP′(t, x) = EP

t,xβ
P
t .

Notation: EP
t,x = EP(· | Xt = x).
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Framework — Markovian projection

Let P locjoint be a subset of Pjoint such that, under any P ∈ P locjoint, X is a Markov process
that solves

dXt = αP(t,Xt)dt+ (βP(t,Xt))
1
2 dW P

t , 0 ≤ t ≤ T,

and X is fully calibrated to the calibrating instruments.

Proposition

V = inf
P∈Pjoint

EP
∫ T

0

F (αP
t , β

P
t ) dt = inf

P∈Plocjoint
EP
∫ T

0

F (αP
t (t,Xt), β

P
t (t,Xt)) dt

Proof: “≥” follows by convexity of F via Jensen’s inequality:

EP
∫ T

0

F (αP
t , β

P
t ) dt = EP

∫ T

0

(
EP
t,xF (αP

t , β
P
t )
)
dt

≥ EP
∫ T

0

F (EP
t,xα

P
t ,EP

t,xβ
P
t ) dt.

“≤” is clear since P locjoint ⊂ Pjoint.
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Framework — PDE formulation

The problem can be made convex by introducing A = ρα and B = ρβ, since

ρF (α, β) = ρF

(
A

ρ
,
B

ρ

)
= sup
r+F∗(a,b)≤0

{ρr +A · a+B : b},

is convex in (ρ,A,B), where F ∗(a, b) = supα,β{a · α+ b : β − F (α, β)} is the convex
conjugate of F , and B : b = Tr(Bb).

PDE formulation

Minimise

V = inf
ρ,A,B

∫ T

0

∫
R2

ρF (A/ρ,B/ρ) dxdt,

subject to constraints

∂tρ+∇x ·A−
1

2

∑
i,j

∂ijBij = 0,∫
R2

Giρ(t, ·) dx = ci, i = 1, . . . ,m+ n+ 2

ρ(0, ·) = δX0 .
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Framework — Duality

Introducing Lagrange multipliers φ ∈ C∞c ([0, T ]× R2) and λ ∈ Rm+n+2, the problem
can be formulated as:

V = inf
ρ,A,B

sup
φ,λ

{∫ T
0

∫
R2

(
ρF

(
A

ρ
,
B

ρ

)
−
(
∂tφρ +∇xφ · A +

1

2
∇2
xφ : B

)
−
m+n+2∑
i=1

λiGiδ(t− Ti)ρ
)
dxdt

+λ · c− φ(0, X0)

}

= sup
φ,λ

inf
ρ,A,B

{∫ T
0

∫
R2

(
ρF

(
A

ρ
,
B

ρ

)
︸ ︷︷ ︸

objective of the primal

−
(
∂tφρ +∇xφ · A +

1

2
∇2
xφ : B

)
−
m+n+2∑
i=1

λiGiδ(t− Ti)ρ
)
dxdt

+λ · c− φ(0, X0)︸ ︷︷ ︸
objective of the dual

}

The interchange of inf and sup can be formally established by the Fenchel–Rockafellar
duality theorem.
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Framework — Duality

By applying the Fenchel–Rockafellar duality theorem and a smoothing technique:

Dual formulation

Maximise

V = sup
λ∈Rm+n+2

λ · c− φ(0, X0),

where φ is the viscosity solution to the HJB equation:

∂tφ+ F ∗(∇xφ,
1

2
∇2
xφ) = −

m+n+2∑
i=1

λiGiδ(t− Ti),

with the terminal condition φ(T, ·) = 0. If the supremum is attained and the associated
solution to the HJB equation is φ̃ ∈ BV ([0, T ], C2

b (R2)), then an optimal (α, β) of the
PDE formulation can be found by

(α, β) = ∇F ∗(∇xφ̃,
1

2
∇2
xφ̃).

Note: F ∗(a, b) = supα,β{a · α+ b : β − F (α, β)} is the convex conjugate of F .

Jan Ob lój OT and Calibration Soesterberg, 24/01/2023 23 / 77



Framework — Gradient

Given λ ∈ Rm+n+2 with the associated solution φλ, let P(λ) be the probability measure
under which X has (α, β) = (αλ, βλ) := ∇F ∗(∇xφλ, 1

2
∇2
xφ

λ).

Define

L(λ) := λ · c− φλ(0, X0).

The gradients of the objective can be formulated as the difference between the market
prices and the model prices:

∂λiL(λ) = ci︸︷︷︸
market price

−EP(λ)Gi(XTi)︸ ︷︷ ︸
model price

, i = 1, . . . ,m.

The model price EP(λ)Gi(XTi) = φ′(0, X0) where φ′ satisfies{
∂tφ
′ + αλ · ∇xφ′ +

1

2
βλ : ∇2

xφ
′ = 0, in [0, Ti)× R2,

φ′(Ti, ·) = Gi.

Note: For the calculation of different gradients, the PDEs are the same but with different
terminal conditions. The inversion of the linear operator is only required once for all
gradients.
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Numerical method — Solving the dual formulation

Dual formulation:

maximise V = sup
λ∈Rm+n+2

λ · c− φλ(0, X0),

subject to ∂tφ
λ + F ∗(∇xφλ,

1

2
∇2
xφ

λ) = −
m+n+2∑
i=1

λiGiδ(t− Ti), φ(T, ·) = 0.

Numerical solution:

1 Set an initial λ (e.g., λ = 0),

2 Solve the HJB equation backward to get φλ(0, X0) (see next slide),

3 Solve the linear PDEs and calculate all gradients,

4 Update λ by gradient descent.
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Numerical method — Solving HJB equations

HJB: ∂tφ+sup
α,β
{α·∇xφ+

1

2
β : ∇2

xφ−F (α, β)} = −
m+n+2∑
i=1

λiGiδ(t−Ti), φ(T, ·) = 0

Algorithm 1: Solving the HJB equation

for k = N − 1, . . . , 0 do
/* Handling the source term */

φtk+1 ← φtk+1 +
∑m+n+2
i=1 λiGi1(tk+1 = Ti)

/* Policy iteration */

φnewtk ← φtk+1

do
φoldtk ← φnewtk

Approximate the optimal (αtk , βtk ) by solving the supremum with φoldtk
Solve the linearised HJB equation with (αtk , βtk ) by a fully implicit finite

difference method, and set the solution to φnewtk

while ‖φnewtk − φoldtk ‖∞ > ε
φtk ← φnewtk

end
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Numerical method — Scaling

Scaling the discrete constraints with proper scales might improve the stability and
convergence.

EPĜ(XT ) := EP 1

Γ
G(XT ) =

c

Γ
=: ĉ

Recommended values of Γ:

for SPX and VIX options, set Γ to their Black–Scholes Vega
⇒ 1e-4 error of ĉ ≈ 1 bp error in implied vol,

for VIX futures, set Γ = 100
⇒ 1e-4 error of ĉ ≈ 1 cent error in price.
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Numerical method — Smoothing

So far we have ignored the significance of the reference model β̄.
When the gaps between strikes are too large or β̄ is too far away from the β that
describes the actual market dynamics, there might be spikes in the volatility surfaces,
which might cause hump-shaped model volatility skews.

Smoothing technique:

1 Set an initial reference β̄

2 Solve the dual formulation to get an optimal β = β∗

3 Smooth β∗ by a smoothing method and set the result to β̄

4 Repeat steps 2-4 with the new β̄

In the numerical example, we smooth β∗ by the simple moving average method over
(X1, X2) with bandwidths of (3, 3).
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Simulated data example — Generating model

Simulated calibrating instruments:

SPX call options maturing at 44 days and 79 days

VIX futures maturing at 49 days

VIX call options maturing at 49 days

Prices of the above instruments are generated using Heston dynamics and parameters
(κ, θ, ω, η) = (0.6, 0.09, 0.4,−0.5), i.e., X satisfies

Xt = X0 +

∫ t

0

αP
s ds+

∫ t

0

(βP
s )

1
2 dW P

s ,

and

(αP
t , β

P
t ) =

([
− 1

2ν(t,X
2
t , κ, θ)

− 1
2ν(t,X

2
t , κ, θ)

]
,
[

ν(t,X2
t , κ, θ)

1
2ηωA(t, κ)ν(t,X2

t , κ, θ)
1
2ηωA(t, κ)ν(t,X2

t , κ, θ)
1
4ω

2A(t, κ)2ν(t,X2
t , κ, θ)

])
,

where A(t, κ) := (1− e−κ(T−t))/κ and ν(t,X2
t , κ, θ) := A(t, κ)−1(2X2

t − θ(T − t)) + θ.

⇒ Solution exists!
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Simulated data example — OT-Model

Recall our joint calibration problem is

inf
P∈Plocjoint

EP
∫ T

0

F (αP
t , β

P
t ) dt, where F (α, β) =


2∑

i,j=1

(βij − β̄ij)2 if α1 = α2 = − 1
2
β11,

+∞ otherwise.

We consider two references:

(a) a Heston reference with parameters (κ̄, θ̄, ω̄, η̄) = (0.9, 0.04, 0.6,−0.3):

β̄(t,X1
t , X

2
t ) =

[
ν(t,X2

t , κ̄, θ̄)
1
2
η̄ω̄A(t, κ̄)ν(t,X2

t , κ̄, θ̄)
1
2
η̄ω̄A(t, κ̄)ν(t,X2

t , κ̄, θ̄)
1
4
ω̄2A(t, κ̄)2ν(t,X2

t , κ̄, θ̄)

]
;

(b) a constant reference:

β̄(t,X1
t , X

2
t ) =

[
0.09 −0.01
−0.01 0.04

]
.

Rk: if in (a) we took the reference to be the generating model, (κ̄, θ̄, ω̄, η̄) = (κ, θ, ω, η), then the

algorithm quickly recovers OT-model = generating model by λ = 0, and V = 0.
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Simulated data example — Calibration results for Heston reference
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Simulated data example — Calibrating results for constant reference
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Simulated data example — Simulation of X2
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Market data example

Market data as of 1st September 2020:

SPX call options maturing at 17 days and 45 days

VIX futures maturing at 15 days

VIX call option maturing at 15 days

These are the shortest maturities, which is known as the most challenging case!

We calibrate the OT-model with a Heston reference β̄. The parameters
(κ̄, θ̄, ω̄, η̄) = (4.99, 0.038, 0.52,−0.99) are obtained by (roughly) calibrating a standard
Heston model to the SPX option prices.

Remark. Interest rates and dividends are NOT zero
⇒ model X1 as the log of T-forward SPX price (instead of the spot price)
⇒ P are T-forward measures under which exp(X1) is still a martingale.
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Market data example — Calibration results
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Market data example — Simulation of X1 and X2
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Mimicking an Itô process by a solution of a stochastic differential equation.
Annals of Applied Probability 23, 4 (2013), 1584–1628.

Cuchiero, C., Khosrawi, W., and Teichmann, J.

A generative adversarial network approach to calibration of local stochastic volatility models.
arXiv preprint arXiv:2005.02505 (2020).

Figalli, A.

Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients.
Journal of Functional Analysis 254, 1 (2008), 109—153.

Fouque, J.-P., and Saporito, Y. F.

Heston stochastic vol-of-vol model for joint calibration of VIX and S&P 500 options.
Quantitative Finance 18, 6 (2018), 1003–1016.

Gatheral, J.

Consistent modeling of SPX and VIX options.
In Bachelier congress (2008), vol. 37, pp. 39–51.

Gatheral, J., Jusselin, P., and Rosenbaum, M.

The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem.
arXiv preprint arXiv:2001.01789 (2020).

Goutte, S., Ismail, A., and Pham, H.

Regime-switching stochastic volatility model: estimation and calibration to VIX options.
Applied Mathematical Finance 24, 1 (2017), 38– 75.
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Gyöngy, I.

Mimicking the one-dimensional marginal distributions of processes having an Ito differential.
Probability theory and related fields 71, 4 (1986), 501–516

Guyon, J.

The joint S&P 500/VIX smile calibration puzzle solved.
Risk, April (2020).

Han, J., Jentzen, A., et al.

Algorithms for solving high dimensional pdes: From nonlinear monte carlo to machine learning.
arXiv preprint arXiv:2008.13333 (2020).

Tan, X., Touzi, N.

Optimal transportation under controlled stochastic dynamics.
The Annals of Probability 41, 5 (2013), 3201-–3240.

Trevisan, D.

Well-posedness of multidimensional diffusion processes with weakly differen- tiable coefficients.
Electronic Journal of Probability 21 (2016), Paper No. 22, 41.
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SPX & Interest Rates Calibration
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Fixed Income Modelling — Our Approach

Case I: A pre-calibrated short rate model fitting the term structure, zero dividends

Take a two dimensional stochastic process X = (X1, X2), let X1 log-stock price of some
underlying asset and X2 represent the short rate

X1
t = X1

0 +X2
t −

1

2

∫ t

0

σ2
s ds+

∫ t

0

σs dW 1
s ,

we assume that X2 is a Hull-White short rate process given by

X2
t = X2

0 +

∫ t

0

(θ(s)− a(s)X2
s ) ds+

∫ t

0

σr(s) dW 2
s .

We assume that W 1
t and W 2

t are correlated standard Brownian motions such that

〈W 1
· ,W

2
· 〉t =

∫ t

0

ξs ds.

Note that since rt is assumed to be pre-calibrated, the parameters θ, a, and σr are all
assumed to be known. We calibrate σ and ξ using Call options on the underlying at 60
and 120 days.
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Framework — Constraints and Cost Function

Given n Call options observed in the market with prices ui, strikes Ki and maturities τi,
our calibration constraints become

E
[
e−

∫ τi
0 X2

s ds
(
e
X1
τi −Ki

)]
= ui, i = 1, . . . , n.

We therefore consider the set P(X0, τ,K, u) containing measures P such that X is a
semimartingale and satisfies the calibration constraints.
Moreover, we may localise using Markovian projection and consider the subset
Ploc(X0, τ,K, u) ⊂ P(X0, τ,K, u) such that under the mimicking measure
P′ ∈ Ploc(X0, τ,K, u), X is a Markov process satisfying

dXt = α(t,Xt)dt+ (β(t,Xt))
1
2 dWt,

where W is a P′ Brownian motion.
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Framework — Conditioning Argument

The discount term e−
∫ τi
0 X2

s ds is path dependent and thus incompatible with our PDE
formulation framework.
We could add an extra state variable, but that would increase the computational
complexity when solving the HJB equation, so we provide a conditioning argument.

Discounted Density Transformation

Let ρ̄ be the joint law of X1
t , X2

t and
∫ t

0
X2
s ds and ηt,x(y) the law of

∫ t
0
X2
s ds

conditional on Xt = [x1, x2]ᵀ.
Define the ‘discounted density’ ρ̃(t, x) =

(∫
R e
−yηt,x(dy)

)
ρ(t, x), (t, x) ∈ [0, T ]× R2.

Then ρ̃ satisfies for (t, x) ∈ [0, T ]× R2:

∂tρ̃(t, x) +∇x · (α(t, x)ρ̃(t, x))− 1

2
∇2
x : (β(t, x)ρ̃(t, x)) + x2ρ̃(t, x) = 0.
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Framework — PDE Formulation

Primal Problem

Minimise

V = inf
ρ,A,B

∫ T

0

∫
R2

ρF

(
A

ρ
,
B

ρ

)
dxdt,

subject to the constraints

∂tρ+∇x ·A−
1

2
∇2 : B + x2ρ = 0∫

R2

(ex1 −Ki)
+ ρ(τi, dx) = ui, i = 1, . . . , n

ρ(0, ·) = δX0
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Framework — Dual Problem

Introduce the Lagrange multipliers φ ∈ C∞c ([0, T ]× R2) and λ ∈ Rn, then

V = inf
ρ,A,B

sup
φ,λ

{∫ T
0

∫
R2

(
ρF

(
A

ρ
,
B

ρ

)
−
(
∂tφρ +∇xφ · A +

1

2
∇2
xφ : B − x2φρ

)

−
n∑
i=1

λi(e
x1 −Ki)

+
δτiρ

)
dxdt + λ · u− φ(0, X0)

}

Dual Problem

Maximise
V = sup

λ∈Rn
λ · u− φ(0, X0),

where φ is the viscosity solution to the HJB equation:

∂tφ− x2φ+ F ∗(∇xφ,
1

2
∇2
xφ) +

n∑
i=1

λi(e
x
1 −Ki)

+δτi = 0

with the terminal condition φ(T, ·) = 0. If the supremum is attained and the associated
solution to the HJB equation is φ̃ ∈ BV([0, T ], C2

b (R2)), then an optimal (α, β) of the
PDE formulation can be found by

(α, β) = ∇F ∗(∇xφ̃,
1

2
∇2
xφ̃).
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Cost function for Sequential Calibration

Choose a reference correlation ξ̄(t) and require ξ(t, Zt, rt) = σr(t)
σ(t,Zt,rt)

ξ̄(t), for t ∈ [0, T ].
Define for p > 1

H(x, x̄, s) =

(p− 1)
(
x−s
x̄−s

)1+p

+ (p+ 1)
(
x−s
x̄−s

)1−p
− 2p, if x, x̄ > s,

+∞, otherwise.

Notice that the coefficients are chosen such that H is minimised over x at x = x̄ with
minH = 0. Also define the convex set

Γ(t,Xt) =

{
(α, β) ∈ R2 × S2 : α1 = X2

t −
1

2
β11, α2 = (b(t)− aX2

t ),

β12 = β21 = ξ̄σr(t), β22 = σ2
r

}

Define the cost function F (α, β) =

{
H(β11, σ̄

2, ξ̄2σ2
r), if (α, β) ∈ Γ(t,Xt),

+∞, otherwise.

σ̄2 = σ̄2(t,Xt) is some reference value for the volatility
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HJB Equation and Model Prices

HJB Equation

n∑
i=1

λi(exp(x1)−Ki)
+δτi + ∂tφ+ sup

β11

((
x2 −

1

2
β11

)
∂x1φ

+ (b(t)− ax2)∂x2φ+
1

2
β11∂

2
x1x1φ+ ξ̄σr∂

2
x1x2φ+

1

2
σ2
r∂

2
x2x2φ− x2φ

−H(β11, σ̄
2, ξ̄2σ2

r)

)
= 0, (t, x) ∈ [0, T ]× R2.

Given λ with associated solution Pλ of the dual problem, let P(λ) be the probability
measure under which X has the characteristics (αλ, βλ) = ∇F ∗(∇xφλ, 1

2
∇2
xφ

λ). Then
the model price of an instrument with payoff G and maturity T is given by

EP(λ)
[
e−

∫ T
0 X2

s dsG(XT )
]

= φ′(0, X0), where φ′ solves{
∂tφ+ αλ · ∇xφ′ + 1

2
βλ : ∇2

xφ
′ − x2φ

′ = 0, (t, x) ∈ [0, T )× R2

φ′(T , ·) = G(·)

The numerical method is analogous in this case, and we may analytically compute the
optimal β11 in the HJB equation with our chosen cost function.
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Simulated Data Example

We used a CEV-Hull-White reference and generating model with the interest rate
parameters the same in both. This gave us that σ̄(t, x) = σ exp(x1)γ−1. The generating
model had parameters (σ, γ, a, σr, ξ) = (0.78, 0.9, 0.4, 0.005,−0.6), and the “good”
reference had (σ̄, γ̄, ξ̄) = (0.9, 0.9,−0.4), whereas the “bad” reference had
(σ̄, γ̄, ξ̄) = (1.2, 0.78, 0.4)
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Simulated Data Example — Plots of Characteristics

Figure: Comparison of β11 with the generating vol surface for a ‘good’ and a ‘bad’ reference
model
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Simulated Data Example — Plots of Characteristics

Figure: Comparison of ξ with the generating vol surface for a ‘good’ and a ‘bad’ reference model
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Cost Function for Joint Calibration

Case II: Joint & simultaneous calibration exercise, zero dividends

Now assume we have no prior knowledge of the interest rate, our characteristics for the
log-stock and short rate are therefore given by:

αt =

[
X2
t − 1

2
(βt)11

(αt)2

]
, βt =

[
(βt)11 (βt)12

(βt)12 (βt)22

]
.

Define the convex set

Γ(t, x) =

{
(α, β) ∈ R2 × S2

+ : α1 = x2 −
1

2
β11

}
.

Define the cost function

F (α, β) =

{
||α− α||22 + ||β − β||2Fro, if (α, β) ∈ Γ(t, x),

+∞, otherwise.

Where ᾱ and β̄ correspond to some reference model. We remark that we will calibrate
with interest rate derivatives as well.
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Joint Calibration HJB Equation

The dual formulation is similar to the sequential calibration, but with a different cost
function. Let Gi(x) denote the payoffs of instruments with maturity τi and market value
ui.

Joint Calibration Dual Formulation

Maximise
V = sup

λ∈Rn
λ · u− φ(0, X0)

Subject to

∂tφ+ sup
α2∈R,β∈S2+

{(
x2 −

1

2
β11

)
∂x1φ+ α2∂x2φ+

1

2
β11∂

2
x1x1φ

+
1

2
β22∂

2
x2x2φ+ β12∂

2
x1x2φ− ||α− α||

2
2 − ||β − β||2Fro

}
− x2φ+

n∑
i=1

λiGi(x)δτi = 0, for (t, x) ∈ [0, T ]× R2
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Joint Calibration Numerical Method

The numerical method is identical to the sequential calibration method, and we can
analytically compute the supremum in the HJB equation.
We calibrate using Call options on the stock and Caplets on the interest rate with a fixed
notional of $1,000 at 60 and 120 days.
The reference models are the CEV local volatility model with a Hull-White interest rate
and a CIR interest rate. In both cases, the generating model was the same with shifted
parameters. The parameters were given as follows:

Generating Reference
σ 1.50 σ 1.2
γ 0.95 γ 0.89
a 0.05 a 0.03
σr 0.04 σr 0.02
ρ −0.05 ρ −0.2

Table: CEV-Hull-White Parameters

Generating Reference
σ 1.5 σ 1.2
γ 0.95 γ 0.89

b 0.03 b 0.03
a 0.5 a 0.4
σr 0.5 σr 0.3
ρ −0.4 ρ −0.2

Table: CEV-CIR Parameters
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Simulated Data Example — CEV-HW
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Simulated Data Example — CEV-CIR
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Simulated Data Example — Plots of Characteristics

Figure: Compatison of β11 for the calibrated and generating model
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Simulated Data Example — Plots of Characteristics

Figure: Comparison of β12 for the calibrated and generating model
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Simulated Data Example — Plots of Characteristics

Figure: Comparison of β22 for the calibrated and generating model
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Simulated Data Example — Plots of Characteristics

Figure: Comparison of α2 for the calibrated and generating model
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Joint Calibration Numerical Method

The numerical method is identical to the sequential calibration method, and we can
analytically compute the supremum in the HJB equation. We took the SPX as the
underlying and the 1M US LIBOR for a proxy of the short rate. We obtained the
following data on 23/05/2022 from a Bloomberg terminal:

Calls on the SPX with expiry 19/08/2022,

Caps on the one month LIBOR with notional $10,000,000 and expiry 23/08/2022,

Calls on the SPX with expiry 18/11/2022,

Caps on the one month LIBOR with notional $10,000,000 and expiry 23/11/2022.

We additionally took a CEV-Hull-White reference model with parameters
(σ̄, γ, ā, σ̄r, ρ̄) = (0.3, 0.95, 0.01, 0.02,−0.7)
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Market Data Example — CEV-HW

3960 3970 3980 3990 4000

Strike

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

Im
p

lie
d

 V
o

la
ti
lit

y
SPX volatility skews at t = 86 days

Calibrated HW-CEV model

Reference Model

Calibrating options

3940 3960 3980 4000 4020

Strike

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

Im
p
lie

d
 V

o
la

ti
lit

y

SPX volatility skews at t = 177 days

Calibrated HW-CEV model

Reference Model

Calibrating options

5.6 5.8 6 6.2 6.4 6.6

Strike 10
4

0.75

0.8

0.85

0.9

0.95

1

1.05

Im
p

lie
d

 V
o

la
ti
lit

y

Interest Rate volatility skews at t = 90 days

Calibrated HW-CEV model

Reference Model

Calibrating options

1.1 1.15 1.2 1.25 1.3

Strike 10
5

0.7

0.8

0.9

1

1.1

1.2

Im
p

lie
d

 V
o

la
ti
lit

y

Interest Rate volatility skews at t = 182 days

Calibrated HW-CEV model

Reference Model

Calibrating options
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Market Data Example — Plots of Characteristics

Figure: Compatison of β11 = σ2
X for the calibrated and generating model
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Market Data Example — Plots of Characteristics

Figure: Comparison of β12 = ρ for the calibrated and generating model
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Market Data Example — Plots of Characteristics

Figure: Comparison of β22 = σ2
r for the calibrated and generating model
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Market Data Example — Plots of Characteristics

Figure: Comparison of α2 = µr for the calibrated and generating model
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Robust pricing and hedging of American options

via OT
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Robust hedging: model uncertainty

Consider a market with stocks X and some European claims g which WLOG have initial
prices of 0. We are allowed to trade X dynamically and g statically.
Let Q ⊂ P be the set of possible “models”, i.e., X is martingale, g has zero expectation,
etc.

Consider a European claim Z. Worst case model price:

sup
P∈Q

EPZ.

Super-hedging price:

π(Z) := inf{x : ∃(q, h), s.t. x+

∫ 1

0

q · dXt + h · g ≥ Z, Q-q.s.}.

It is easy to check that
π(Z) ≥ sup

P∈Q
EPZ.

Duality (equality) results are obtained in various settings by Denis & Martini (2006);
Soner, Touzi & Zhang (2013); Neufeld & Nutz (2013); and Possamäı, Royer & Touzi
(2013); Hou & O. (2018) and many more.
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Hedging duality via Path-dependent OT

Theorem

Let F : Λ× Sd → R ∪ {+∞} satisfy some assumptions and F ∗(t, ω, ·) be the convex
conjugate of F (t, ω, ·). Define

V := sup
P

inf
h∈Rm

EP(−h · g + Z)− EP
∫ 1

0

F (βP
t ) dt,

V := inf
h∈Rm,φ∈C1,2(Λ)

φ(0, X0),

subject to φ(1, ·) ≥ Z − h · g and Dtφ+ F ∗
(

1

2
∇2
xφ

)
≤ 0.

Then V = V. Moreover, if V is finite, then the supremum is attained.
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Hedging duality via Path-dependent OT

Let F (β) be 0 if β ∈ D (volatility constraint), or ∞ otherwise. Then the dual is

V = inf
h∈Rm,φ∈C1,2(Λ)

φ(0, X0),

subject to φ(1, ·) ≥ Z − h · g and Dtφ+ sup
β∈D

1

2
∇2
xφ : β ≤ 0.

Each φ is actually a super-hedge. For every P ∈ Q

Z − h · g − φ(0, X0) ≤ φ(1, X)− φ(0, X0)

=

∫ 1

0

(Dtφ+
1

2
βP : ∇2

xφ)dt+∇xφ · dXt, P-a.s.

≤
∫ 1

0

∇xφ · dXt.

Hence φ(0, X0) ≥ π(Z). Since this works for all φ satisfying (68), it implies

V = inf
φ∈C1,2

0 (Λ),(68)

φ(0, X0) ≥ π(Z) ≥ sup
P∈Q

EPZ = V = V.
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Robust hedging American options

Let Z be an American-style claim. Worst case model price:

sup
τ∈T ,P∈Q

EPZ(τ, ·).

Super-hedging price:

πA(Z) := inf{x : ∃(p, q, h) s.t.

x+

∫ τ

0

p · dXt +

∫ 1

τ

qτ · dXt + hg ≥ Zτ ,QD-q.s., ∀τ ∈ T }.

Again, it is easy to check πA(Z) ≥ supτ∈T ,P∈Q EPZ(τ, ·).

When the set of statically traded European options is non-empty, there may be a duality
gap, which can be eliminated by enlarging the probability space.
In discrete time, various duality results for American options are obtained by Dolinsky
(2014); Hobson & Neuberger (2017); Bayraktar & Zhou (2017); Aksamit, Deng, O. &
Tan (2019); and more. Some relevant works in continuous time include Herrmann &
Stebegg (2017); Tiplea (2019); Grigorova, Quenez & Sulem (2021) etc.
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Overview

The main idea of Aksamit et al. (2019) is to enlarge the space Ω with the stopping
decisions to obtain Ω̄. Then the American option can be seen as a European option
under the enlarged space.

In the case where there is no statically traded European options g.

π̄(Z) = πA(Z) ≥ sup
P̄∈Q̄

EP̄Z = π̄(Z),

sup
P̄∈Q̄

EP̄Z = sup
τ∈T ,P∈Q

EPZ(τ, ·).

When g does exist, then we have to introduce a second enlarged space Ω̂ which includes
the price process of g as another martingale.

π̄g(Z) = πAg (Z) ≥ π̂A(Z) = ¯̂π(Z) ≥ sup
¯̂P∈ ¯̂Q

E
¯̂PZ ≥ sup

P̄∈Q̄g
EP̄Z = π̄g(Z),

sup
¯̂P∈ ¯̂Q

E
¯̂PZ = sup

τ̂∈T̂ ,P̂∈Q̂
EP̂Z(τ̂ , ·).
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Jan Ob lój OT and Calibration Soesterberg, 24/01/2023 70 / 77



Continuous time issues

We mostly focus on the case where there is no g.
Pricing hedging duality for European options is known in continuous time, and naturally
extends to the enlarged space.
The equality π̄(Z) = πA(Z) can also be argued in mostly the same way.
However, the equality

sup
P̄∈Q̄

EP̄Z = sup
τ∈T ,P∈Q

EPZ(τ, ·),

creates difficulties in continuous time. Possible approaches include approximating with
discrete time, Doob-Meyer type decomposition of non-linear Snell envelopes, reflected
2BSDEs, etc.
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Enlarged space

The original space for our model is Ω := C([0, 1];Rd) with canonical process X. We
enlarge it to Ω̄ := Θ× Ω where

Θ := {ϑ ∈ C([0, 1],R) : ϑt = θ ∧ t, for some θ ∈ [0, 1]}.

Θ is isometric to [0, 1].

Most aspects of Ω can be naturally extended to Ω̄, include semimartingale measures
(since ϑ semimartingale with characteristics (1(t ≤ θ), 0)). E.g., we define Q̄ to be the
set of measures under which X is a martingale.
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Path-dependent optimal transport on Ω̄

Also define the “stopped paths” of Ω̄, by

Λ̄ := {(t, ω̄·∧t) : t ∈ [0, 1], ω̄ ∈ Ω̄}.

So elements of Λ̄ are (t, ω̄·∧t) = (t, ϑ·∧t, ω·∧t) = (t, θ ∧ t, ω·∧t).
Functional Itô calculus and PPDEs can be extended in the same way.
The path-dependent optimal transport duality results (Guo and Loeper (2021)) can be
applied here.

Theorem

sup
P̄∈Q̄D

EP̄f = inf
φ∈C1,1,2

0 (Λ̄)

φ(0, 0, X0),

subject to φ(1, ·, ·) ≥ f and Dtφ+ 1(t ≤ θ)∇θφ+ sup
β∈D

1

2
β : ∇2

xφ ≤ 0.
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European duality on the enlarged space

Theorem

sup
P̄∈Q̄D

EP̄f = inf
φ∈C1,1,2

0 (Λ̄)

φ(0, 0, X0),

subject to φ(1, ·, ·) ≥ f and Dtφ+ 1(t ≤ θ)∇θφ+ sup
β∈D

1

2
β : ∇2

xφ ≤ 0.

By the functional Itô formula, for each φ and P̄ ∈ Q̄D, the following holds P̄-a.s.

f − φ(0, 0, X0) ≤ φ(1, ·, ·)− φ(0, 0, X0)

=

∫ 1

0

(Dtφ+ 1(t ≤ θ)∇θφ+
1

2
βP : ∇2

xφ)dt+∇xφ · dXt

≤
∫ 1

0

∇xφ · dXt.

Hence φ(0, 0, X0) ≥ π̄(f). Since this holds for all φ, it implies

sup
P̄∈Q̄D

EP̄f ≥ π̄(f).

BUT we still need to address supP̄∈Q̄ EP̄Z = supτ∈T ,P∈Q EPZ(τ, ·).
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From random times to stopping times

Lemma

(a) For every µ ∈ P(Ω̄), there exists an increasing and adapted A with A0 = 0 and
A1 = 1, and P ∈ P(Ω) with P� µΩ, such that for every (non-anticipative) ψ ∈ L∞(Λ),

µ(ψ(θ, ω·∧θ)) = EP
∫ 1

0

ψ(t, ω·∧t) dAt.

(b) For every µ ∈ P(Ω̄), there exists a family of true stopping times τr and probability
measures Pr, indexed by r ∈ [0, 1], such that for every η ∈ L∞(Ω̄),

µ(η(θ, ω)) =

∫ 1

0

EPrη(θ = τr, ω) dr.

(c) For any a ∈ [0, 1] and any bounded and Fτa -measurable function γ,∫ 1

a

EPrγ dr = (1− a)EPγ.

Roughly speaking, we obtain r by disintegrating µ according to the value of A.
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Disintegrating martingale measures

Lemma

Suppose that X is a martingale under µ ∈ P(Ω̄) with characteristic (0, β). Then there
exists a family of true stopping times τr and probability measures Pr ∈ P(Ω), indexed by
r ∈ [0, 1], such that for every η ∈ L∞(Ω̄),

µ(η(θ, ω)) =

∫ 1

0

EPrη(θ = τr, ·) dr.

Moreover, each Pr ∈ P(Ω) is a martingale measure with characteristic
(0, β(t, t ∧ τr(ω), ω·∧t)).

Corollary

For any Z ∈ L∞(Ω̄), and any E ⊆ Ω,

sup
τ∈T ,P∈Q,P(E)=1

EPZ(τ, ·) = sup
P̄∈Q̄,P̄(Θ×E)=1

EP̄Z.
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Conclusion and future research

Conclusion:

We consider Semimartingale OT perspective on pricing and hedging

This includes European options, path-dependent options and now also American
options

We develop generic approach to Calibration via OT

We use it to tackle difficult joint calibration problems: SPX options + VIX futures
+ VIX options prices; interest rates and SPX options

Numerical proof-of-concept results

Future research:

Improving computational efficiency and exploring applications in higher dimensions
Deep PDE solvers (see, e.g., Han et al. (2020))
Neural SDE (see, e.g., Cuchiero et al. (2020))

OT Calibration to American options

Thank you!
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