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² The investment problem
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² Explicit solutions and examples.
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Market Completion using options

² C(S) an arbitrary twice differentiable
cash ow contingent on S the price of an
underlying asset at maturity T:

² Let F be an arbitrary expansion point.
² Applying the fundamental theorem of
calculus twice we have

C(S) = C(F ) + 1S>F

SZ
F

C 0(u)du¡ 1S<F
FZ
S

C 0(u)du

= C(F ) + 1S>F

SZ
F

24C 0(F ) + uZ
F

C 00(v)dv

35 du
¡1S<F

FZ
S

24C 0(F )¡ FZ
u

C 00(v)dv

35 du
² Integrating and reversing the order of
integration of the double integrals we have
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C(S) = C(F ) + C 0(F )(S ¡ F )

+1S>F

SZ
F

SZ
v

C 00(v)dudv

+1S<F

FZ
S

vZ
S

C 00(v)dudv

² This may be rewritten as
C(S) = C(F ) + C 0(F )(S ¡ F )

+1S>F

SZ
F

C 00(v)(S ¡ v)dv

+1S<F

FZ
S

C 00(v)(v ¡ S)dv
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² or equivalently as
C(S) = C(F ) + C 0(F )(S ¡ F )

+1S>F

1Z
F

C 00(v)(S ¡ v)+dv

+1S<F

FZ
0

C 00(v)(v ¡ S)+dv
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² ASSET ALLOCATION IN OPTIONS
MARKETS WHEN THE UNDERLY-
ING IS DRIVEN BY A LÉVY SYSTEM
a. SUPPOSE THAT THE STOCK PRICE
FOLLOWS STATISTICALLY A JUMP
PROCESS WITH LÉVY MEASURE
kP (x):

b. LET THE RISK NEUTRAL PROCESS
ALSO BE A LÉVY PROCESS WITH
LÉVY MEASURE kQ(x):

c. More explicitly we suppose that under
P

S(t) = S(0) exp

µ
¹t +X(t)¡

Z 1

¡1
(ex ¡ 1)kP (x)dx

¶
d. While under Q we have that

S(t) = S(0) exp

µ
rt +X(t)¡

Z 1

¡1
(ex ¡ 1)kQ(x)dx

¶
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e. The measure change process is the P
martingale given by

¤(t) = exp

µ
¡
Z 1

¡1
(Y (x)¡ 1) kP (x)dx

¶Y
s·t
Y (¢Xs)

Y (x) =
kQ(x)

kP (x)
:

f. Let the wealth response function or
exposure design function be given by

w(x; u)

that is the designed response in log
wealth at time u if the stock’s log price
were to jump at this time by x.
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g. Consider the problem of nding the
optimal response function w:We
formulate this problem for innite
time horizons with intermediate con-
sumption and for nite time horizons
with no intermediate consumption.

h. The wealth transition equation is

W (t) =W (0) +

tZ
0

(rW (u)¡ c(u))du +
1Z

¡1
W (u_)

³
ew(x;u) ¡ 1

´
(kP (x)¡ kQ(x))dxdu

+

tZ
0

1Z
¡1

W (u_)
³
ew(x;u) ¡ 1

´
(¹(dx; du)¡ kP (x))dxdu
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THE INVESTOR’S INVESTMENT
MANAGEMENT PROBLEM

² The Innite Time Horizon Investment
Management Problem may be formulated
as:

max
[c(¢);w(¢)]

U = EP

24 1Z
0

exp(¡¯s)u(c(s))ds
35

Subject to :

W (t) =W (0) +

tZ
0

rW (s_)ds¡
tZ
0

c(s)ds

+

tZ
0

1Z
¡1

W (s_)(ew(x;s) ¡ 1)(m(!; dx; ds)¡ kQ(x)dxds);

andW (1) ¸ 0 almost surely.
² The random measure m accounts for
accumulating the actual wealth changes
experienced as a consequence of jump
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moves in the underlying, and one’s chosen
positioning.

² The integration with respect to the Lévy
density kQ(x) accounts for the payment of
the cost of the
positioning purchased.
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² In contrast to the static problem, such
an innite horizon investor should be
more tolerant of risk taking. However,
this investor does have a concern for
the immediate future as reected by his
contemporaneous consumption needs and
in this regard he is like the static investor
with a concern for the morrow.

² Many investors enter the market with
long term objectives and are not looking
to returns to nance their consumption.
For this reason we also study the nite
but distant time horizon problem with no
interimmediate consumption.
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² The nite time horizon problem is formu-
lated as:

max
[w(¢)]

U = EP [u(W (¨))]

Subject to :

W (t) =W (0) +

tZ
0

rW (s_)ds

+

tZ
0

1Z
¡1

W (s_)(ew(x;s) ¡ 1)£

(m(!; dx; ds)¡ kQ(x)dxds);
andW (1) ¸ 0 almost surely.

² There is only one choice variable here and
this is the optimal exposure design.
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² For the Solution we follow Rishel (1990)
on the solution of Continuous TimeMarkov
Control Problems.

² In the innite horizon case, the innitesimal
generator of the Markov wealth process is:

Ac;w['](W ) = 'W

24 rW ¡ c¡
1R
¡1
W (ew(x) ¡ 1)kQ(x)dx

35
+

1Z
¡1

h
'(Wew(x))¡ '(W )

i
kP(x)dx:

² The optimal controls satisfy the Hamilton,
Jacobi and Bellman (HJB) equation

Ac
¤;w¤[J ]¡ ¯J + u(c¤(¢)) = 0

² Th controls themselves are given by
c¤; w¤ = argmax

c;w
[Ac;w[J ]¡ ¯J + u(c)]

² The rst order condition with respect to
consumption yields the familiar equation

JW = u
0(c)
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² The rst order condition for the exposure
design yields
JW (We

w(x))kP(x) = JW (W )kQ(x)

² This condition is comparable to that of
the static model, except that we now use
the ratios of Lévy densities in place of the
probability densities.

² For a solution we conjecture a form for the
J function, dene c and w by

c¤ = (u0)¡1(JW )

w¤(x) = log
·
(JW )

¡1
µ
JW (W )

kQ(x)

kP(x)

¶¸
¡log(W )

² Finally we verify the required HJB
equation.

² For the nite horizon case the innitesimal
generator is given by:
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Aw['](t;W ) = 't +

'W

24rW ¡
1Z

¡1
W (ew(x;t) ¡ 1)kQ(x)dx

35
+

1Z
¡1

h
'(t;Wew(x;t))¡ '(t;W )

i
kP(x)dx:

² TheHJB equation is just
Aw

¤
[J ] = 0

² The optimal exposure design must satisfy
w¤ = argmax

w
[Aw[J ]]

² The J function must also satisfy the
terminal condition

J(W;¨) = u(W )

² For this problem we conjecture a form for
the J function, dene w to satisfy the rst
order condition as before and then we must
show that the ODE for theHJB equation
is satised.
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² The required ODE is
0 = Jt + JW [rW¡

1R
¡1
W (ew(x;t) ¡ 1)kQ(x)dx]+

1R
¡1

£
J(t;Wew(x;t))¡ J(t;W )¤ kP(x)dx:
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HARA INVESTORS INVGECONOMIES

² The utility function we employ is
u(c) =

°

1¡ °
µ
®

°
c¡A

¶1¡°
² We have linear risk tolerance and

¡u
0(c)
u00(c)

=
c

°
¡ A
®

with oor consumption of °A=® and
cautiousness 1=°:

² The stock price process is riskneutrally
S(t) = S(0) exp

µ
rt + t

º log(1¡ µº ¡ ¾2º=2)+
µG(t; º) + ¾W (G(t; º))

¶
:

² The Lévy measure for this process is

kQ(x) =
exp(µx=¾2)

º j x j exp

0@¡
s
2

º
+
µ2

¾2
j x j
¾

1A :
² For zero µ we have measure that is
symmetric about zero.

² The parameter º gives fatter tails when it is
larger.
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² The measure goes to innity near zero and
integrates to innity. So we have an innite
arrival rate of what are necessarily small
jumps.

² The statistical price process is given by
S(t) = S(0) exp

µ
¹t +

t

·
log(1¡ s2·=2) + sW (G(t; ·))

¶
² The Lévy density for this process is

kP(x) =
1

· j x j exp
Ã
¡
r
2

·

j x j
s

!
:

² This is a symmetric measure with general
properties comparable to kQ:

² For HARA utility and VG price processes
we solve the required conditions for both
the nite and innite time horizon problems
and observe that in the innite horizon case

kQ(x)

kP(x)
= Y (x) =

·

º
exp (³x + ¸ j x j)
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where
³ =

µ

¾2

¸ =

q
2
·

s
¡
q

2
º
+ µ2

¾2

¾² The optimal exposure design has the form

w(x) = log

·
¢1 +¢2 exp

µ
¡³
°
x¡ ¸

°
j x j

¶¸
¢1 =

°

´

B

W

¢2 =

µ
1¡ °

´

B

W

¶³·
º

´¡( 1°)
² For the nite horizon case we get that

w(x; t) = log

·
¢1(t) + ¢2(t) exp

µ
¡³
°
x¡ ¸

°
j x j

¶¸
¢1(t) =

°

´(t)

B(t)

W

¢2(t) =

µ
1¡ °

´(t)

B(t)

W

¶³·
º

´¡ 1
°
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² Hence both types of investors prefer
products of the same general type, with the
nite horizon utility altering the level of
investment over time in the risky asset. In
fact the investor is getting less risk tolerant
as one approaches the horizon and the oor
consumption is rising at the interest rate.
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THE HARAVG FINANCIAL PROD-
UCT

² The optimal product is the continuous
receipt of a function of the price relative
given by

f (R) = 1R>ea

µ³·
º

´¡ 1
°

R¡
³+¸
° ¡ 1

¶
+1R<e¡a

µ³·
º

´¡ 1
°

R¡
³¡¸
° ¡ 1

¶
:

² For risk neutral volatilities and kurtosis
exceeding their statistical counterparts
the investors takes convex positions with
respect to market down moves and concave
positions with respect to market up moves.

² Relative to holding stock this amounts to
buying a droption, that pays a function of
the market down move and nancing this
by selling an uption that pays out on the
large up moves.

² It is interesting that there is independent
client interest in such structures.
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RESULTS II

² SPOT SLIDE CALIBRATION AND
POSITIONMEASURES
a. WE ALLOW FOR A MEASURE
CHANGE FROM OBJECTIVE TO
SUBJECTIVE PROBABILITIES,
PARAMETERIZING THE RATIO OF
OBJECTIVE EXCESS KURTOSIS TO
SUBJECTIVE EXCESS KURTOSIS
BY ¯:

b. WE ASSUME CONSTANT REL-
ATIVE RISK AVERSION WITH
COEFFICIENT OF RELATIVE RISK
AVERSION ®

c. WE THEN DETERMINE ¯ AND ®
SO THAT THE OPTIMAL CRRA VG
EXPOSUREDESIGNMATCHES THE
SPOT SLIDE OF A PARTICULAR
POSITION.
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d. THIS IDENTIFIES THE PERSON-
ALIZED MEASURE CONSISTENT
WITH THE OBSERVED POSITION
AS BEING OPTIMAL. WE TERM
THIS THE POSITION MEASURE.

e. THE STOCK PRICE PROCESS UN-
DER THE POSITION MEASURE IS
BY CONSTRUCTION A V G PRO-
CESS AND THIS IS THE MEASURE
ONE SHOULD USE TO SIMULATE
PROFIT AND LOSS ACCOUNTS TO
EVALUATE PROSPECTIVE TRAD-
ING POSITIONS.

f. DISCOUNTED EXPECTATIONS
OF CASH FLOWS UNDER THE
POSITION MEASURE ARE PER-
SONALIZED PRICES CONSISTENT
WITH ONE’S POSITIONS. TRADING
STRATEGIES ARE DERIVED FROM
COMPARISONS OF PERSONAL-
IZED AND MARKET PRICES OF
CASH FLOWS.

22



60 70 80 90 100 110 120 130 140
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Normalized Spot Level

D
en

si
ty

Statistical, Risk Neutral and Position Densities for XAU

statistical

risk neutral

position

1.

80 85 90 95 100 105 110 115 120
0

0.01

0.02

0.03

0.04

0.05

0.06

Normalized Spot Level

D
en

si
ty

Statistical, Risk Neutral and Position Densities for SPX

statistical

risk neutral

position

2.

23



80 85 90 95 100 105 110 115 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Normalized Spot Level

D
en

si
ty

Statistical, Risk Neutral and Position Densities for RUT

statistical

risk neutral

position

3.

70 80 90 100 110 120 130
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Normalized Spot Level

D
en

si
ty

Statistical, Risk Neutral and Position Densities for BIX

statistical

risk neutral

position

4.

24



70 80 90 100 110 120 130
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Normalized Spot Level

D
en

si
ty

Statistical, Risk Neutral and Position Densities for XOI

statistical

risk neutral

position

5.

70 80 90 100 110 120 130
0

0.01

0.02

0.03

0.04

0.05

0.06

Normalized Spot Level

D
en

si
ty

Statistical, Risk Neutral and Position Densities for MSH

statistical

risk neutral

position

6.

25



800 850 900 950 1000 1050 1100 1150 1200
600

700

800

900

1000

1100

1200

Level of Spot

Va
lu

e 
of

 P
or

tfo
lio

Hedging Spot Slide for SPX

Beta = .1084 Risk Aversion = 6

7.

80 85 90 95 100 105 110 115 120
65

70

75

80

85

90

95

100

105

Normalized Spot Level

Po
rtf

ol
io

 V
al

ue

Hedging Spot Slide for RUT

Beta = 0.30 Risk Aversion = 20

8.

26



80 85 90 95 100 105 110 115 120
80

100

120

140

160

180

200

220

240

260

Normalized Spot Level

Va
lu

e 
of

 P
or

tfo
lio

Hedging Spot Slide for XAU

Beta = 1.5, Risk Aversion -10.0

9.

70 80 90 100 110 120 130
20

30

40

50

60

70

80

90

100

110

120

Normalized Spot Level

Va
lu

e 
of

 P
or

tfo
lio

Hedging Spot Slide for BIX

Beta = .28 Risk Aversion 8

10.

27



70 80 90 100 110 120 130
70

75

80

85

90

95

100

105

110

Normalized Level of Spot

Va
lu

e 
of

 P
or

tfo
lio

Hedging Spot Slide for MSH

Beta = .052 Risk Aversion = 10

11.

70 80 90 100 110 120 130
50

100

150

200

250

300

350

400

450

500

Normalized Spot Level

Va
lu

e 
of

 P
or

tfo
lio

Hedging Spot Slide for XOI

Beta = 1.2, Risk Aversion = -20.0

12.

28


