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Convex ordering: definitions and fist (static) examples Convex ordering

Definitions

Definition (Convex orderings)

Let U, V ∈ L1
Rd (P) be two Rd -valued random vectors with distributions µ and ν.

(a) Convex ordering. We say that U is dominated for the convex ordering by V ,
denoted

U �cvx V

if, for every convex function f : Rd → R,

E f (U) ≤ E f (V ) ∈ (−∞,+∞] (1)

or, equivalently, that µ is dominated by ν for the convex ordering if, for every
convex function f : Rd → R,

∫
Rd f dµ ≤

∫
Rd f dν.

(b) Monotone convex ordering (d = 1). When (1) only holds for
non-decreasing/non-increasing convex functions f , the convex ordering is called
increasing/decreasing convex order respectively denoted

U �icv V and U �dcv V .
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Consistency

For every x ∈ Rd , by convexity of f : Rd → R,

f (x) ≥ f (0) + 〈∇s f (0) | x〉.

where ∇s f (0) denotes a subgradient of f at 0.

Hence

f −(x) ≤
(
f (0) + 〈∇s f (0) | x〉

)−
≤ |f (0)|+ |∇s f (0)||x |

so that
E f −(U) ≤ |f (0)|+ |∇s f (0)|E |U| < +∞

and

E f (U) = E f +(U)︸ ︷︷ ︸
∈[0,+∞]

−E f −(U)︸ ︷︷ ︸
∈[0,+∞)

∈ (−∞,+∞] is well-defined.
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First properties (of �cvx)

P1. As f (x) = ±x are both convex, U �cvx V implies

EU = EV .

P2. If, U, V ∈ L2(P), U �cvx V , then

Var(U) ≤ Var(V ).

[Set f (x) = x2].

P3. If U �icv V , then EU ≤ EV .

P4.
U �dcv V ⇐⇒ −V �icv −U

since f (x) = f
(
− (−x)

)
.

Convex ordering is a kind of generalization of the measure of risk

through the variance.
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Convex ordering: definitions and fist (static) examples Convex ordering

Examples I
If U = E

(
V |U

)
then, for every convex function such that f (V )∈ L1(P),

E f (U) = E f
(
E (V |U)

)
≤ E

[
E (f (V ) |U)

]
= E f (V ).

owing to Jensen’s inequality. Obvious if E f (V ) = +∞.

If U ⊥⊥W , W ∈ L1(P), EW = 0, then U �cvx V = U + W . [µ �cvx µ ∗ ν]

∀ u∈ Rd , δu �cvx V . [δu �cvx µ]

Gaussian distributions (centered): Let Z ∼ N (0, Iq) on Rq and let A,
B∈Md ,q be d × q matrices

AA∗ ≤ BB∗ in S+(d ,R) =⇒ AZ �cvx BZ

or equivalently N (0,AA∗) �cvx N (0,BB∗).

In particular if d =q=1, |σ| ≤ |ϑ| ⇒ N (0, σ2) �cvx N (0, ϑ2).

Proof. Let Z1,Z2 ∼ N (0; Iq) be independent. Set

U = AZ1, V = U + (BB∗ − AA∗)1/2Z2.

Then U = E
(
V |U

)
and V ∼ N

(
0,AA∗ +

(
(BB∗ − AA∗)1/2

)2
)

= N (0,BB∗).
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Radial distributions (generalization): Let Z : (Ω,A,P)→ RQ having
a radial distribution in the sense

∀O∈ O(q), OZ ∼ Z .

Let A, B∈Md ,q. Then

AA∗ ≤ BB∗ in S+(d ,R) =⇒ AZ �cvx BZ

We skip the proof (exercise with solution in (1)).

1
B. Jourdain, G. Pagès, Convex order, quantization and monotone approximations of ARCH models, Journal of Theoretical

Probability, 35, (4), 2480–2517,2022
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If U �cvx V and U ′ �cvx V ′, U ⊥⊥ U ′, V ⊥⊥ V ′ then

U + U ′ �cvx V + V ′.

[µ �cvx ν and µ′ �cvx ν
′ ⇒ µ ∗ µ′ �cvx ν ∗ ν′]. By Fubini’s Theorem

E f (U + U ′) =

∫
Rd

E f (u + U ′)PU(du) ≤
∫
Rd

E f (u + V ′)PU(du)

≤
∫
Rd

E f (u + V ′)PU′(du) = E f (U ′ + V ′).

If (Un)n≥1 i.i.d.∼ U and (Vn)n≥1 i.i.d.∼ V , centered, ⊥⊥ N,M,
N ≤ M, having values in N0, integrable

N∑
k=1

Uk �cvx

N∑
k=1

Vk �cvx

M∑
k=1

Vk .

Obvious by induction.
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Example II: martingales, peacocks

If (Xt)t≥0 is a martingale, then

t 7−→ Xt is non-decreasing for the convex ordering

i.e. 0 ≤ s ≤ t ⇒ Xs �cvx Xt since

∀ 0 ≤ s ≤ t, Xs = E
(
Xt |Xs

)
.

More generally, a process such that

t 7−→ Xt is non-decreasing for the convex ordering

is called p.c.o.c (for “Processus Croissant pour l’Ordre Convexe” in
French) or even ”peacock”. . . ).

Thus, any martingale is a peacock !

More generally, if Xt ∼ Mt , t ≥ 0, where (Mt)t≥0 is a martingale,
then (Xt)t≥0 is a peacock
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About converses of “U = E (V |U)⇒ U �cvx V ” and
“1-martingale ⇒ p.c.o.c.”

Strassen’s Theorem (1965): µ �cvx ν⇐⇒∃ transition P(x , dy) s.t.

ν = µP and ∀ x ∈ Rd ,

∫
y P(x , dy) = x .

Kellerer’s Theorem (1972): X is a p.c.o.c ⇐⇒

There exists a martingale (Mt)t≥0 such that Xt
d
= Mt , t ≥ 0,

(X is sometimes called a “1-martingale”).

Both proofs are unfortunately non-constructive.

In Hirsch, Roynette, Profeta & Yor’s monography (2), many
(many. . . ) explicit “representations” of p.c.o.c. by true martingales.
Also, investigations on 2-martingales, n-martingales...

2
Peacocks and Associated Martingales, with Explicit Constructions, Springer, 2011.
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A revival motivated by Finance. . .

A starter! t being fixed, σ 7→ eσWt−σ
2t
2 is a p.c.o.c. since

∀σ > 0, eσWt−σ
2t
2

d
= eWσ2t−

σ2t
2 (→ σ-martingale).

Application to Black-Scholes model Sσt = s0e
σWt−σ

2t
2 . For every convex

payoff function f : R+ → R+

σ ≤ σ′ =⇒ E f (Sσt ) ≤ E f (Sσ
′

t )

Vanilla options: Call and Put options: f (S
T

) = (S
T
− K )+,

f (S
T

) = (K − S
T

)+, etc.
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Path-dependent payoffs

E.g. what about path-dependent options like Asian payoffs. Let
f : R+ → R+ convex

σ 7−→ Premium(σ) = E
[
f
( 1

T

∫ T

0

s0e
σWt−σ

2t
2︸ ︷︷ ︸

= Sσt

dt
)]

?

P. Carr et al. (2008): Non-decreasing in σ when f (x) = (x − K )+ (Asian
Call).

M. Yor (2010): σ 7→ 1

T

∫ T

0

s0e
σWt−σ

2t
2 dt is a p.c.o.c. though not a

martingale).

(Hint: Representation using a Brownian sheet so that it has the 1-marginals of a
martingale).

Yields bounds on the option prices of vanilla options: σmin ≤ σ ≤ σmax =⇒ etc.

This is a functional convex ordering of the first kind based on
path-dependence. (see e.g. (for discrete time) path-dependent payoff
functions [Brown, Rogers, Hobson 2001, Rüschendorf, 2008]).
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B This suggests many other (new or not so new) questions !

Switch from BS to local volatility models i .e. from scalar (or vector)
parameter to a functional parameter.

σ  σ(x) “functional” convex ordering of the second kind

(see [El Karoui-Jeanblanc-Schreve, 1998]), etc) i.e.

dXt = σ(Xt)dWt , X0 ⊥⊥W versus dYt = θ(Yt)dWt , Y0 ⊥⊥W , X0 �cvx Y0?

Non-decreasing convex ordering: ∃ drift b! (see [Hajek, 1985] (3).

“Fully” path-dependent convex ordering (twice functional. . . ) (see
[P.2016]).

Bermuda and American options (see [Pham 2005, Rüschendorf 2008], [P.
2016]).

Jumpy risky asset dynamics for (Xσ
t )? (see [Rüschendorf-Bergenthum,

2007], [P. 2016]).

P.c.o.c. trough Martingale Optimal Transport. [Bëıgelbock, Henry-Labordère
et al, 2013, Tan, Touzi,Henry-Labordère 2015, Jourdain-P. 2020].

3
Hajek, B., Mean stochastic comparison of diffusions. Z. Wahrsch. Verw. Gebiete 68 (1985), no. 3, 315–329.
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Convex ordering: definitions and fist (static) examples Convexity (without order. . . )

More questions about convexity

A side (?) question of interest : propagation of convexity in the sense

f : R→ R convex =⇒ x 7−→ E f (X x
T

) convex ?

e.g. in a1D- local volatility model like

X x
t = x +

∫ t

0
r X x

s ds +

∫ t

0
X x
s ϑ(s,X x

s )dWs .

More generally, when do we have such propagation of convexity if

X x
t = x +

∫ t

0
α(X x

s + β)ds +

∫ t

0
σ(s,X x

s )dWs ?

Extensions to convex functionals F : C([0,T ],R)→ R and to higher
dimensional processes (d ≥ 2) ?

Similar questions for monotonic convexity with a more general drift

X x
t = x +

∫ t

0
b(s,X x

s )ds +

∫ t

0
σ(s,X x

s )dWs .
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Direct approach: first reduction

Assume σ(t, y) Lipschitz in y uniformly in t∈ [0,T ] and σ(·, 0)
bounded.

Let f : R→ R be convex

X x
t = x +

∫ t

0
α(X x

s + β)ds +

∫ t

0
σ(s,X x

s )dWs .

Setting
X̃ x
t = eαtXt − β(1− eαt)

and
σ̃(t, y) = eαtσ

(
t, e−αty − β(1− e−αt)

)
yields

X̃ x = x +

∫ t

0
σ̃(s, X̃ x

s )dWs

where σ̃(t, y) Lipschitz in y uniformly in t∈ [0,T ].

Hence, we may assume w.l.g. α = β = 0.
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Direct approach: Tangent flow (d = 1)

If (4) f is smooth then

∂xE f (X x
T

) = E f ′(X x
T

)Y (x)
T

where

Y
(x)
t = E

(∫ ·
0

σ′x(s,X x
s )dWs

)
t

= exp
(∫ t

0

σ′x(s,X x
s )dWs − 1

2

∫ t

0

σ′x(s,X x
s )2ds

)
.

Let Q = Y (x)
T
· P, the probability on (Ω,A,P) under which (Girsanov)

Bt = Wt −
∫ t

0

σ′x(s,X x
s )ds is a standard Q Brownian motion.

Then

X x
t = x +

∫ t

0

σσ′x(s,X x
s )ds +

∫ t

0

σ(s,Xs)dBs

and
∂xE f (X x

T
) = EQ f ′(X x

T
).

4
see El Karoui et al. 1998, Robustness of the Black and Scholes formula, Math. Fin.
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Direct approach: conclusion (d = 1)

If σσ′x is Lipschitz in space uniformly in time, then (5).

Q-a.s. x 7→ X x
t is non-decreasing . . .

Hence
Q-a.s. x 7→ f ′(X x

t ) is non-decreasing . . .

and so is
∂xE f (X x

T
) = EQ f ′(X x

T
).

Which ensures that x 7→ E f (X x
T

) is convex. �

Few comments:

B Extension for free to any convex function using the right
derivative f ′r .

B Note that there is no convexity assumption required on σ.

B But beyond: the present proof is one-dimensional. What about
d ≥ 2 or switching from f (X x

T
) F

(
(X x

t )t∈[0,T ]) ?
5

see Thm 3.7, chap. IX, Revuz-Yor, Continuous martingales and Brownian motion, Springer,3rd ed. 1998

G. Pagès (LPSM) Functional Convex Ordering of Processes LPSM-Sorbonne Univ. 17 / 105



Convex ordering: definitions and fist (static) examples Convexity (without order. . . )

Monotone convexity ?

If f is smooth then

∂xE f (X x
T

) = E
[
f ′(X x

T
) e

∫ T
0 b′x (s,X x

s )dsY (x)
T︸ ︷︷ ︸

“new” tangent flow

]
= EQ

[
f ′(X x

T
)e

∫ T
0 b′x (s,X x

s )ds
]

with

X x
t = x +

∫ t

0

(
b + σσ′x

)
(s,X x

s )ds +

∫ t

0
σ(s,X x

s )dWs .

If f is convex non-decreasing and b(t, ·) is convex in x then f ′ is
non-negative and non-decreasing and b′x(t, cdot) is non-decreasing.
Hence

∂xE f (X x
T

) is non-negative non-decreasing

i.e. x 7→ E f (X x
T

) is is convex non-decreasing.
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Aims and methods

1 Unify and generalize existing results with of focus on both functional
aspects of functional convex ordering.

with a focus on both functional aspects of functional convex ordering.
As a by-product establish the convexity of x 7→ E f (X x

T ) and/or
x 7→ EF (xx).

2 Constraint: provide a constructive method of proof.

based on time discretization of continuous time martingale dynamics
(risky assets in Finance) .
using numerical schemes that preserve the functional convex order
satisfied by the process under consideration. . .
to avoid arbitrages.

3 Apply the paradigm to various frameworks:
American style options,
jump diffusions,
stochastic integrals,
McKean-Vlasov diffusions,
Volterra equations,
etc?
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Example III: risk measure

Let X ∈ L1P be representative of a loss (with no atom for convenience) with
c.d.f F

X
.

Let α∈ (0, 1], α ' 1 be a risk level. Then

VaRα(X ) := (F
X

)−1(α) and CVaRα(X ) := E
(
X |X ≥ Varα(X )

)
Rockafeller-Uryasev’s representation of these two risk measures

Lα,X (ξ) = ξ +
1

1− α
E (X − ξ)+

satisfies

Varα(X ) = argminRLα,X and CVaRα(X ) = min
R

Lα,X .

As a consequence
X �icv Y =⇒ Lα,X ≤ Lα,Y

so that
CVaRα(X ) ≤ CVaRα(Y ).

WARNING! Not true for the value-at-risk.
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Characterization of convex orderings

Characterization of convex ordering

Proposition

(a) Let U, V ∈ L1
Rd (P). There is equivalence between

U �cvx V

and
∀ f : Rd → R convex and Lipschitz continuous E f (U) ≤ E f (V )

(b) Similar equivalence for ≤icv and ≤dcv (when d = q = 1).

The proof relies on the following lemma based on inf-convolution.

Lemma

Any convex function f : Rd → R satisfies

f = lim
n

↑fn, fn convex and Lipschitz continuous, n ≥ 1.

The functions fn have the same monotonicity as f , if any.

G. Pagès (LPSM) Functional Convex Ordering of Processes LPSM-Sorbonne Univ. 21 / 105



Characterization of convex orderings

Proof (lemma)
We introduce the functions fn defined through inf-convolution on Rd by

fn(x) := inf
y∈Rd

(
f (y) + n|x − y |

)
, n ≥ 1.

One has by construction

∀ n ≥ 1, fn ≤ fn+1 ≤ f .

fn ↑ f in a stationary way: let denote by ∇s f (x) any subgradient of f at x .

∀ y ∈ Rd , f (y) + n|y − x | ≥ f (x) + 〈∇s f (x) | y − x〉+ n|y − x | by convexity of f

≥ f (x) + (n − |∇s f (x)|)|y − x |
≥ f (x)

Hence, ∀ n ≥ |∇s f (x)|, fn(x) ≥ f (x) so that fn(x) = f (x).

fn is convex since, for x , x ′∈ Rd , λ∈ [0, 1],

fn(λx + (1− λ)x ′) = inf
y ,y ′

f (λy + (1− λ)y ′)) + n|λ(x − y) + (1− λ)(x ′ − y ′)|

≤ λ inf
y

(
f (y) + n|x − y |

)
+ (1− λ) inf

y ′

(
f (y ′) + n|x ′ − y ′|

)
= λfn(x) + (1− λ)fn(x ′).
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Characterization of convex orderings

Proof (⇐ of proposition)

fn are n-Lipschitz continuous since

|fn(x)− fn(x ′)| ≤ sup
y∈Rd

∣∣n|x − y | − n|x ′ − y |
∣∣ ≤ n|x − x ′|.

fn(x) = inf
y

(
f (x + y) + n|y |

)
has the same monotonicity as f . . . if any. �

Proof of the proposition.

Assume f convex, then for every n ≥ 1, E fn(U) ≤ E fn(V ).

The functions f −n , n ≥ |∇s f (0)|, are dominated since

∀ x , y ∈ Rd , fn(x) ≥ f (0) + 〈∇s f (0) | y〉+ n|y − x |.
≥ f (0) + |y |(n − |∇s f (0)|)− n|x | ≥ f (0)− n|x |.

As U, V ∈ L1(P), one has by the monotone convergence theorem

−∞ < E f (U) ≤ E f (V ) ≤ +∞.
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Functional convex ordering

Functional convex ordering: Definition

Assume C
T

= C([0,T ],Rd) is equipped with sup-norm ‖f ‖sup = sup
u∈[0,T ]

|f (u)|.

Definition

Let X ,Y : (Ω,F ,P)→ C([0,T ],Rd) be two integrable continuous processes such
that E[‖X‖sup + ‖Y ‖sup] < +∞.

(a) Convex ordering. We say that X is dominated by Y for the convex ordering
– denoted by X �cvx Y – if, for every l.s.c. (for the ‖ · ‖sup-norm topology)
convex functional F : C([0,T ],Rd)→ R,

EF (X ) ≤ EF (Y ). (2)

(b) Monotone convex ordering (d = 1). We say that X is dominated by Y for the
increasing/decreasing convex ordering if (2) holds for every
non-increasing/non-decreasing for the pointwise partial order on C l.s.c. convex
functional F : C([0,T ],R)→ R. These orderings are denoted by

X �icv Y and X �dcv Y respectively.
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Functional convex ordering

Characterization of functional convex ordering

Do we have the same characterization for Lipschitz functionals ? Yesss!

Proposition

Let X , Y be two C([0,T ],Rd)-valued r.v. (i.e. pathwise continuous stochastic
processes) such that E[‖X‖sup + ‖Y ‖sup] < +∞.

(a) Convex order. Both statements are equivalent:

X �cvx Y

and

∀F ∈ C([0,T ],Rd)→ R, ‖ · ‖∞-Lipschitz continuous, EF (X ) ≤ EF (Y ). (3)

(b) Pointwise monotonic convex ordering (d = 1). Similar equivalence for
X �icv Y and X �dcv Y with respect to pointwise non-decreasing (resp.
non-increasing) Lipschitz convex functionals F : C([0,T ],Rd)→ R.

The key is the following miracle-lemma!
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Functional convex ordering

Miracle lemma

Lemma (Quasi-subgradient)

(a) Let (E , ‖ · ‖) be a normed vector space and let F : E → R be an l.s.c. convex
functional (for the norm topology).

For every x ∈ E and every a∈ (−∞,F (x)); there exists G = Gx,a∈ E ′ and
g = gx,a∈ R such that

(i) ∀ u∈ E , G (u) + g ≤ F (u),

(ii) G (x) + g = a.

aSee Lemma 7.5 in Aliprantis, Charalambos D. and Border, Kim C., Infinite
dimensional Analysis, Springer, 2006.

The linear forms Gx,a, −∞ < a < F (x) play the role of the sub gradient and
the characterization in Rd can be extended to this framework with
E = C([0,T ],Rd).

One shows likewise that EF (X )∈ (−∞,+∞] and the characterization by
Lipschitz continuous functionals.

G. Pagès (LPSM) Functional Convex Ordering of Processes LPSM-Sorbonne Univ. 26 / 105



Functional convex ordering

Paradigm of convex ordering by Wasserstein approximation

Let (E , | · |
E
) be a Banach space and

P1(E ) =
{
µ distribution on

(
E ,Bor(E )

)
:

∫
E

|ξ|Eµ(dξ) < +∞
}

be the convex set of integrable probability measures equipped with the
(metric) topology of W1 the Wasserstein/Monge-Kantorovich distance.

W1(µ, ν) = inf
{ ∫
|x − y|m(dx, dy), m(dx, E) = µ, m(E , dy) = ν

}
= sup

{ ∫
fdµ−

∫
fdν, [f ]Lip ≤ 1

}
.

Let X and Y be two E -valued random variables and let (Xn)n≥1 and
(Yn)n≥1 two sequences of E -valued random variables such that

(i) ∀ n ≥ 1, Xn �cvx Yn

(ii) W1([Xn], [X ]) +W1([Yn], [Y ])→ 0 as n→ +∞

where [X ]∈ P1(E ) denotes the distribution of X . Then

X �cvx Y .
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Functional convex ordering

Proof of the paradigm

Let F : E → R be a Lipschitz continuous function. Assumption (i)
implies that

EF (Xn) ≤ EF (Yn), n ≥ 1.

Then, by (ii) and the Monge-Kantorovich characterization of
W1-distance∣∣EF (Xn)− EF (X )

∣∣ ≤ [F ]LipW1

(
[Xn], [X ])→ 0 as n→ +∞,

Idem for Yn and Y .

Letting n→ +∞ in the first inequality yields the conclusion. �

B Application to E = C([0,T ],Rd), ‖ · ‖sup).

B Adaptation to partially-ordered Banach space is straightforward.

B Other extensions e.g. to metric vector spaces (think to Skorokhod
topology on D([0,T ],Rd).)
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Martingale (and scaled) Brownian diffusions

Martingale (and scaled) Brownian diffusions

If we want to compare on (l.s.c.) convex functionals
F : C([0,T ],Rd)→ R,

EF (X ) ? EF (Y )

where

dXt = σ(t,Xt)dWt , X0 ⊥⊥W versus dYt = θ(t,Yt)dWt , Y0 ⊥⊥W , X0 �cvx Y0?

in a higher dimensional setting:

– W q-dimensional B.M.,

– σ(t, ·) : Rd →Md ,q(R)

we need:

a pre-order on matrices,
the resulting notion of convexity for matrix-valued vector fields.
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Martingale (and scaled) Brownian diffusions

Martingale (and scaled) Brownian diffusions

Pre-order � on Md,q(R): let A, B∈Md,q(R).

A � B if BB∗ − AA∗∈ S+(d ,R).

[If d = q = 1, a � b iff |a| ≤ |b|]

�-Convexity: σ : Rd → Md,q is �-convex if

∀ x , y ∈ Rd , λ∈ [0, 1], there exists Oλ,x , Oλ,y ∈ O(q,R) such that

σ
(
λx + (1− λ)y) � λσ(x)Oλ,x + (1− λ)σ(y)Oλ,y

i.e.

σσ∗
(
λx + (1−λ)y) ≤

(
λσ(x)Oλ,x + (1−λ)σ(y)Oλ,y

)(
λσ(x)Oλ,x + (1−λ)σ(y)Oλ,y

)∗
d = q = 1 with Oλ,x = sign

(
σ(x)

)
this simply reads

|σ|convex .

=⇒ WARNING! Then, f d = q = 1, σ �-convex means |σ| convex !!
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Martingale (and scaled) Brownian diffusions

Examples

Let λk : R→ R, k = 1 : q be Lipschitz functions such that |λk | are
all convex. Set

σ(x) := ADiag(λ1(x), . . . , λq(x))O, A∈Md ,q(R), O∈ O(q,R)

then σ is �-convex.

When q = d , σ �-convex is equivalent to

σσ∗(αx + (1− α)y) ≤
(
α
√
σσ∗(x) + (1− α)

√
σσ∗(y)

)(
α
√
σσ∗(x) + (1− α)

√
σσ∗(y)

)∗
.
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Martingale (and scaled) Brownian diffusions

Theorem (Strong martingale diffusion, P. 2016, Fadili-P. 2017, Jourdain-P. 2021)

Letσ, θ∈ Lip
(
[0,T ]× Rd ,Md,q

)
, W q-S.B.M.. Let X (σ) and X (θ) be the unique

strong solutions to

dX
(σ)
t = σ(t,X

(σ)
t )dW

(σ)
t , X

(σ)
0 ∈ L1

dX
(θ)
t = θ(t,X

(θ)
t )dW

(θ)
t , X

(θ)
0 ∈ L1, (W

(·)
t )t∈[0,T ] standard B.M.

(a) If X
(σ)
0 �cvx X

(θ)
0 and

(i)σ σ(t, .) : Rd →Md,q is �-convex for every t∈ [0,T ],
or
(i)θ θ(t, .) : Rd →Md,q is �-convex for every t∈ [0,T ],
and
(ii) σ(t, ·) � θ(t, ·) for every t∈ [0,T ],

then:

– for every l.s.c. convex F : C([0,T ],Rd)→ R, EF (X (σ)) ≤ EF (X (θ))

– if (i)σ holds true, then one also have

x 7→ EF (X (σ),x) is convex.
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Martingale (and scaled) Brownian diffusions

Theorem (Weak Martingale diffusions, P. 2016, Fadili-P. 2017)

Letσ, θ∈ Clinx ,unif
(
[0,T ]× Rd ,Md,q

)
, W (σ), W (θ) q-S.B.M.. Let X (σ) and X (θ)

be the unique weak solutions to

dX
(σ)
t = σ(t,X

(σ)
t )dW t , X

(σ)
0 ∈ L1+η

dX
(θ)
t = θ(t,X

(θ)
t )dW t , X

(θ)
0 ∈ L1+η, (W

(·)
t )t∈[0,T ] standard B.M.

(a) If X
(σ)
0 �cvx X

(θ)
0 and

(i)σ σ(t, .) : Rd →Md,q is �-convex for every t∈ [0,T ],
or
(i)θ θ(t, .) : Rd →Md,q is �-convex for every t∈ [0,T ],
and
(ii) σ(t, ·) � θ(t, ·) for every t∈ [0,T ],

then:

– for every convex F : C([0,T ],Rd)→ R, EF (X (σ)) ≤ EF (X (θ))

– if (i)σ holds true and F has ‖ . ‖sup-polynomial growth

x 7→ EF (X (σ),x) is convex.
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Martingale (and scaled) Brownian diffusions

The 1D case (martingale case)

Theorem (P. 2016)

Letσ, θ∈ Clinx ,unif ([0,T ]× R,R). Let X (σ) and X (θ) be the unique weak solutions
to

dX
(σ)
t = σ(t,X

(σ)
t )dW

(σ)
t , X

(σ)
0 ∈ L1

dX
(θ)
t = θ(t,X

(θ)
t )dW

(θ)
t , X

(θ)
0 ∈ L1, (W

(·)
t )t∈[0,T ] standard B.M.

(a) If X
(σ)
0 �cvx X

(θ)
0 and

(i)σ |σ(t, .)| : R→ R+ is convex for every t∈ [0,T ],
or
(i)θ |θ(t, .)| : R→ R+ is convex for every t∈ [0,T ],
and
(ii) |σ(t, ·)| ≤ |θ(t, ·)| for every t∈ [0,T ]

then:

– for every l.s.c. convex F : C([0,T ],Rd)→ R, EF (X (σ)) ≤ EF (X (θ))

– if (i)σ holds true and F has ‖ . ‖sup-polynomial growth

x 7→ EF (X (σ),x) is convex.
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Martingale (and scaled) Brownian diffusions

Scaled/drifted martingale diffusions (extension to)

The former theorems still hold true for

X
(σ)
t = X

(σ)
0 +

∫ t

0
α(t)

(
X

(σ)
t + β(t)

)
dt +

∫ t

0
σ(t,X

(σ)
t )dW

(σ)
t ,

X
(θ)
t = X

(θ)
0 +

∫ t

0
α(t)

(
X

(θ)
t + β(t)

)
dt +

∫ t

0
θ(t,X

(θ)
t )dW

(θ)
t ,

where α(t)∈Md ,d and β(t)∈ Rd are Hölder continuous.

Change of variable:

X̃
(σ)
t = e−

∫ t
0 α(s)ds

(
X

(σ)
t + β(t)

)
, etc.

Finance: spot interest rate α(t) = r(t)1 and β(t) = 0 since typical
(risk-neutral) dynamics of traded assets read

dSt = r(t)Stdt + Stσ(St , )dWt .
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Martingale (and scaled) Brownian diffusions

Functional Hajek’s Theorem on Monotone convex ordering
(d = q = 1)Let

X
(σ)
t = X

(σ)
0 +

∫ t

0

b1

(
t,X

(σ)
t )dt +

∫ t

0

σ(t,X
(σ)
t )dW

(σ)
t ,

X
(θ)
t = X

(θ)
0 +

∫ t

0

b2(t,X
(θ)
t )dt +

∫ t

0

θ(t,X
(θ)
t )dW

(θ)
t .

where all coefficients bi
(
t, ·), σ(t, ·), θ(t, ·) are Lipchitz, uniformly in t ∈ [0,T ].

Theorem (Strong solution version)

Assume furthermore

(∗)1 ≡ b1(t, ·) and |σ(t, ·)| convex ∀ t∈ [0,T ])

or

(∗)2 ≡ b2(t, ·) and |θ(t, ·)| convex ∀ t∈ [0,T ],

and b1(t, ·) ≤ b2(t, ·), |σ(t, ·)| ≤ |θ(t, ·)| and X
(σ)
0 ≤icv X

(θ)
0
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Martingale (and scaled) Brownian diffusions

Theorem (continued)

Then:

– for every l.s.c. convex, pointwise non-decreasing F : C([0,T ],R)→ R,

EF (X (σ)) ≤ EF (X (θ)).

– if (i)σ holds true

x 7→ EF (X (σ),x) is non-decreasing and convex.

Hajek’s original theorem dealt with marginal convex ordering.

Assume (∗)1. One defines for f non-decreasing and convex and
0 < h < 1/[b1]Lip. Then

Qγf (x , u) = E f
(
x + hb1(x) +

√
hσ(x)Z

)
is convex and nondecreasing in both x and u.

Mimick the former proof.
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Martingale (and scaled) Brownian diffusions

Strategy (constructive)

Time discretization (preferably) accessible to simulation: typically the
Euler scheme.

Propagate convexity (marginal or pathwise)

Propagate comparison (marginal or pathwise)

Transfer by Wasserstein distance or by functional limit theorems “à la
Jacod-Shiryaev”.
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Martingale (and scaled) Brownian diffusions Discrete time: ARCH model. . .

Step 1: discrete time ARCH models

ARCH dynamics: Let (Zk)1≤k≤n be a sequence of independent, radial
r.v. on (Ω,A,P). Two ARCH models: X0,Y0∈ L1(P),

Xk+1 = Xk + σk(Xk)Zk+1,

Yk+1 = Yk + θk(Yk)Zk+1, k = 0 : n − 1,

where σk , θk : R→ R, k = 0 : n − 1 have linear growth.

Proposition (Propagation result)

If σk , k = 0 = n − 1 are �-convex with linear growth,

X0 = x and ∀ k∈ {0, . . . , n − 1}, σk � θk ,

then, for every convex function F : (Rd)n+1 → R convex with linear
growth

x 7−→ EF (x ,X x
1 . . . ,X

x
n ) is convex.
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Martingale (and scaled) Brownian diffusions Discrete time: ARCH model. . .

Partial proof (marginal) with radial white noise

Zk ∼ N (0, Iq), 1 ≤ k ≤ n or, more generally, Zk ∼ OZk , ∀O∈ O(q,R).

Let f : Rd → R be a convex function (with linear growth). Let

Pσk f (x) := Ef (x + σk−1(x)Zk) =
[
E f (x + AZk)

]
|A=σk−1(x)

.

Set A∈Md,q 7→ Qk f (x ,A) := E f (x + AZk), k = 1 : n, is right
O(q,R)-invariant, convex and �-non-decreasing in A by the starting
example.

Qk f (x ,AO) = E f (x + AOZk) = E f (x + AZk),
Qk f (λ(x ,A) + (1− λ)(y ,B)) = E f

(
λ(x + AZk) + (1− λ)(y + BZk)

)
≤ λQk f (x ,A) + (1− λ)Qk f (y ,B) by convexity of f .

If A�B, then AZk �cvx BZk and f (x + ·) is convex.

Hence if x , y ∈ Rd and λ∈ [0, 1]

Pσk f
(
λx + (1− λ)y

)
= Qk f

(
λx + (1− λ)y , σk−1(λx + (1− λ)y)

)
≤ Qk f

(
λx + (1− λ)y , λσk−1(x) + (1− λ)σk−1(y)

)
≤ λQk f

(
x , σk−1(x)

)
+ (1− λ)Qk f

(
y , σk−1(y)

)
= λPσk f (x) + (1− λ)Pσk f (y).
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Martingale (and scaled) Brownian diffusions Discrete time: ARCH model. . .

Hence the transition kernels Pσk propagate convexity:

f convex =⇒ Pσk (f ) convex.

by a either forward or backward induction on k , one finally gets.

x 7−→ E f (X x
n ) = Pσ1:nf (x) := Pσ1 ◦ · · ·Pσn f (x) is convex.
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Martingale (and scaled) Brownian diffusions Discrete time: ARCH model. . .

Proposition (Discrete time convex ordering result)

If all σk , k = 0 = n − 1 or all θk , k = 0 : n − 1 are �-convex with linear
growth,

X0 �cvx Y0 and ∀ k∈ {0, . . . , n − 1}, σk � θk ,

then
(X0, . . . ,Xn) �cvx (Y0, . . . ,Yn).
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Martingale (and scaled) Brownian diffusions Discrete time: ARCH model. . .

Partial proof (marginal) with radial white noise

Assume e.g. that all σk are convex.

Backward induction on k .

For k = n. Let f : Rd → R be a convex function with linear growth.

Pσn f (x) = Qnf
(
x , σn−1(x)

)
≤ Qnf

(
x , θn−1(x)

)
= Pθn f (x)

by non-decreasing �-monotony of Qn.

Assume Pσk+1:nf︸ ︷︷ ︸
convex

≤ Pθk+1:nf . Then

∀ x ∈ Rd , A ∈Md,q 7−→ Qk

(
Pσk+1:nf

)
(x ,A) is �-non-decreasing

so that Pσk:nf (x) = Qk

(
Pσk+1:nf

)(
x , σk−1(x)

) ↓
≤Qk

(
Pσk+1:nf

)(
x , θk−1(x)

)
≤ Qk

(
Pθk+1:nf

)(
x , θk−1(x)

)
= Px,θ

k:n f (x).

Hence, in particular for f : Rd → R Lipschitz and convex

E f (Xσ
n ) = EPσ1:nf (X0) ≤ EPσ1:nf (Y0) ≤ EPθ1:nf (Y0) = E f (X θ

n ). �
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Martingale (and scaled) Brownian diffusions Discrete time: ARCH model. . .

Global convex ordering

Same strategy

But entirely backward.

q = d = 1 for simplicity.

B Dynamic programming: We introduce two martingales

Mk = E
(
F (X0:n) | FZ

k

)
and Nk = E

(
F (Y0:n) | FZ

k

)
, k = 0 : n

and again the sequence of operators

Qk(f )(x , u) = E f (x + uZk), u∈ R, k = 1 : n.
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Martingale (and scaled) Brownian diffusions Discrete time: ARCH model. . .

Warning (for the mini-course)

For convenience we will make the proof in a one-dimensional setting.

Then a slightly revisited version of Jensen’s inequality simplifies the
communication.

It follows (6)

6
G. Pagès, Convex order for path-dependent derivatives: a dynamic programing approach, Séminaire de Probabilités,

XLVIII, LNM 2168, Springer, Berlin, 33-96, 2016.
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Martingale (and scaled) Brownian diffusions Discrete time: ARCH model. . .

Jensen’s Inequality (a bit) revisited = Key Lemma

Lemma (Jensen’s Inequality revisited)

Let Z : (Ω,A,P)→ R be an centered integrable r.v.: Z ∈ L1, EZ = 0.

B Let f : R→ R, convex, such that

∀ x , u∈ R, Qf (x , u) := E f
(
x + u Z

)
is well-defined in R.

Then Qf (x + ·) is convex, attains its minimum at 0 so that
Qf (x + .) is non-decreasing on R+, non-increasing on R−.

B If Z ∼ −Z (symmetric distribution), then Qf (x + ·) is an even function
and

∀ x ∈ R, ∀ a∈ R+, sup
|u|≤a

Qf (x , u) = Qf (x , a).

Proof. The function Qf is clearly convex and by Jensen’s Inequality

Qf (x , u) ≥ f
(
E(x + u Z )

)
= f
(
x + u EZ

)
= f (x) = Qf (x , 0).

Hence Q f is convex, Qf (x + ·) attains its minimum at u = 0 hence is
non-increasing on R− and non-decreasing on R+. �
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Martingale (and scaled) Brownian diffusions Discrete time: ARCH model. . .

A (first) backward induction and the definition of the kernels Qk imply

Mk = Φk(X0:k) and Nk = Ψk(Y0:k), k = 0, . . . , n.

where Φk ,Ψk : Rk+1 → R, k = 0, . . . , n are recursively defined by

Φn : = F ,

Φk(x0:k) = [EΦk+1(x0:k , xk + uZk+1)]|u=σk (xk )

:=
(
Qk+1Φk+1(x0:k , ·)

)
(xk , σk(xk)), k = 0 : n − 1.

Likewise

Ψn := F , Ψk(y0:k) :=
(
Qk+1Ψk+1(y0:k , ·)

)
(yk , θk(yk)), k = 0 : n−1.
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Martingale (and scaled) Brownian diffusions Discrete time: ARCH model. . .

B Assume now that all functions σk are ≥ 0 and convex:

Lemma (
G : Rk+2 → R convex

)
⇓(

(x0:k , u) 7→ EG (x0:k , xk + uZk+1) = Qk+1G (x0:k , ·)(xk , u) is convex. . .
)

so that, by the revisited Jensen’s Lemma, one has

(i) u 7→ (Qk+1G (x0:k , , ·)(xk , u) is ↓ on (−∞, 0) and ↑ on (0,+∞).

&

(ii) Propagation of the convexity in x0:k .

(Second) backward induction =⇒ all functions Φk are convex.
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Martingale (and scaled) Brownian diffusions Discrete time: ARCH model. . .
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Martingale (and scaled) Brownian diffusions Discrete time: ARCH model. . .

(Third) backward induction =⇒ Φk ≤ Ψk , k = 0 : n − 1.

First note that Φn = Ψn = F . If Φk+1 ≤ Ψk+1, then

Φk(x0:k) =
(
Qk+1Φk+1(x0,k , xk + .)

)
(σk(xk))

≤
(
Qk+1Φk+1(x0:k , xk + .)

)
(θk(xk))

≤
(
Qk+1Ψk+1(x0:k , xk + .)

)
(θk(xk)) = Ψk(x0:k).

When k = 0

Φ0 convex and Φ0(x) ≤ Ψ0(x) ⇐⇒ EF (X0:n) ≤ EF (Y0:n).

so that

EF (X0:n) = EΦ0(X0) ≤ EΦ0(Y0) ≤ EΨ0(Y0) = EF (Y0:n).
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Martingale (and scaled) Brownian diffusions Discrete time: ARCH model. . .

End of discrete time setting

B If all θk ≥ 0 and convex:

This time, one shows that:

the functions Ψk are convex, k = 0, . . . , n

Φn ≤ Ψn =⇒ Φk ≤ Ψk , k = 0, . . . , n − 1.

Remark. The discrete time setting has its own interest.

G. Pagès (LPSM) Functional Convex Ordering of Processes LPSM-Sorbonne Univ. 50 / 105



Martingale (and scaled) Brownian diffusions Functional limit theorem: . . . to continuous time

Step 2 of the proof: Back to continuous time

B Euler scheme(s): Discrete time Euler scheme with step T
n , starting at x

is an ARCH model. For X (σ): for k = 0, . . . , n − 1,

X̄
(σ),n
tnk+1

= X̄
(σ),n
tnk

+ σ(tnk , X̄
(σ),n
tnk

)
(
W tnk+1

−W tnk

)
, X̄

(σ),n
0 = x

Set
Zk = W tnk

−W tnk−1
, k = 1, . . . , n, i .i .d .

⇓

discrete time setting applies

Remark. Linear growth of σ and θ, implies

∀ p > 0, sup
n≥1

∥∥∥ sup
t∈[0,T ]

|X̄ (σ),n
t |

∥∥∥
p

+ sup
n≥1

∥∥∥ sup
t∈[0,T ]

|X̄ (θ),n
t |

∥∥∥
p
≤ C (1 + ‖X0‖p).
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Martingale (and scaled) Brownian diffusions Functional limit theorem: . . . to continuous time

From discrete to continuous time

B Interpolation (n ≥ 1)

Piecewise affine interpolator defined by

∀ x0:n∈ Rn+1, ∀ k = 0, . . . , n − 1, ∀ t∈ [tnk , t
n
k+1], .

in(x0:n)(t) =
n

T

(
(tnk+1 − t)xk + (t − tnk )xk+1

)
X̃ (σ),n := in

(
(X̄

(σ),n
tnk

)k=0:n

)
= piecewise affine Euler scheme.

Figure: Interpolator
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Martingale (and scaled) Brownian diffusions Functional limit theorem: . . . to continuous time

“Strong” solution setting

B Let F : C([0,T ],R)→ R be a Lipschitz convex functional.

∀ n ≥ 1, Fn : Rn+1 3 x0:n 7−→ Fn(x0:n) := F
(
in(x0:n)

)
.

Step 1 (Discrete time): F
(
X̃ (σ),n

)
= Fn

(
(X̄

(σ),n
tnk

)k=0:n

)
and

F convex =⇒ Fn convex, n ≥ 1.

Discrete time result implies, since σ(tnk , .) � θ(tnk , .),

EF
(
X̃ (σ),n

)
= EFn

(
(X̄

(σ),n
tnk

)k=0:n

)
≤EFn

(
(X̄

(θ),n
tnk

)k=0:n

)
= EF

(
X̃ (θ),n

)
.

Step 2 (Transfer in the “strong” Lipschitz setting): We know that

W1

(
X̃ (σ),n,X (σ)

)
≤
∥∥∥∥∥X̃ (σ),n − X (σ)

∥∥
sup

∥∥∥
1
→ 0 as n→ +∞

Hence if F : C([0,T ],Rd)→ R is ‖ · ‖sup-Lipschitz∣∣∣EF
(
X̃ (σ),n

)
− EFX

(σ))∣∣∣ ≤ [F ]LipW1

(
X̃ (σ),n,X (σ)

)
→ 0 as n→ +∞

Idem for the θ-diffusion, so that

EF (X (σ)) ≤ EF (X (θ)). �

G. Pagès (LPSM) Functional Convex Ordering of Processes LPSM-Sorbonne Univ. 53 / 105



Martingale (and scaled) Brownian diffusions Functional limit theorem: . . . to continuous time

“Weak” diffusion setting

Step 2bis (Transfer in the “weak” linear growth continuous setting):
See e.g. [Jacod-Shiryaev’s book 2nd edition, Theorem 3.39,
p.551] (7).

X̃ (σ),n L(‖.‖sup)−→ X (σ) and X̃ (σ),n L(‖.‖sup)−→ X (θ) as n→ +∞.

We know that, as σ(t, ·) and θ(t, ·) have linear growth∥∥∥ sup
t∈[0,T ]

|X̃ (σ),n|
∥∥∥

1+η
+
∥∥∥ sup
t∈[0,T ]

|X̃ (θ),n|
∥∥∥

1+η
≤ Cη,T (1 + ‖X0‖1+η)

Hence, if F is ‖ · ‖sup-Lipschitz, then F
(
X̃ (σ),n

)
, n ≥ 1, is uniformly

integrable so that

EF (X (σ)) = lim
n

EF
(
X̃ (σ),n

)
(idem for X (θ)).

Hence EF (X (σ)) ≤ EF (X (θ)). �
7
Limit theorems for stochastic processes, Springer, 2010.
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Martingale (and scaled) Brownian diffusions Functional limit theorem: . . . to continuous time

Connection between convexity and convex ordering

Convexity of x 7→ EF (X x) can be obtained as a by-product of the
proof by “transferring” convexity property from discrete to continuous
time. . .
but also, a posteriori: in this diffusion framework

Convex ordering =⇒ Convexity.

Let x , y ∈ R, λ∈ [0, 1]. One has

δλx+(1−λ)y �cvx λδx + (1− λ)δy .

Assume σ = θ. Let

X
(σ)
0 = λx + (1− λ)y and X̃

(σ)
0 = εx + (1− ε)y , ε ∼ Ber({0, 1}, λ) ⊥⊥W .

Then X̃
(σ)
0 ∼ λδx + (1− λ)δy and X̃ (σ) = εX x + (1− ε)X y and

E ε = λ so that, for every l.s.c. functional F : C([0,T ],Rd)→ R,

EF (Xλx+(1−λ)y ) = EF (X̃ (σ)) ≤ λEF (X x) + (1− λ)EF (X y ).

Same result for monotone convex orders (see later on).
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Martingale (and scaled) Brownian diffusions Functional limit theorem: . . . to continuous time

The Euler scheme provides a simulable approximation

which preserves convex order.

Question: Can we get rid of the convexity of σ (at least in one dimension)?
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Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. ’22)

Smooth σ in 1D (d = q = 1)

Assume σ : R→ R+ C 2, Lipschitz (‖σ′‖∞ < +∞).

True Euler operator, Z ∼ N (0, 1):

Pf (x) = E f
(
x +
√
hσ(x)Z

)
.

Assume w.l.g. (see later on) f : Rd → R C 2 and convex, with bounded derivatives

(Pf )′′(x) = E
[
f ′′(x +

√
hσ(x)Z

)
(1 +

√
hσ′(x)Z)2]

+
√
hσ′′(x)E

[
f ′(x +

√
hσ(x)Z

)
Z
]

= E
[
f ′′(x +

√
hσ(x)Z

)
(1 +

√
hσ′(x)Z)2]

+ hσσ′′(x)E
[
f ′′(x +

√
hσ(x)Z)

]
Stein I.P.

= E
[
f ′′(x +

√
hσ(x)Z

) (
(1 +

√
hσ′(x)Z)2 + hσσ′′(x)

)︸ ︷︷ ︸
always ≥0 ∀ Z(ω)??

]
.

No ! But. . . If we truncate :Z  Zh = Z1{|Z |≤Ah}, Pf  P̃hf , then. . .
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Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. ’22)

Then, the same Stein-I.P. transform yields

(P̃hf )′′(x)

= E
[
f ′′(x +

√
hσ(x)Z h

) (
(1 +

√
hσ′(x)Z h)2 + h

(
1− e−(A2

h−(Z h)2)+)
σσ′′(x)

)︸ ︷︷ ︸
always ≥0 ∀ Z h(ω)??

]
.

YES !! If Ah = A/
√
h with A < 1

‖σ′‖∞ for h = T
n small enough and

(S) sup
x∈R

σ(σ′′)−

|σ′|
(x) < +∞ (=⇒ Ok if σ convex!) (4)
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Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. ’22)

So we have proved: for every convex C 2-functionf with bounded
derivatives

x 7→ Phf (x) is convex.

f Lipschitz and convex can be approximated by convolution: let

fε(x) = E f (x + εζ), ζ ∼ N (0, 1).

fε is convex, ↓ f as ε ↓ 0 and

f ′ε (x) =
1

ε
E
[
(f (x+εζ)−f (x))ζ

]
and f ′′ε (x) =

1

ε2
E
[
(f (x+εζ)−f (x))(ζ2−1)

]
.

are bounded.

As |fε(x)| ≤ |f (x)|+ εE|ζ|,

P̃h =
↓

lim
ε→0

P̃fε so that P̃h(f ) is convex.

We still have that (x , u) 7→ Q̃f (x) = E f (x + uZ h) is convex and
non-decreasing in u on R+.
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Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. ’22)

Let consider the truncated Euler scheme X̃ h = X̃ (σ),h associated with
step h = T

n (and tnk = kT
n ), i.e.

X̃ h
tnk+1

= X̄ h
tnk

+ σ(tnk , X̃
h
tnk

)Zh
k+1, X̃ h

0 = x

with Zh
k+1 =

√
n

T

(
W tnk+1

−W tnk

)
1{|W tn

k+1
−W tn

k
|≤A}.

This scheme satisfies the convex propagation and ordering properties.

Does it converge strongly in Lp toward to the diffusion X (σ)? If “yes”
then we proved:

If σ(t, ·) satisfies (S) uniformly in t ∈ [0,T ] or θ(t, ·) satisfies (S)
uniformly in t ∈ [0,T ], if

0 ≤ σ ≤ θ and X
(σ)
0 �cvx X

(θ)
0 =⇒ ∀ t∈ [0,T ], X

(σ)
t �cvx X

(θ)
t

and, when σ(t, ·) satisfies (S) uniformly in t ∈ [0,T ],

x 7→ E f (X (σ)
T

) is convex.

Functional version in progress (with B. Jourdain).
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Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. ’22)

Proof of convergence of truncated Euler scheme

Let (X̃ h
tk ) be the truncated Euler scheme with step h = T

n i.e. implemented

with Z h
k := Zk1{|Zk |≤A/

√
h}, (Zk)k=1:n i.i.d. N (0, 1). Then, by independence,

P(X̃ h 6= X̄ n) = P
(
∃ k∈ 1 : n : |Zk | ≥ A/

√
h
)

= 1− P
(
|Z | ≤ A/

√
h
)n

since Zk i.i.d.

= 1−
(
1− P(|Z | ≥ A/

√
h)
)n
.

Using P(|Z | ≥ x) ≤ e−
x2

2 , x > 0, (and h = T
n )

P(X̃ h 6= X̄ n) ≤ 1−
(
1− e−

An
2T

)n
≤ 1− 1 + ne−

An
2T = ne−

An
2T → 0 as n→ +∞

by convexity of u 7→ un.

As a consequence (. . . ), if X0∈ Lp(P),∥∥∥ max
k=0:n

∣∣X̃ h
tk − X̄ n

tk

∥∥∥
p
→ 0 as n→ +∞. �
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Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. ’22)

Back to non-decreasing convex order (d = q = 1)

Assume f : R→ R si smooth convex and non-decreasing.

If
Pf (x) = E f (x + hb(t, x) +

√
hσ(t, x)Z ), Z ∼ N (0, 1)

with b(t, ·) and σ(t, ·) are uniformly Lipschitz then

(Pf )′(x) = E
[
f ′(x + hb(t, x) +

√
hσ(t, x)Z )︸ ︷︷ ︸

≥0

(1 + hb′(t, x) +
√
hσ′x(t, x)Z )

]
Note that

1 + hb′(t, x) +
√
hσ′x(t, x)Z ≥ 1− h‖b′x‖sup −

√
h‖σ′x‖sup|Z |.

Hence, if 0 < h < (2‖b′x‖sup‖)−1 then

1 + hb′(t, x) +
√
hσ′x(t, x)Z ≥ 0 on

{
|Z | ≤ 1

2
√
h‖σ′x‖sup

}
Etc, like before (the two ideas can be combined. . . ).
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Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. ’22)

A first conclusion and provisional remarks on 1D setting

Relaxing convexity in x of the diffusion coefficient σ(t, x) can be seen as a
first (partial) extension of Hajek’s theorem (for diffusions with no drift).

This result is deeply one dimensional and cannot be extended to higher
dimension at a reasonable level of generality (to our best knowledge).

The second results for marginal increasing convex ordering for diffusions
having convex drifts “bσ ≤ bθ”’ is essentially Hajek’s.

A combination of the two truncations is possible (in progress with B.
Jourdain) and would be a first strict improvement of Hajek’s theorem. A
second improvement is to find a functional version (ongoing work).

Applications to local volatility models (like CEV) extending results by El
Karoui-Jeanblanc-Shreve to continuous time path-dependent options.

Extension to directionally convex functionals F (see also Rüshendorf &
Bergenthum (AAP, 2006) though . . . “restrictions” are necessary) that is (in
discrete time) functionals f : Rd → R such that ∂2xixj f ≥ 0 for every i 6= j
((in progress with B. Jourdain).
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Martingale (and scaled) Brownian diffusions Back to 1D (Jourdain-P. ’22)

Extensions

This provides as systematic approach which successfully works with

Jump diffusion models,

Path-dependent American style options,

BSDE (without “Z” in the driver),

. . .
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Jump diffusions

The case of jump diffusions

B Lévy process: Let Z = (Zt)t∈[0,T ] be a Lévy process with Lévy measure
ν satisfying∫

0<|z|≤1
|z |2ν(dz) < +∞ of course. . .∫

|z|≥1
|z |pν(dz) < +∞, p∈ [1,+∞) (hence Zt ∈ L1(P), t∈ [0,T ]).

EZ1 = 0.

Then
(Zt)t∈[0,T ] is an centered FZ -martingale.
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Jump diffusions

Theorem (P. 2016, d = q = 1, “weak version”, not yet updated d , q ≥ 1 but in
progress)

Let κi ∈ Clinx ,unif ([0,T ]× R), i = 1, 2, be continuous functions Let

X (κi ) = (X
(κi )
t )t∈[0,T ] be the diffusion processes, unique weak solutions to

dX
(κi )
t = κi (t,X

(κi )
t− )dZt , X

(κi )
0 ∈ Lp(P), i = 1, 2.

(a) Z1 centered: Assume κ = κ1 or κ2 satisfies: ∀ t∈ [0,T ], κ(t, .) convex and
that

0 ≤ κ1 ≤ κ2.

(b) Z1 radial: If Z1
L
= −Z1, |κ| is convex in x and κi satisfy

|κ1| ≤ |κ2|.

Let F : D([0,T ],R)→ R be a convex Skorokhod-continuous functional with
r -polynomial growth, r < p

∀α∈ D([0,T ],R), |F (α)| ≤ C (1 + ‖α‖rsup), 0 < r < p.

Then EF (X (κ1)) ≤ EF (X (κ2)).
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Jump diffusions

Key argument when d = q = 1

Discrete time approach is similar to Brownian diffusions

Transfer phase is based on the Skorokhod functional weak
convergence of the Euler scheme toward the martingale jump
diffusion.

Which in turn relies on functional weak convergence of stochastic
integrals (see e.g. [Mémin-Jakubowski-P., PTRF, 1989]).

A “strong” version with Lipschitz coefficients κi (uniformly in t)
should work, possible without Skorokhod topology.

Higher dimensions should work too if Z is radial (but not yet proved
to our best knowledge).
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Bermuda and American options Brownian diffusions

Discrete time optimal stopping (Bermuda options). . .

. . . of ARCH models in 1-dimension.

B Dynamics: Still. . . (Zk)1≤k≤n be a sequence of independent, (centered
and) symmetric r.v.

Xk+1 = Xk + σk(Xk)Zk+1, X0∈ L1(P)

Yk+1 = Yk + θk(Yk)Zk+1, 0 ≤ k ≤ n − 1, Y0∈ L1(P)

where σk , θk : R→ R, k = 0, . . . , n − 1 with (at most) linear growth.
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Bermuda and American options Brownian diffusions

Snell envelopes

B Let Fk : Rk+1 → R+, k = 0, . . . , n be a sequence of non-negative
convex (payoff) functions with r -polynomial growth for the sup norm.

B Let F = (Fk)0≤k≤n be a filtration such that Zk is Fk -adapted and Zk

is independent of Fk−1, k = 1, . . . n.

B Snell envelopes of the reward processes
(
Fk(X0:k)

)
0≤k≤n and(

Fk(Y0:k)
)

0≤k≤n

Uk = P-esssup
{
E
(
Fτ (X0:τ ) | Fk

)
, τ F-stopping time, τ ≥ k

}
and

Vk = P-esssup
{
E
(
Fτ (Y0:τ ) | Fk

)
, τ F-stopping time, τ ≥ k

}
.

B These are the lowest super-martingales that dominate the reward
processes.
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Bermuda and American options Brownian diffusions

Backward Dynamic programming Principle

Proposition (Backward Dynamic programming Principle (BDDP))

(a) The Snell envelope satisfies

Un = Fn(X0:n), Uk = max
(
Fk(X0,k),E (Uk+1 | Fk)

)
, k = 0 : n − 1.

(b) One has

Uk = uk(X0:k) P-a.s., k = 0, . . . , n − 1,

where the functions uk : Rk+1 → R+, k = 0 : n, satisfy the functional
BDDP

un = Fn, uk(x0:k) = max
(
Fk

(
x0:k),Qk+1uk+1(x0:k , xk + .)

)
(σk(xk))

))
k = 0, . . . , n − 1.
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Bermuda and American options Brownian diffusions

Propagation of the convexity: Note that (a, b) 7→ max(a, b) is
non-decreasing in a and b and “copy-paste” the proofs for a fixed functional
using the “revisited” Jensen’s Inequality.

Proposition

(a) Convex ordering. If, either (∗)σ |σk | is convex for every k = 0 : n − 1
or
(∗)θ |θk | is convex for every k = 0 : n − 1

and
|σk | ≤ |θk |, k = 0, . . . , n − 1

then,
uk(x0:k) ≤ vk(x0:k), k = 0, . . . , n.

(b) Convexity. If (∗)σ holds then

x 7−→ uk(x0:k) is a convex function on Rk+1.

In particular, if X0 �cvx Y0 then EU0 = E u0(X0) ≤ E u0(Y0)≤ E v0(Y0) = EV0.
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Bermuda and American options Brownian diffusions

. . .

B Idem for vk : Rk+1 → R in connection with the (P,F)-Snell envelope V .

B Note that uk+1 convex still implies

ξ 7−→
(
Qk+1uk+1(x0:k , ·)

)
(xk , ξ) is non-decreasing on R+.

B Comparison Principle (|σk | ≤ |θk |): Backward induction to prove
uk ≤ vk , k = 0 : n (obvious if k = n).

Assume uk+1 ≤ vk+1, k + 1 ≤ n. For every x0:k ∈ Rk+1

uk(x0:k) ≤ max
(
Fk
(
x0:k

)
,
(
Qk+1uk+1(x0:k , ·)

)
(xk , θk(xk))

)
≤ max

(
Fk
(
(x0:k

)
,
(
Qk+1vk+1(x0:k , ·)

)
(xk , θk(xk))

)
=vk(x0:k).

If k = 0, we get

EU0 = u0(x) ≤ v0(x) = EV0. �
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Bermuda and American options Brownian diffusions

Back to continuous time

B Snell envelopes of the Euler schemes of X and Y

U(n) = P-Snell
(
Fk(X̄

(σ),n
0:k )k=0:n

)
V (n) = P-Snell

(
Fk(Ȳ

(θ),n
0:k )k=0:n

)
.

B Convergence: In the case of Brownian diffusions, it is a classical result
(with convergence rates in fact, see e.g . (8) that∥∥ max

0≤k≤n
|U(n)

k − UX
tnk
|
∥∥
p
→ 0 and

∥∥ max
0≤k≤n

|V (n)
k − V Y

tnk
|
∥∥
p
→ 0 as n→ +∞

Etc.

B Conclusion: As usual. . .

Theorem (P. 2016)

Under partitioning or dominating assumptions on σ and θ, F (t, .) convex
on C([0,T ],R) and F continuous, etc, one has

u0(x) = EUX (σ),x

0 ≤ EV X (θ),x

0 = v0(x).
8

V. Bally-P. (’03), Error analysis of the quantization algorithm for obstacle problems, Stochastic Processes & Their
Applications, 106(1), 1-40, 2003
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Bermuda and American options Jump martingale diffusions

Jump martingale diffusions: what makes problem?

B Discrete time step: Identical.

B From discrete to continuous time: Still the Euler scheme. But we have
to make the Snell envelopes converge. . . How to proceed?

Filtration enlargement argument/trick

Let (Ft)t∈[0,T ] be a filtration and let Y be an (Ft)t∈[0,T ]-adapted càdlàg
process defined on a probability space (Ω,A,P) so that

∀ t∈ [0,T ], FY
t ⊂ Ft

We introduce the so-called H-assumption (on the filtration (Ft)t∈[0,T ]):

(H) ≡ ∀H∈ FY
T
, bounded, E

(
H | Ft

)
= E

(
H | FY

t

)
P-a.s.

Example: Ft = σ(FY
t ,Ξ), Ξ ⊥⊥ Y .
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Bermuda and American options Jump martingale diffusions

Theorem (Lamberton-P., 1990)

(a) B Let (X n)n≥1 be a sequence of quasi-left càdlàg processes defined on
a probability spaces (Ωn,Fn,Pn) of (D)-class and satisfying the Aldous
criterion. Let (τ∗n )n≥1 be a sequence of

(
FX n

,Pn)-optimal stopping times.
If (X n)n≥1 is uniformly integrable and satisfies

X n L(Skor)−→ X , P
X

= P probability measure on (D([0,T ],R),DT ).

B Non-degeneracy of (τ∗n )n≥1: every limiting value Q of L(X n, τ∗n ) on
D([0,T ],R)× [0,T ] satisfies the (H) property [. . . ], then

lim
n

EPn UX n

0 = EP U
X
0 .

B If the optimal stopping problem related to (X ,Q,Dθ) has a unique

solution in distribution, say µ∗τ∗ , not depending on Q, then τ∗n
[0,T ]−→ µ∗τ∗ .

a
Sur l’approximation des réduites, Annales IHP B, 1990.
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Bermuda and American options Jump martingale diffusions

Theorem (P. 2012)

Under the usual on κi , i = 1, 2, (Zt)t≥0 (through Z1 and F (convexity),
etc, the “réduites” associated to F and X (κi ),x , i = 1, 2, satisfy

u(κ1)(x) ≤ u(κ2)(x)

so that the Snell envelopes satisfy EU
(1)
0 ≤ EV

(1)
0 .

All the efforts are focused on showing that the filtration enlargement
assumption (H) is satisfied by any limiting distribution Q.
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McKean-Vlasov diffusions (with Y. Liu, to appear in AAP) McKean-Vlasov equations

McKean-Vlasov diffusions:

The MKV dynamics. Let p ≥ 1.

(E ) ≡ dXt = b(t,Xt , µt)dWt + σ(t,Xt , µt)dWt , t∈ [0,T ]

with µt = L(Xt), W = (Wt)t∈[0,T ] a standard B.M. and

b, σ : [0,T ]× Rd × Pp(Rd)→ R are continuous satisfying

(Lip) ≡ b(t, ·, ·), σ(t, ·, ·) is
(
| · |,Wp

)
-Lipschitz, uniformly in t∈ [0,T ].

Wasserstein distance: Wp
p (µ, ν) = inf

{ ∫
|x − y|pm(dx, dy), m(dx,Rd ) = µ, m(Rd

, dy) = ν
}
.(

= sup
{ ∫

fdµ−
∫

fdν, [f ]Lip ≤ 1
}

when p = 1
)
.

Under this assumption a strong solution exists for this equation
starting from X0∈ Lp(P), X0 ⊥⊥W .

“Scaled” Martingality “requires” a drift term

b(t,Xt , µt) = α(t)(Xt + β(t,EXt))

α(t) Hölder-continuous, β Lipschitz in ξ, uniformly in t and
|β(t, x)− β(s, x)| ≤ C(1 + |x |)|t − s|. (From now on α = β = 0 for convenience).

G. Pagès (LPSM) Functional Convex Ordering of Processes LPSM-Sorbonne Univ. 77 / 105



McKean-Vlasov diffusions (with Y. Liu, to appear in AAP) McKean-Vlasov equations

Understanding MKV

Vlasov framework (p = 1). If σ has the following linear representation
in µ

σ(x , µ) =

∫
R
σσ(x , ξ)µ(dξ).

Non linear framework. E.g.

σ(x , µ) = ϕ0

(∫
R
σσ(x , ξ)µ(dξ)

)
where ϕ0 has at most linear growth.

MKV equations were brought back to light through the equilibrium
problems arising from the theoretical aspects of mean field game
theory (see [Lasry-Lions, 2006], book by [Carmona-Delarue,
2018] (9).).

9
R. Carmona, F. Delarue Probabilistic Theory of Mean Field Games with Applications I & II, Springer, 2018
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McKean-Vlasov diffusions (with Y. Liu, to appear in AAP) Convex order for McKean-Vlasov diffusions

Convex order for MKV: the approach

Again Discrete time with ARCH models + Backward Dynamic
Programming.

Limit theorem for the (non-simulable) Euler scheme.

MKV ARCH dynamics: Let (Zk)1≤k≤n be a sequence of independent,
radial r.v. in Lp(Ω,A,P). The two ARCH models: X0,Y0∈ Lp(P),

Xk+1 = Xk + σk(Xk , µk)Zk+1,

Yk+1 = Yk + ϑk(Yk , νk)Zk+1, k = 0 : n − 1,

with µk = L(Xk) and νk = L(Yk), k = 0 : n

(LG) ≡ |σk(x , µ)|+ |ϑk(x , µ)| ≤ C
(
1 + |x |+Wp(µ, δ0)

)
.

The model is well-defined by induction.
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McKean-Vlasov diffusions (with Y. Liu, to appear in AAP) Convex order for McKean-Vlasov diffusions

Theorem (Discrete time comparison result)

Let (Xk)k=0:n and (Yk)k=0:n the two above MKV ARCH models.

(a) If, either
(∗)σ ≡ σk(x , µ) �-convex in x , ↑cvx in µ∈ Pp(Rd), k = 0 : n − 1
or
(∗)ϑ ≡ ϑk(x , µ) �-convex in x , ↑cvx in µ∈ Pp(Rd), k = 0 : n − 1,

σk(x , µ) � ϑk(x , µ), x ∈ Rd , µ∈ Pp(Rd) and X0 �cvx Y0

then, for every convex function F : (Rd)n+1 → R, with r -polynomial
growth, r < p,

EF (X0:n) ≤ EF (Y0:n).

(b) If (∗)σ holds true then, for every convex function

x 7−→ EF (X x
0:n) is convex.
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McKean-Vlasov diffusions (with Y. Liu, to appear in AAP) Convex order for McKean-Vlasov diffusions

Understanding ↑cvx

Vlasov framework. If σ has the following linear representation in µ

σ(x , µ) =

∫
R
σσ(x , ξ)µ(dξ)

then, σσ is both convex in x and ξ implies that σ satisfies (∗)σ.

Non linear framework. Let ϕ0 : R→ R convex non-decreasing

σ(x , µ) = ϕ0

(∫
R
σσ(x , ξ)µ(dξ)

)
.
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McKean-Vlasov diffusions (with Y. Liu, to appear in AAP) Convex order for McKean-Vlasov diffusions

MKV specificity

If proceeding backward µk �cvx νk not yet proved at time k !

A first forward preliminary step to prove the marginal convex order

µk �cvx νk , k = 0 : n ?

Assume (∗)σ. Define the MKV ARCH operators

Ek(x , µ, z) : x 7−→ x + σk(x , µ)z

Induction: Assume µk �cvx νk . Let f : R→ R be convex∫
fdµk+1 = E f (Xk+1) = E f

(
Xk + σk(Xk , µk)Zk+1)

)
=

∫
R
E f
(
Ek(x + σk(x , µk)Zk+1)

)
µk(dx) since Xk ⊥⊥ Zk+1.
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McKean-Vlasov diffusions (with Y. Liu, to appear in AAP) Convex order for McKean-Vlasov diffusions

MKV specificity

We know that

(x , u) 7−→ E f (x + uZk+1) is convex in (x , u) and ↑ in u.

so that µk �cvx νk implies

E f
(
x + σk(x , µk)Zk+1

)
≤ E f

(
x + σk(x , νk)Zk+1

)
and the convexity of σk(·, νk) implies

x 7−→ E f
(
x + σk(x , νk)Zk+1

)
is convex.

Hence∫
fdµk+1 =

∫
R
E f
(
x + σk(x , µk)Zk+1

)
µk(dx)

≤
∫
R
E f
(
x + σk(x , µk)Zk+1

)
νk(dx)

≤
∫
R
E f
(
x + σk(x , νk)Zk+1

)
νk(dx) =

∫
fdνk+1.

Same kind of reasoning with ϑk satisfying (∗)ϑ.
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McKean-Vlasov diffusions (with Y. Liu, to appear in AAP) Convex order for McKean-Vlasov diffusions

MKV standardness

In fact if F : (Rd)n+1 × Pp(Rd)n+1 → R is space convex and
componentwise ↑cvx in the distribution variables, then

EF
(
X0;n, µ0:n

)
≤ EF

(
Y0:n, ν0,n

)
.

The switch to global convex order by a backward induction is
“standard” from the standard ARCH case.
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McKean-Vlasov diffusions (with Y. Liu, to appear in AAP) Convex order for McKean-Vlasov diffusions

The Euler scheme strikes back

Under the above assumptions (E ) has a unique strong solution.

The Euler scheme with step T
n is an MKV ARCH model. It reads

X̄k+1 = X̄k +
√

T
n σ(tk ,︸ ︷︷ ︸
σk (...)

X̄k , µ̄k)Zk+1, X̄0 = X0,

where µ̄k = L(X̄k), k = 0 : n.

Its specificity is to be non-simulable, hence supposedly . . . useless;

However, under (CM), it propagates convex order as an MKV ARCH.

. . . and its linearly interpolated version strongly converges toward X
(with rates) for the sup-norm in Lp:

E sup
t∈[0,T ]

∣∣Xt − X̄ n
t |p → 0 as n→ +∞

Idem for the MKV SDE : dYt = θ(t,Yt , νt)dWt .

G. Pagès (LPSM) Functional Convex Ordering of Processes LPSM-Sorbonne Univ. 85 / 105



McKean-Vlasov diffusions (with Y. Liu, to appear in AAP) Convex order for McKean-Vlasov diffusions

MKV propagates convex ordering

Theorem (Liu-P., 2019 on ArXiv, to appearAAP)

Let σ, θ∈ Lipx,µ,unif
(
[0,T ]× R× Pp(R),Md,q(R)

)
, p ≥ 2. Let X (σ) and X (θ) be

the unique solutions to

dXt = σ(t,Xt , µt)dW t , X0∈ Lp

dYt = θ(t,Yt , νt)dW t , Y0∈ Lp with (W
(·)
t )t∈[0,T ] standard B.M.

If


(i)σ σ(t, x , µ) is x-�-convex and µ-↑cvx for every t∈ [0,T ],
or
(i)θ θ(t, x , µ) is x-�-convex and µ-↑cvx for every t∈ [0,T ],
and
(ii) σ(t, x , µ) � θ(t, x , µ) [|σ(t, x, µ)| ≤ |θ(t, x, µ)| if d = 1]

and X0 ≤cvx Y0, then, for every convex functional F : C([0,T ],R)→ R,

EF (X ) ≤ EF (Y ).

Moreover if (X0 = x) and (i)σ holds, one has x 7→ EF (X x) is convex.
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McKean-Vlasov diffusions (with Y. Liu, to appear in AAP) Convex order for McKean-Vlasov diffusions

Specificity of the proof

The “regular” Euler scheme is again the main tool . . . although not
simulable.

Specificity for convexity propagation: two steps

Forward “marginal ” approach necessary
prior to

a backward “functional” approach.

Convexity cannot be derived from convex ordering comparison but
holds true however as a by product of the proof.

We assume p ≥ 2 rather than p = 1 due to technical limitations in
the Lp-convergence of the Euler scheme. To be fixed.
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Volterra equations (with B. Jourdain’22)

Non-Markovian dynamics: Volterra equations (Jourdain-P. ’22))

Let (Xt)t∈[0,T ] be a [strong/weak?] solution to the scaled stochastic
Volterra equation

Xt = X0 +

∫ t

0

K (t, s)α(s)
(
Xs +β(s)

)
ds +

∫ t

0

K (t, s)σ(s,Xs)dWs , t∈ [0,T ]

(5)
where the non-negative kernel

(
K (t, s)

)
0≤s≤t≤T is measurable and

integrable, σ : [0,T ]× Rd →Md,q and (Wt)t∈[0,T ] is a standard

q-dimensional Brownian motion, X0∈ L??????????(P) ⊥⊥W .

Such a process is centered, (FW
t )-adapted but is not a martingale (not even

a semi-martingale, in general), especially when K is singular like

K (s, t) = (t − s)H−
1
2 , H∈ (0, 1

2 )

(not so) recently brought back to light by the rough vol community.
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Volterra equations (with B. Jourdain’22)

Back to general Volterra equation. . .

We consider the equation

∀ t∈ [0,T ], Xt = X0 +

∫ t

0

K (t, s)b(s,Xs)ds+

∫ t

0

K (t, s)σ(s,Xs)dWs (6)

where b : [0,T ]× Rd → Rd and σ : [0,T ]× Rd →Md,q satisfy

∃C
T

= Cb,σ,T such that ∀ t∈ [0,T ],

∀ x , y ∈ Rd , |b(t, x)− b(t, y)|+ ‖σ(t, x)− σ(t, y)‖ ≤ C
T
|x − y |

and sup
t∈[0,T ]

(|b(t, 0)|+ ‖σ(t, 0)‖) < +∞. Also assume X0∈ Lp(P), p ≥ 1 and

X0 ⊥perp.

These are standard assumptions in a regular diffusion framework.
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Volterra equations (with B. Jourdain’22)

Theorem (Existence of a strong solution (see e.g. Zhang, 2005))

Assume that the kernel K satisfies the integrability assumption(
Kint
β

)
sup

t∈[0,T ]

∫ t

0

K(t, s)2βds < +∞ (7)

for some β > 1 and the continuity assumption

(Kcont
θ ) ∃κ < +∞, ∀ δ∈ (0,T ),

η(δ) := sup
t∈[0,T ]

[∫ t

0

|K(
(
t + δ) ∧ T , s

)
− K(t, s)|2ds

] 1
2

≤ κ δθ (8)

for some θ ∈ (0, 1].

Finally assume that X0∈
⋂

p>0 L
p(P).

Then the above Volterra equation (5) admits, up to a P-indistinguishability, a unique
(Ft)-adapted solution X = (Xt)t∈[0,T ], pathwise continuous, in the sense that,

P-a.s.
(
∀ t∈ [0,T ], Xt = X0 +

∫ t

0

K(t, s)b(s,Xs)ds +

∫ t

0

K(t, s)σ(s,Xs)dWs

)
.
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Volterra equations (with B. Jourdain’22)

Theorem (Properties, Jourdain-P. ’22 )

This solution satisfies

∀ s, t∈ [0,T ], ‖Xt − Xs‖p ≤ Cp,T (1 + ‖X0‖p)|t − s|θ∧
β−1

2β . (9)

Moreover,

∀ a∈
(
0, θ ∧ β − 1

2β

)
,

∥∥∥∥∥ sup
s 6=t∈[0,T ]

|Xt − Xs |
|t − s|a

∥∥∥∥∥
p

< Ca,p,T (1 + ‖X0‖p) (10)

for some positive real constant Ca,p,T = Ca,b,σ,K ,θ,p,T .

In particular ∥∥∥ sup
t∈[0,T ]

|Xt |
∥∥∥
p
≤ C ′a,p,T (1 + ‖X0‖p). (11)

Finally, if the condition

(K̂cont
θ̂

) ∃ κ̂ < +∞, ∀δ∈ (0,T ], η̂(δ) := sup
t∈[0,T ]

[ ∫ t

(t−δ)+

Ki

(
t, u
)2
du
] 1

2 ≤ κ̂ δ θ̂ (12)

is satisfied for some θ̂ ∈ (0, 1], then one can replace β−1
2β

by θ̂ in (9) and (10).

Main tool: Garsia-Rodemich-Rumsey’s lemma (extension of Kolmogorov pathwise continuity criterion).
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Volterra equations (with B. Jourdain’22)

Extended version

Theorem (Existence of a strong solution (see [ArXiv, Jourdain-P.’22)

for this version)] Assume that the kernel K satisfies the integrability assumption

(
Kint
β

)
sup

t∈[0,T ]

∫ t

0

K(t, s)2βds < +∞ (13)

for some β > 1 and the continuity assumption

(Kcont
θ ) ∃κ < +∞, ∀ δ∈ (0,T ),

η(δ) := sup
t∈[0,T ]

[∫ t

0

|K(
(
t + δ) ∧ T , s

)
− K(t, s)|2ds

] 1
2

≤ κ δθ (14)

for some θ ∈ (0, 1].

Finally assume that X0∈ Lp(P) for some p∈ (0,+∞).

Then the above Volterra equation (100) admits, up to a P-indistinguishability, a unique
(Ft)-adapted solution X = (Xt)t∈[0,T ], pathwise continuous, in the sense that, P-a.s.,

∀ t∈ [0,T ], Xt = X0 +

∫ t

0

K(t, s)b(s,Xs)ds +

∫ t

0

K(t, s)σ(s,Xs)dWs .
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Volterra equations (with B. Jourdain’22)

Representation of the Volterra flow as a Brownian
functional

Theorem (Blagoveščenkii-Freidlin like theorem: representation of Volterra’s flow)

(a) Flow regularity. Let X x denotes the solution to the Volterra equation (100)
starting from x ∈ Rd and let λ∈ ( 1

2 , 1). There exists p∗ = p∗β,θ,λ,d such that for
every p > p∗,

∀ x , y ∈ Rd ,
∥∥∥ sup

t∈[0,T ]

|X x
t − X y

t |
∥∥∥
p
≤ C |x − y |λ

for some positive real constant C = Cp,b,σ,K1,K2,β,θ.

(b) Representation. There exists a bi-measurable Borel functional
F : Rd × C0([0,T ],Rq) 3 (x ,w) 7→ F (x ,w) ∈ C([0,T ],Rd), and continuous in x
such that,

∀ (Ω,A,P, (Ft)t∈[0,T ]), ∀q-dimensional (Ft)t-B.M. W , ∀X0∈ L0
Rd (P,F0)

the solution to equation (100) is X = F (X0,W ).
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Volterra equations (with B. Jourdain’22)

Euler schemes
K -discrete Euler scheme (discrete time):

X̄tn
k

= X0 +
k∑
`=1

(
K(tnk , t

n
`−1)b(tn`−1, X̄tn

`−1
)T
n

(15)

+K(tnk , t
n
`−1)σ(tn`−1, X̄tn

`−1
)(Wtn

`
−Wtn

`−1
)
)
, k = 0 : n.

K -integrated Euler scheme (discrete time):

X̄tn
k

= X0 +
k∑
`=1

(∫ tn`

tn
`−1

K(tnk , s)ds b(tn`−1, X̄tn
`−1

) (16)

+ σ(tn`−1, X̄tn
`−1

)

∫ tn`

tn
`−1

K(tnk , s)dWs

)
, k = 0 : n.

K -discrete Euler scheme (genuine): Set t = tn` is t∈ [tn` , t
n
`+1).

X̄t = X0 +

∫ t

0

K1(t, s)b(s, X̄s)ds +

∫ t

0

K2(t, s)σ(s, X̄s)dWs , t ∈ [0,T ], (17)

K -integrated Euler scheme (genuine):

X̄t = X0 +

∫ t

0

K(t, s)b(s, X̄s)ds +

∫ t

0

K(t, s)σ(s, X̄s)dWs , t ∈ [0,T ]. (18)
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Volterra equations (with B. Jourdain’22)

Euler schemes (convergence), extension
See [Zhang], [Richard et al. SPA 22’] for p “large enough” and [Jourdain-P.’22] for
p∈ (0,+∞).

Theorem (K -integrated Euler scheme)

Let T > 0 and let p∈ (0,+∞).

(a) Assume the time-space Hölder-Lipschitz continuity assumption for some γ ∈ (0, 1]

(LHγ) ∃Cb,σ < +∞, ∀ s, t∈ [0,T ], ∀ x , y ∈ Rd ,

|b(t, y)− b(s, x)|+ ‖σ(t, y)− σ(s, x)‖ ≤ Cb,σ

(
(1 + |x |+ |y |)|t − s|γ + |x − y |

)
. (19)

Assume K satisfies (Kint
β ) and (Kcont

θ ) for some β > 1, θ ∈ (0, 1]. Then the K -integrated
Euler scheme X̄ n with time step T

n
, has a pathwise continuous modification.

(b) Assume furthermore (K̂cont
θ̂

) holds for some θ̂ ∈ (0, 1].

max
k=0,...,n

∥∥Xtk − X̄ n
tk

∥∥
p
≤ sup

t∈[0,T ]

∥∥Xt − X̄ n
t

∥∥
p
≤ C(1 + ‖X0‖p)

(
T
n

)γ∧θ∧θ̂
. (20)

and, moreover, for every ε ∈ (0, 1)∥∥∥ max
k=0,...,n

∣∣Xtk − X̄ n
tk

∣∣∥∥∥
p
≤
∥∥∥ sup

t∈[0,T ]

∣∣Xt − X̄ n
t

∣∣∥∥∥
p
≤ Cε(1 + ‖X0‖p)

(
T
n

)(γ∧θ∧θ̂)(1−ε)
. (21)
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Volterra equations (with B. Jourdain’22)

If K (t, s) = (t − s)H−
1
2 , H > 0, θ ∧ θ̂ = H ∧ 1 (see [Richard et al.])

One also has an Lp(P)-pathwise regularity

∀ s, t∈ [0,T ],
∥∥X̄t − X̄s

∥∥
p
≤ C (1 + ‖X0‖p)|t − s|θ∧θ̂ (22)

and even a pathwise Hölder regularity.

For genuine K -discrete Euler scheme the same result holds under
slightly more stringent assumptions.
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Volterra equations (with B. Jourdain’22)

Splitting lemma

Proposition (Splitting lemma)

Assume the assumptions of the (E -U) theorem are in force. Let
Φ : C ([0,T ],Rd)2 → R be a Borel functional and let n∈ N such that, for
every x0∈ Rd ,

‖Φ(X x0 , X̄ n,x0)‖p̄ ≤ Cn(1 + |x0|) for some p̄ > 0

where X x0 and X̄ n,x0 denote the solution of the Volterra equation and any
of its (genuine) Euler schemes starting from x0.
Then, for every p∈ (0, p̄] and every X0 ⊥⊥W , X = (Xt)t∈[0,T ] and the
Euler scheme under consideration starting from X0 satisfy

‖Φ(X , X̄ n)‖p ≤ 2(1/p−1)+
Cn(1 + ‖X0‖p).
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Volterra equations (with B. Jourdain’22)

Proof (sketch of)
According to our avatar(s) of Blagoveščenkii-Freidlin’s theorem

XX0 = F
(
X0, (Wt)t∈[0,T ]

)
and X̄ n = F̄n

(
X0, (Wt)t∈[0,T ]

)
.

This entails that the distribution P(X ,X̄ n) on C([0,T ],Rd)2 of

(X , X̄ n) =
(
F (X0,W ), F̄n(X0,W )

)
satisfies

P(X ,X̄ n)(dx , dx̄) =

∫
Rd

PX0 (dx0)P(X x0 ,X̄ n,x0 )(dx , dx̄).

Using r -monotonicity of Lr (P)-norms and pseudo-norms and the elementary
inequality (a + b)ρ ≤ aρ + bρ, for a, b ≥ 0 with ρ = p

p̄ ∈ [0, 1] yields

‖Φ(X , X̄ n)‖pp = E |Φ(X , X̄ n)|p =

∫
Rd

PX0 (dx0)E |Φ(X x0 , X̄ n,x0 )|p

≤
∫
Rd

PX0 (dx0)
(
E |Φ(X x0 , X̄ n,x0 )|p̄

) p
p̄

≤
∫
Rd

PX0 (dx0)
(
C p̄
n

(
1 + |x0|)p̄

) p
p̄

≤ C p
n

∫
Rd

PX0 (dx0)(1 + |x0|p) = C p
n (1 + ‖X0‖pp)

≤ 2(1−p)+

C p
n (1 + ‖X0‖p)p.
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Volterra equations (with B. Jourdain’22)

so that, finally,

‖Φ(X , X̄ n)‖p ≤ 2(1/p−1)+
C (1 + ‖X0‖p). �

In fact, as proved, Zhang’s theorem holds true for p > pβ,θ = 1
θ ∨

2β
β−1 .

Then, the extensions follow from the splitting lemma, once proved
that all constants in bounds and estimates are of the form
“CX0 = C (1 + ‖X0‖p)” for X and its Euler schemes.

Proving convex ordering for X0∈ L1(P) becomes a realistic project. . .
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Volterra equations (with B. Jourdain’22)

Convexity w.r.t. x

Back to (5) i.e. the scaled Volterra equation

Xt = X0 +

∫ t

0

K (t, s)α(s)
(
Xs +β(s)

)
ds+

∫ t

0

K (t, s)σ(s,Xs)dWs , t∈ [0,T ].

Theorem (Convexity w.r.t. the starting value)

Let (b, σ) satisfying (LHγ) for some γ ∈ (0, 1] and K satisfying
(
Kint
β

)
,

(Kcont
θ ) and (K̂cont

θ̂
). Let X x = (X x

t )t∈[0,T ] denote the solution starting from

X0 = x ∈ Rd to the above Volterra SDE.

Assume
∀ t ∈ [0,T ], x 7→ σ(t, x) is �-convex.

Then, for every l.s.c. convex functional F : C([0,T ],Rd)→ R

x 7−→ EF (X x)∈ (−∞,+∞] is convex.

If F has ‖ . ‖sup-polynomial growth, then it is convex and R-valued.
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Volterra equations (with B. Jourdain’22)

Functional convex ordering

Let us consider a siamese equation

Yt = Y0 +

∫ t

0

K (t, s)α(s)
(
Ys +β(s)

)
ds +

∫ t

0

K (t, s)θ(s,Ys)dWs , t∈ [0,T ]

Theorem (convex ordering)

If 
(i)σ σ(t, x) is x-�-convex for every t∈ [0,T ],
or
(i)θ θ(t, x) is x-�-convex for every t∈ [0,T ],
and
(ii) σ(t, x) � θ(t, x) [|σ(t, x)| ≤ |θ(t, x)| if d = 1]

and X0 �cvx Y0, then, for every l.s.c. convex F : C([0,T ],R)→ R

EF (X ) ≤ EF (Y ).

Assumptions cannot be relaxed in dimension d = q = 1 (to be compared with
regular diffusions).

Convexity may appears as a consequence δλx+(1−λ)y �cvx λδx + (1− λ)δy .
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Volterra equations (with B. Jourdain’22)

Methods of proof

(α = β = 0 for simplicity).

We consider its Euler scheme with time step T
n (tk = kT

n ):

X̄tk = X0 +
k−1∑
`=0

σ(t`, X̄t`)

∫ t`+1

t`

K (tk , s)dWs , X̄0 = X0.

Not enough due to lack of Markovianity since X̄tk is not (in general ) a
function of (X̄tk−1

, (Ws −Wtk−1
)s∈[tk−1,tk ]).

Markovianization: introduce for k ∈ {1, · · · , n}, (X k
t`)0≤`≤k starting from

X k
0 = X0 and evolving inductively according to

X k
t`+1

= X k
t` + σ(t`, X̄t`)

∫ t`+1

t`

K (tk , s)dWs , 0 ≤ ` ≤ k − 1,

so that X̄tk = X k
tk for k ∈ {1, · · · , n} and X n = X̄ n.

“Extend” the discrete time backward propagation proof to extended
functions

F
(
(X n

t`)`=0:n, . . . , (X
k
t`)`=0:k , . . . , (X

1
t`)`=0:1,X0

)
.
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Volterra equations (with B. Jourdain’22)

. . . with respect to the discrete time filtration of the Brownian motion
(FW

tk )k=0:n augmented by σ(X0) so that at time t0 = 0 it is σ(X0). Idem for
Y .

Transfer to continuous time by letting n→∞ (using Lp(P) convergence of
K -integrated Euler scheme).

Then one derives, under the assumptions of the theorem that for Lipschite
convex functionals F : C([0,T ],Rd)→ R, x 7→ EF (X x) is convex and
X �cvx Y , etc. �

Extension to (one-dimensional) non-decreasing convex ordering when
d = q = 1.

If the drift b(t, ·) is �-convex and non-decreasing.

the coefficient |σ(t, ·)| is �-convex and non-decreasing.

then the conclusion of the theorem holds for �icv -ordering.

Still true with two different drifts b1(t, x) and b2(t, x) with additional
condition b1 ≤ b2.
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Volterra equations (with B. Jourdain’22)

Applications to Vix options in rough Heston model

Let us consider the auxiliary variance process in the quadratic rough Heston
model (see Gatheral-Jusselin-Rosenbaum’20):

Vt = a(Zt − b)2 + c with a, b, c ≥ 0

and, for H∈ (0, 1/2),

Zt = Z0+

∫ t

0

(t−s)H−
1
2λ(f (s)−Zs)ds+σ

∫ t

0

(t−s)H−
1
2

√
a(Zs − b)2 + c dWs .

z 7→
√
a(z − b)2 + c is convex and Lipschitz.

Let (Zσt )t≥0 be its unique strong solution and V σ the resulting squared
volatility.

For σ∈ (0, σ̃], one has (Zσt )t∈[0,T ] �cvx (Z σ̃t )t∈[0,T ].

Convexity of L2(dt) norm and (again) of z 7→
√
a(z − b)2 + c imply that

E

√ 1

T

∫ T

0

V σ
t dt

 ≤ E

√ 1

T

∫ T

0

V σ̃
t dt

 .
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Volterra equations (with B. Jourdain’22)

This is in fact a paradigm:

Propagate convex order
in discrete time then transfer to

continuous time
is easier

(if you know functional limit theorems for the dynamics under
consideration)

Bedankt voor je aandacht en bedankt voor de uitnodiging

G. Pagès (LPSM) Functional Convex Ordering of Processes LPSM-Sorbonne Univ. 105 / 105


	Convex ordering: definitions and fist (static) examples
	Convex ordering
	Convexity (without order…)

	Characterization of convex orderings
	Functional convex ordering
	Martingale (and scaled) Brownian diffusions
	Discrete time: ARCH model…
	Functional limit theorem: …to continuous time
	Back to 1D (Jourdain-P. '22)

	Jump diffusions
	Bermuda and American options
	Brownian diffusions
	Jump martingale diffusions

	McKean-Vlasov diffusions (with Y. Liu, to appear in AAP)
	McKean-Vlasov equations
	Convex order for McKean-Vlasov diffusions

	Volterra equations (with B. Jourdain'22)

