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André Lucas‡§ Pieter Klaassen†‡

Peter Spreij¶ Stefan Straetmans‖

This version: November 8, 2002

Abstract
Using a limiting approach to portfolio credit risk, we obtain ana-

lytic expressions for the tail behavior of credit losses. To capture the
co-movements in defaults over time, we assume that defaults are trig-
gered by a general, possibly non-linear, factor model involving both
systematic and idiosyncratic risk factors. The model encompasses de-
fault mechanisms in popular models of portfolio credit risk, such as
CreditMetrics and CreditRisk+. We show how the tail characteris-
tics of portfolio credit losses depend directly upon the factor model’s
functional form and the tail properties of the model’s risk factors.
In many cases the credit loss distribution has a polynomial (rather
than exponential) tail. This feature is robust to changes in tail char-
acteristics of the underlying risk factors. Finally, we show that the
interaction between portfolio quality and credit loss tail behavior is
strikingly different between the CreditMetrics and CreditRisk+ ap-
proach to modeling portfolio credit risk.
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1 Introduction

Management of credit risk is a core function within banks and other lend-
ing institutions. There is an extensive literature on how to assess the credit
quality of counter-parties in individual loan (or bond) transactions, see for
example Altman (1983), Caouette, Altman, and Narayanan (1998), and the
Journal of Banking & Finance (2001, vol. 25(1)) as starting references. In
recent years, we have witnessed an increased interest in the modeling and
management of portfolio credit risk. The portfolio view on credit risk fo-
cuses on the probability distribution of potential credit losses for portfolios
of loans rather than for individual loans. This requires the consideration of
co-movements in loan defaults, i.e., default correlations. In this paper we
concentrate on the tail behavior of portfolio credit losses. Clearly, this is the
part of the distribution that both banks and regulators are most concerned
about.

Banks usually get into trouble when in a short period of time a sub-
stantial part of the loan portfolio deteriorates significantly in quality. This
can typically be traced back to some common cause, e.g., a downturn in the
economy of a country or region, or problems in a particular industry sector,
see also Nickell, Perraudin, and Varotto (2000) and Bangia, Diebold, Kron-
imus, Schagen, and Schuermann (2002). Recent examples are the banking
problems in Japan, the Asian crisis, and the Russian meltdown. A bank is
much less vulnerable to such systematic events when its loan portfolio is well
diversified over regions, countries and industries. To evaluate and manage a
bank’s credit risk, it is therefore not sufficient to scrutinize individual clients
to which loans are extended, but also to identify concentration of risks within
the portfolio. Portfolio credit risk models allow banks to do just that.

Banks also employ portfolio credit risk models to evaluate activities on
a risk/reward basis, using measures such as risk-adjusted return on capital
(RAROC) and economic-value-added (EVA), see Matten (2000). Such an
evaluation can be done at the level of individual loans or clients, lines of
business, or for the bank as a whole. In addition, portfolio credit risk models
can be used to evaluate the risks and merits of collateralized loan or bond
obligations. A major reason for banks to enter into such structures is to
obtain regulatory capital relief. In many cases, however, the majority of the
economic risk of the loans involved remains with the issuing bank. A primary
motivation for the current review of the 1988 Basel Accord on regulatory
capital is to better align regulatory capital requirements with true economic
risk. In its latest proposals, the Bank for International Settlements (BIS) has
in fact used a portfolio credit risk approach to set risk weights for individual
counter-parties, see BIS (2001).
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Several models have been put forward in the literature to capture the
salient features of portfolio credit risk. The most prominent models are Cred-
itMetrics of Gupton, Finger, and Bhatia (1997), CreditRisk+ of Credit Su-
isse (1997), PortfolioManager of KMV (Kealhofer (1995)), and CreditPort-
folioView of McKinsey (Wilson (1997a,b)). Despite the apparent differences
between these approaches, they exhibit a common underlying framework,
see Koyluoglu and Hickman (1998) and Gordy (2000). All models enable
the computation or simulation of a probability distribution of credit losses
at the portfolio level. The extreme upper quantiles of this distribution are
of particular interest.

The explicit relation between model parameters and credit loss tail be-
havior is generally badly understood. In the present paper we formulate a
general modeling framework encompassing the models mentioned above. In
this framework we derive an explicit characterization of the extreme tail be-
havior of credit losses in terms of underlying portfolio characteristics. Our
approach extends the results in Lucas et al. (2001) and contrasts with pre-
vious studies of the behaviour of aggregate credit risk. For example, Carey
(1998) uses a large database of bonds and a resampling scheme in order
to investigate the tail behavior of credit loss distributions. This approach,
however, does not provide an explicit relation between default correlations
and credit loss tail behavior. Moreover, all results are conditional on the
extent to which the database used is representative of an actual bond or
loan portfolio. Alternatively, Gupton, Finger, and Bhatia (1997) uses an
explicit modeling framework and a simulation set-up. The main drawback
of a simulation approach is that it is difficult to obtain reliable conclusions
regarding tail behavior, especially if one is concerned with extreme quantiles.
Moreover, many different experiments would have to be set up in order to
obtain tail properties under a variety of empirically relevant conditions. By
contrast, our analytic approach allows for a direct assessment of the relation
between default correlations, credit quality, distributional properties, model
structure, and credit loss tail behavior.

Two papers closely related and complementary to our approach are Frey
and McNeil (2001,2002). These authors give a general characterization of
different models for dependent defaults. Their focus is on model characteri-
zation and identification, especially with regard to the use of default versus
asset correlations for model calibration purposes. Our current paper com-
plements these results by taking a more detailed look at the extreme tail
behavior of portfolio credit losses for a specific class of factor models.

In line with the literature, we decompose the risk of an individual loan
into a systematic and idiosyncratic risk component. Existing models fully pa-
rameterize the distribution of the risk components. For example, CreditMet-
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rics assumes normal risk components, whereas CreditRisk+ assumes Gamma
distributed components. For our purpose of studying the tail behaviour of
portfolio credit losses, however, it suffices to make weak assumptions on the
probability of extreme realizations of the risk factors. Put differently, to spec-
ify the tail behavior of portfolio credit losses, we do not need to specify the
complete distribution of the underlying risk factors, but only their extreme
tail behavior. This allows for much less restrictive assumptions. In addition,
we allow risk factors to be related in a general, possibly non-linear way to
a counter-party’s creditworthiness. Using statistical Extreme Value Theory,
we obtain an expansion of the tail of the credit loss distribution.

Our main contributions to the portfolio credit risk literature are the gen-
eral modeling framework and the analytic results. It turns out that under
quite general conditions credit losses have a polynomial (i.e., fat) rather than
an exponential (thin) tail. This polynomial tail can be characterized by a
single parameter, the so-called tail index. The tail index specifies the rate
of decay in the tail probability. The larger the tail index, the faster the tail
probability declines to zero. We show how assumptions on the extreme tail
behavior of the idiosyncratic and systematic risk components determine the
extreme credit loss tail behavior, i.e., the value of the tail index. In particu-
lar, we prove that thin tails for idiosyncratic risk and fat tails for systematic
risk produce rather unconventional shapes of credit loss densities: they may
be actually increasing near the upper end of the support. To the best of
our knowledge, such behavior has not been reported earlier. These rather
peculiar density shapes typically contain much more probability mass in the
tails compared to a well behaved density function whose tails decline — ei-
ther exponentially or polynomially — towards the upper end of the credit
loss support. Thus, if risk managers do not acknowledge the possibility that
their credit portfolio losses may behave like this, they might very well severely
underestimate the potential for extreme credit losses.

We also investigate how credit quality as measured by the probability of
default relates to the credit loss tail index. It turns out that credit quality
affects the tail behavior of credit losses differently in the CreditMetrics frame-
work compared to CreditRisk+, which are two of the most popular portfolio
models to study portfolio credit risk. More specifically, the probability of
default directly affects the rate of tail decay as measured by the tail index in
the CreditRisk+ model (first order effect). For the CreditMetrics framework,
by contrast, the default probability only affects the scale parameter of the
credit losses while leaving the tail index unchanged (second order effect).

The set-up of the paper is as follows. In Section 2 we provide the ba-
sic modeling framework and derive the main results for a homogeneous bond
portfolio. We also treat the CreditMetrics and CreditRisk+ models as special
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cases. The results are generalized in Section 3 to heterogeneous portfolios.
Section 4 contains a second-order approach to the tail behavior of a dou-
ble Gaussian latent factor model. We highlight the differences between the
CreditMetrics and the CreditRisk+ approach regarding the interaction be-
tween portfolio credit quality and tail behavior. Section 5 concludes, while
the Appendix gathers all the proofs.

2 Homogeneous bond portfolios

We start our exposition with a very simple portfolio containing n bonds (or
loans), each from (to) a different company.1 The portfolio is homogeneous
in the sense that all bonds have the same characteristics. This restrictive
setting allows us to derive the main results on the tail behavior of portfolio
credit losses. In later sections, we generalize these results to heterogeneous
portfolios.

Each bond in the portfolio specifies a future pay-off stream of coupons
and/or principal. The value of this stream depends on the creditworthiness
of the company issuing the bond. The value of an identical stream of future
cash flows will be lower if the company is more likely to default, i.e., has a
lower creditworthiness. In our benchmark setting, each company j, where
j = 1, . . . , n, is characterized by a two-dimensional vector

(Sj, s
∗). (1)

Here, Sj is a latent variable that triggers a company’s default. A prime
candidate for Sj is the company’s ‘surplus’ or equity value, i.e., the difference
in market value of assets and liabilities, as in the framework of Merton (1974).
Other interpretations, however, are also possible, see for example Jarrow
and Turnbull (1995) and Duffie and Singleton (1999). If the surplus Sj falls
below the threshold s∗, default occurs. As our focus in the present paper
is on extreme tail behavior of credit losses, we concentrate on defaults only
and abstract from credit losses due to credit rating migrations, see Gupton,
Finger, and Bhatia (1997). Further, for simplicity we set the recovery rate
to 0, implying that the loss given default is 100%. This means that in case
of default, the complete amount invested is lost. Alternatively, one can use
more realistic values like historical averages of recovery rates. This, however,
does not affect the rate of tail decay of portfolio credit losses as derived later
on. We assume that the initial value of each bond is unity (i.e., each bond

1We focus on bonds and loans for expositional purposes, but the basic modeling frame-
work remains applicable in case of alternative credit risky securities.
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values to par at the start). The credit loss on an individual bond j is now
given by the random variable

1{Sj<s∗}, (2)

where 1A is the indicator function of the set A.
We assume that Sj obeys the general factor model

Sj = g(f, εj), (3)

where f is a common factor, εj is a firm-specific risk factor, and g(·, ·) defines
the functional form of the factor model. In this section, we restrict the factor
model to be the same for each firm j. This assumption is relaxed in the
next section. The formulation in (3) comprises the well-known factor models
from the literature. For example, if we set g(f, εj) = βf + εj for some factor
loading β ∈ R with Gaussian f and εj, we obtain a one-factor version of
the CreditMetrics model introduced by Gupton, Finger, and Bhatia (1997).
In our present static context, this also coincides with the formulation of
CreditPortfolioView of McKinsey, see Wilson (1997a,b). Alternatively, if
g(f, εj) = εj/(βf) with β > 0 and εj and f exponentially and Gamma
distributed, respectively, we obtain the CreditRisk+ specification of Credit
Suisse as given in Gordy (2000), compare Credit Suisse (1997).

For sake of simplicity we consider a one-factor version of (3) only. Some
results for linear multi-factor models are given in Lucas et al. (2001). The key
ingredient in (3) is the common risk factor f . The functional dependence of
all Sj on this common f induces nonzero asset correlations in the underlying
surplus variables that eventually trigger default. Consequently, the model
also generates nonzero default correlations. For example, average default
rates can be much higher during recessions than during booms, a stylized
fact that can be captured by an adequate choice of f .

Given the formulation of the individual credit losses in (2), the credit loss
for a portfolio of n loans expressed as a fraction of the amount invested is
given by

Cn = n−1

n∑

j=1

1{Sj<s∗}. (4)

Looking at the extreme tail behavior of Cn is rather trivial as the support
of Cn is discrete. We obtain a continuous credit loss distribution only if we
let the number of loans n go to infinity, as in Lucas et al. (2001). We follow
this approach as it allows us to establish explicit links between the default
correlations (as implied by the asset correlation parameter ρ) and credit loss
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tail thickness.2 Define
C = lim

n→∞
Cn, (5)

where the limit exists almost surely, see Theorem 1 further below. Note
that a ‘standard’ central limit theorem to (5) is not applicable due to the
common dependence on f for every Sj. As shown in Theorem 1, the limiting
credit loss C only depends on the systematic risk factor f and not on the
idiosyncratic risk factors εj. Using the formulation in (5) rather than (4),
we therefore limit the number of stochastic components considerably. This
facilitates the study of the tail behavior of credit losses. As was shown in
Lucas et al. (2001), empirically relevant quantiles of Cn, e.g., 99% or 99.9%,
can be approximated well by quantiles of C, provided the credit portfolio
contains at least a few hundred exposures. These values of n are quite small
given the usually large numbers of exposures in typical bank portfolios. Thus
we may safely assume that this requirement is satisfied in many situations of
empirical interest.

We now introduce our key assumptions on the factor model g(·, ·) and the
risk factors f and εj. For expositional purposes, we again use more restrictive
assumptions than necessary. In the discussion of the assumptions, we point
out which conditions can be relaxed. Some of these relaxations are worked
out in later sections. We use the notation F̄ (x) = 1 − F (x), where F (·) is a
distribution function.

Assumption 1 (i) {εj}∞j=1 is an i.i.d. sequence that is independent of f .
(ii) g is monotonically increasing in both its arguments, such that for all s in
the range of g there exist inverse functions ε(·, ·) and f(·, ·) defined implicitly
by

s = g(f(s, ε), ε) = g(f, ε(f, s)).

(iii) The supports of εj and f are unbounded to the right and left, respectively.
Furthermore, for all s we have limε↑∞ f(s, ε) = −∞, and limf↓−∞ ε(f, s) =
∞.

Part (i) of the assumption is standard. The identically distributed re-
quirement is less crucial and will be relaxed in the next section. Part (ii) of
Assumption 1 requires the factor model to be increasing in the risk factors.
The focus on increasing g is not very restrictive per se. For example, the

2The introduction of stochastic recovery rates can also make the credit loss distribution
continuous for finite n, but this would not provide the desired insight into the relation
between default correlations and credit loss tail behavior. Indeed, the extreme tail behavior
of portfolio credit losses would be directly equal to the assumed tail behavior for the
recovery rates.
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specification of CreditRisk+ (Sj = εj/(βf)) does not satisfy the assumption
directly, as it is decreasing in f . If this is the case, however, we can usually
easily transform variables and consider g(f̃ , εj) with f̃ = −f , which is in-
creasing in f̃ . The additional condition in part (ii) requires invertibility of
the factor model g. The inverses must be well defined and lie in the appro-
priate supports of the original risk factors. In particular, we only consider
factor models from which we can always uniquely retrieve an element from
the vector (Sj, f, εj) given the other two elements. Note that both the lin-
ear CreditMetrics model (Sj = βf + εj with Sj, f , and εj in R) and the
multiplicative CreditRisk+ model (Sj = εj/(βf) with Sj, f , and εj in R+)
satisfy this criterion. Part (iii) states that the supports of f and the εj are
unbounded from below and above, respectively. This assumption is not cru-
cial, but greatly simplifies subsequent notation. Again, there is no loss in
generality as situations with a bounded support can be accommodated by
an appropriate change of variables. The last part of condition (iii) has the
following intuition. Consider the borderline case where a firm j is almost
pushed into bankruptcy. If common risk factors (f), e.g., the state of the
business cycle, are extremely adverse, then firm specific conditions (εj) have
to be extremely favorable to prevent the firm from going bankrupt. We thus
exclude bankruptcies that are solely induced by adverse values of f regardless
of firm specific risk εj (or vice versa).

A second set of assumptions constrains the different types of tail be-
haviour for the risk factors f and εj. In studying the tail behaviour of ag-
gregate credit losses we will either start from polynomially declining tails for
the underlying risk components (Assumption 2A) or exponentially declining
tails (Assumption 2B). Let F (·) and G(·) denote the (almost everywhere
continuously differentiable) distribution functions of εj and f , respectively.

Assumption 2A (i) Let F (·) denote the (almost everywhere continuously
differentiable) distribution function of εj. Then F (·) has a right-hand tail
expansion of the form

F̄ (x) = x−ν1 · L1(x), (6)

where L1(·) is a slowly varying function for x → ∞.
Similarly, let G(·) denote the distribution function of f . Then G(·) has a
left-hand tail expansion of the form

G(x) = (−x)−µ1 · L2(x), (7)

with L2(·) a slowly varying function for x → −∞.
(ii) The function x 7→ −f(s∗, x) is regularly varying at infinity with index
ζ1 > 0, so −f(s∗, x) = xζ1Lf (x), with Lf slowly varying.
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Note that ν1 and µ1 can be interpreted as the tail indices of the risk
factors εj and f , respectively. Assumptions 2A places further restrictions on
the stochastic behavior of f and εj and on the factor model g. It states that f
and εj have polynomial left-hand and right-hand tails, respectively. Note that
we only make assumptions about the extreme tail behavior of these random
variables. By contrast, both CreditMetrics and CreditRisk+ make much more
restrictive assumptions by specifying the complete stochastic behavior of the
risk factors. Using part (i) of Assumption 2A, we allow for any tail shape that
lies in the domain of attraction of a Fréchet (or a Weibull) law, see Embrechts
et al. (1997). An example of this is a distribution with polynomial tails, e.g.,
the Student t distribution. Part (ii) of Assumption 2A further limits the
number of allowed factor model specifications. For example the specification
g(f, εj) = εj exp(f) is not allowed as it is ‘not balanced’ in f and εj. Again,
such unbalancedness can usually be resolved by an appropriate change of
variables.

To state the appropriate conditions for exponential rather than polyno-
mial tails, we introduce the class of functions Ma(θ).

Definition 1 The class Ma(θ) for a ∈ [−∞, +∞] and θ ∈ R consists of
measurable functions f : R → R such that
(i) limx→a f(x)/xθ exists and is finite;
(ii) limx→a xf ′(x)/f(x) = θ.

We will only use the cases a = 0 and a = ±∞ for Ma(θ). Notice that
f ∈ Ma(θ) if and only if x 7→ f(x)/xθ ∈ Ma(0). If a function f is
regularly varying at infinity with index θ and satisfies that for some real
number B we have f(x) = f(B) +

∫ x

B
f ′(t) dt for all x > a with f ′ ulti-

mately monotone, then it follows from Theorem 2.4 of Seneta (1976) that
xf ′(x)/f(x) → θ for x → ∞. But then, we also have f ∈ M∞(θ) under the
additional condition that limx→∞ f(x)/xθ exists and is finite. Also notice
also if f(x) = xθL(x), then f ∈ M∞(θ) if and only if L ∈ M∞(0). Imposing
that a function f belongs to M∞(θ) can be viewed as strengthening the rep-
resentation of regularly varying functions in the sense that we can now write
f(x) = cBxθ exp(

∫ x

B
χ(u)

u
du) for all x greater than or equal to some number

B, where limx→∞ χ(x) = 0, see Theorem 1.2 in Seneta (1976) and equation
(1.5.1) in Bingham, Goldie, and Teugels (1987). It will prove later that this
class of functions is very useful for focusing on tail behavior.

Assumption 2B (i) As opposed to Assumption 2A, the right-hand tail ex-
pansion of F (·) has the form

F̄ (x) = exp (ν1x
ν2(1 + χ(x))) , (8)
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with ν1 < 0, ν2 > 0, limx→∞ χ(x) = 0 and 1 + χ ∈ M∞(0). Similarly, the
left-hand tail expansion of G(·) has the form

G(x) = exp (µ1(−x)µ2(1 + ξ(x))) , (9)

with µ1 < 0, µ2 > 0, where we also require that 1 + ξ belongs to M−∞(0)
with limx→−∞ ξ(x) = 0.

(ii) f(s∗, y) = −ζ
1/µ2

2 yν2/µ2(1+η(y)), with 1+η ∈ M∞(0) and limy→∞ η(y) =
0.

Assumption 2B resembles Assumption 2A except for the fact that we now
have exponential rather than polynomial tails. Notice that Assumption 2B
imposes more stringent conditions on the various tails than Assumption 2A.
Not only do we assume that the slowly varying functions in (the exponents
of) the tail expansions in fact have a limit, but we restrict the speed of
convergence by, e.g., yη′(y) → 0 for y → ∞. Though our formulation is
not as general as that in Theorem 3.3.26 of Embrechts et al. (1997), we
still cover a wide range of distributions that are commonly used in empirical
exercises, e.g., the normal and the Gamma distributions of CreditMetrics
and CreditRisk+, respectively. Part (ii) of Assumption 2B is a modified
balancedness condition, similar to part (ii) of Assumption 2A.

Assumptions 2A and 2B are easily applied to the standard credit risk
models as well as to straightforward extensions of these. We do this later in
the paper by giving explicit examples. The following theorem follows directly
from Williams (1991), Theorem 12.13. For completeness, its proof is given
in the Appendix.

Theorem 1 Given Assumption 1 and C as defined in (5), we have that
C = limn→∞ Cn exists a.s. and

C = P [Sj < s∗| f ] . (10)

Note that C is still stochastic due to its dependence on f . We now study the
extreme tail behavior of portfolio credit losses C. The following theorems
are proved in the Appendix.

Theorem 2 Let H be the distribution function of C. Given Assumptions 1
and 2A, C lies in the maximum domain of attraction of the Weibull with tail
index

α = ζ1µ1/ν1,

meaning that
1 − H(c) = (1 − c)α · L(1/(1 − c)), (11)

with c tending to the maximum credit loss 1.
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Theorem 2 directly reveals the extreme tail behavior of credit losses. In
particular, the fact that C lies in the domain of attraction of the Weibull
distribution implies that the distribution H(·) of C has the form given in (11).
The theorem further reveals how the tail index of the credit loss distribution
(α) depends on the tail indices of the latent factors (f and εj) and on the
factor model g. The dependence on the factor model enters through ζ1,
which is controlled by the balancedness condition (ii) in Assumption 2A.
If the tails of f and εj are both of the Fréchet type, see Embrechts et al.
(1997), the theorem shows that the tail index of the credit loss distribution
is directly proportional to the ratio of the tail index of f to that of εj. The
tail index of C can thus be very small provided ν1 is much larger than µ1.
Put differently, the tails of the credit loss distribution may be very fat if
the idiosyncratic risk factor is much lighter tailed than the systematic risk
factor. This has a straightforward economic interpretation. If the tail of
the common risk factor f is heavier than the tail of the idiosyncratic risk
factor εj, extreme falls in the variables Sj triggering default will primarily be
induced by bad realizations of f . Consequently, it is more likely that a large
number of bonds in the portfolio default simultaneously (due to extremely
adverse common shocks) rather than separately (due to extremely adverse
idiosyncratic shocks). This clustering effect in individual defaults increases
the likelihood of extreme portfolio losses and corresponds with a slower rate
of tail decay compared to the combination of thin-tailed common and heavy-
tailed idiosyncratic shocks.

We obtain a similar theorem for the case of exponential tails.

Theorem 3 Given Assumptions 1 and 2B, C lies in the maximum domain
of attraction of a Weibull with tail index

α = ζ2µ1/ν1.

An interesting implication of this theorem is that the tail index of credit
losses can be finite even if the underlying risk factors f and εj are both
thin-tailed, see also Lucas et al. (2001) and Figure 1 below.

To illustrate this result, consider two examples: the CreditMetrics model
of Gupton, Finger, and Bhatia (1997), and the CreditRisk+ model of Cred-
itSuisse as modified by Gordy (2000). First, consider the linear factor model
of CreditMetrics, Sj = βf + εj, with f and εj both standard normally dis-
tributed and β > 0, such that Assumption 2B applies. We thus obtain
ν1 = µ1 = −1/2, and ν2 = µ2 = 2. From the factor model inversion
f(s, ε) = (s−ε)/β it follows that ζ2 = β−2 and, thus, α = β−2. This confirms
the results in Lucas et al. (2001). A higher systematic risk component (i.e.,
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higher β) transforms into a lower tail index of C, which implies that more sys-
tematic risk results in fatter tails for portfolio credit losses. For CreditRisk+,
the factor model reads Sj = εj/(−βf), where εj is standard exponentially
distributed, and (−f) has a Gamma distribution with parameters γ1 and γ2.
We have ν1 = −1 and ν2 = 1 for the exponential, and µ1 = −1/γ2, µ2 = 1,
and ξ(y) = γ2(1 − γ1) ln(y)/y for the Gamma, see Abramowitz and Stegun
(1970) equation 6.5.32. It is easily checked that ξ(y) ∈ M∞(0). Furthermore,
inverting the factor model gives f(s, ε) = ε/(−βs), such that ζ2 = (βs∗)−1.
Therefore, following Theorem 3 the tail index of portfolio credit losses is
given by α = (βs∗γ2)

−1. Just as in the CreditMetrics specification, we see
that for the CreditRisk+ specification a more dominant common risk com-
ponent (higher β) results in a lower rate of tail decline. In contrast to the
CreditMetrics model, however, we also see that the portfolio quality enters
the tail index. This quality is measured by the magnitude of the default
threshold s∗, which for this model specification is strictly positive. Portfolios
with a higher quality level will have a lower value for s∗, and thus a higher
tail index. In Section 4 we prove that also the CreditMetrics model is affected
by portfolio quality. In contrast to the CreditRisk+ specification where the
effect is of first-order, portfolio quality only has a second-order effect in the
CreditMetrics specification (i.e., only affects the slowly varying function and
not the tail index). This provides yet another difference between the two
modeling frameworks, see also Gordy (2000).

A graphical illustration of the analytic results in Theorems 2 and 3 is
contained in Figure 1. The figure presents credit loss densities for the linear
factor model of CreditMetrics, slightly reparameterized as

Sj = ρ(1 − 2/µ1)
1/2f + [(1 − ρ2)(1 − 2/ν1)]

1/2εj. (12)

For illustration purposes, we set ρ = 0.15. Results are similar for other values
of ρ between 0 and 1. We further assume that f and εj follow a Student t
distribution with degrees of freedom µ1 and ν1, respectively. Note that the
rescaled risk factors (1 − 2/µ1)

1/2f and (1 − 2/ν1)
1/2εj now both have zero

mean and unit variance, as is common in the CreditMetrics framework. We
set the probability of default to 1%. The resulting credit loss densities are
given in Figure 1 over various relevant regions of the domain C ∈ [0, 1]. If
ν1, µ1 < ∞, Theorem 2 applies, such that the tail index of C is given by
α = µ1/ν1. If ν1, µ1 ↑ ∞, risk factors are normally distributed and the tail
index of C is given by α = (1 − ρ2)/ρ2, see Lucas et al. (2001).

The first thing to note in Figure 1 are the middle plots. These reveal the
typical shape of credit loss distributions known in the literature. Due to the
common dependence on f , defaults are correlated. This in turn gives rise to a
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Figure 1: Credit loss distributions with different tail indices

The figure contains the credit loss densities for a homogeneous portfolio. The
underlying factor model is linear, g(f, εj) = a · f + b · εj , with a = ρ(1− 2/µ1)1/2,
b = (1−ρ2)1/2(1−2/ν1)1/2, and ρ = 0.15. All εj are identically distributed. The
risk factors f and εj both follow a standardized Student t distribution with µ1 and
ν1 degrees of freedom, respectively. The default probability is 1%. The left-hand
plots display the credit portfolio loss density’s behavior in the extreme left-hand
tail. The middle plots display the behavior in the middle of the support, and
the right-hand plots give the extreme right-hand tail behavior. Note the different
scaling of the axes, especially the horizontal axis in the left-hand plots and the
vertical axis in the right-hand plots.

portfolio credit loss density that is right-skewed and has a fat right-hand tail.
More peculiar are the steeply decreasing and increasing shapes of the density
in the extreme left-hand (see left-hand plots) and right-hand tail (see right-
hand plots), respectively. These characteristics only show up in the plots if
either the density of f or εj has polynomial rather than exponential tails.
This is due to the specific value of ρ chosen. If ρ2 > 0.5, similar patterns
can show up if both tails are of the exponential type, e.g., normal. As the
assumption of thin tails for f and εj has been predominant in the literature,
it is not surprising that these unconventional shapes of the credit loss density
have not been considered earlier. The peculiar shape of the densities can be
understood as follows. Situations in which all firms default together or do
not default at all correspond to extremely negative and positive realizations,
respectively, of the systematic factor f . These situations are more likely to
occur if the distribution of f exhibits heavier tails than the idiosyncratic risk
factor εj, because then extremely bad realizations of f are less likely to be
off-set by extremely good realizations of εj.

13



The phenomena displayed in Figure 1 can also be illustrated using the
analytical expression of the credit loss density. From the proof of Theorem 2
in the Appendix, it follows that for a linear factor model Sj = af + bεj, this
density H ′(c) has the form

H ′(c) =
b

a
·
G′ ( s∗

a
− b

a
F−1(c)

)

F ′ (F−1(c))
, (13)

where F ′, G′, and H ′ are the derivatives of the distribution functions F , G,
and H, respectively. If the tails of f are lighter than those of εj, the numera-
tor tends faster to zero for c tending to either 0 or 1 (and thus F−1(·) tending
to −∞ or +∞). By contrast, if the tails of εj are lighter, the denominator
tends to zero at a faster rate. As a consequence, the density diverges to ∞
for both c ↓ 0 and c ↑ 1. If both tails are equally heavy, (13) shows that
what matters at the extremes of the support is the size of b/a. For example,
for polynomial tails of f and εj that have the same tail index, it follows from
(13) that the density tends to a non-zero limit at the edge of its support if
|b| < |a|.

The results so far also have a practical edge for credit risk management.
The likelihood of extreme credit losses is increased if the common risk factor
has fatter tails than the idiosyncratic risk factor. As it is generally difficult
to reliably estimate the tail-fatness of f and εj from the empirical data that
are typically available, a more conservative approach than that based on
normally distributed risk factors can be warranted for prudent risk manage-
ment. Especially in the upper quantiles of the credit loss distribution, more
probability mass might be concentrated than suggested by the normality as-
sumption for common and idiosyncratic risk (see also the numerical results
in Lucas et al. (2001)).

3 Heterogeneous bond portfolios

So far we considered the portfolio credit loss distribution for homogeneous
portfolios and a one-factor model governing defaults. We now extend the
results to heterogeneous portfolios consisting of m homogeneous groups. We
use i as the index of group i, i = 1, . . . ,m. Each group consists of ni = ni(n)
companies with

∑m
i=1 ni = n. Notice also that for each company j there

exists exactly one i = ij such that this company belongs to group i. We now
have a company/group specific factor model, such that for all j = 1, . . . , n it
holds that

Sj = gi(f, εj),

14



for some i = 1, . . . ,m. We modify the assumptions from Section 2 accord-
ingly. In order to avoid uninteresting pathological situations in the present
context we also make the assumption that the relative sizes of the groups
λi(n) = ni(n)

n
eventually stabilize. That is λi = limn→∞ λi(n) is assumed to

exist for all i.

Assumption 1′ The same as Assumption 1, except for the following modi-
fications:
(i) The εj are still independent and are within each group identically dis-
tributed. The common distribution function in group i is denoted by Fi.
(ii) The factor models gi are increasing in both arguments and the inverse
functions fi(s, ε) and εi(f, s) exist and are well defined for all s, ε, f in their
relevant supports.
(iii) Unchanged.
(iv) There exists an index ι ∈ {1, . . . ,m} and a constant K such that

lim
f→−∞

∑m
i=1 λi(1 − Fi(εi(f, s∗i )))

1 − Fι(ει(f, s∗ι ))
= K > 0. (14)

Assumption 2A′ Similar to Assumption 2A, except:
(i) Each Fi has a right-hand tail expansion as in (6), but with parameter ν1i.
(ii) The function x 7→ −fι(s

∗, x) is regularly varying at infinity with index
ζ1 > 0, so −fι(s

∗, x) = xζ1Lf (x), with Lf slowly varying.

Assumption 2B′ Similar to Assumption 2B, except:
(i) Each Fi has a right-hand tail expansion as in (6), but with parameters
ν1i, ν2i, and ν3i.
(ii) fι(s

∗, y) = −ζ
1/µ2

2 yν2/µ2(1+η(y)), with 1+η ∈ M∞(0) and limy→∞ η(y) =
0.

The main relaxations with respect to the previous set of assumptions
concern the group-specific factor models and distributions of the idiosyncratic
risk components. Also note that the credit quality as measured by s∗i may
differ across groups.

Assumption 1′ on the factor models all being increasing in f is more re-
strictive for heterogeneous portfolios than for homogeneous portfolios. In
particular, it is no longer always possible to meet this assumption by an ap-
propriate change of variables. As an example, consider two groups where one
has a factor model that is increasing in f , while the other factor model is
decreasing in f . By changing variables from f to f̃ to make the latter model
increasing in f̃ , one makes the former model decreasing in f̃ . Such situa-
tions are, however, of limited practical interest as they imply both positive
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and negative correlation between companies’ surplus variables and macroe-
conomic conditions for significant parts of the portfolio.

Part (iv) of Assumptions 1′ is new and requires that for extreme common
risk factor realizations f one of the idiosyncratic tails dominates the other
tails. The tail behavior is not checked explicitly for f , but by feeding the
inverse function εi(f, s∗i ) through the idiosyncratic distribution Fi for group
i. Parts (ii) of Assumptions 2A′ and 2B′ now only need to be satisfied for
group ι rather than for every group i = 1, . . . ,m. Note that the limit in (iv)
exists if for all i

`i = lim
f→−∞

λi(1 − Fi(εi(f, s∗i )))

1 − Fι(ει(f, s∗ι ))

exists and is finite. In that case we have K =
∑n

i=1 λi`i.
The assertion of Theorem 1 now takes a different form, which can be

proved similarly. Different from (10) we have the following formulation of
portfolio credit losses:

C =
m∑

i=1

λi · P [gi(f, εi) < s∗i |f ] =
m∑

i=1

λi · Fi(εi(f, s∗i )), (15)

where we have replaced the firm index j of ε by the group index i. For each
firm in group i, εi follows the distribution Fi, and the εi are independent. The
constants s∗i determine the default probability in group i. As said before, the
constants λi denote the (asymptotic) relative size of group i. Alternatively,
one can allow for different loan sizes or recovery rates between groups and
incorporate these in λi. This does not affect the rate of tail decay, but may
impact the upper endpoint of the support of C. For simplicity, we do not
consider this case here.

As can be seen from (15), only the groups with a positive λi contribute
to the asymptotic credit loss. We now discard all bonds in group i′ for which
λi′ = 0. The resulting portfolio now contains n′ = n − ni′(n) bonds and

the relative sizes of the groups become λi′(n
′) = ni(n

′)
n′ . It is however fairly

easy to see that still limn′→∞ λi′(n
′) = λi. Therefore equation (15) is still

valid for the smaller portfolio, since for the original portfolio the i′-th group
contributed nothing to the asymptotic credit loss. Henceforth we assume a
portfolio for which all λis are strictly positive.

We have the following theorem on the tail index of credit losses for het-
erogeneous portfolios. The theorem is proved in the Appendix.

Theorem 4 Let Assumptions 1′ and 2A′ be satisfied, then C lies in the
maximum domain of attraction of the Weibull with tail index

α = ζ1ιµ1/ν1ι.
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We obtain a similar theorem for exponential tails.

Theorem 5 Let Assumptions 1′ and 2B′ be satisfied, then C lies in the max-
imum domain of attraction of the Weibull with tail index

α = ζ2ιµ1/ν1ι.

An important implication of Theorems 4 and 5 is that in order to char-
acterize the extreme tail behavior of portfolio credit losses, we do not have
to take the complete portfolio into account. Only segment ι is important to
compute the tail index. In fact, the tail index is the same for a heterogeneous
portfolio compared to a homogeneous portfolio of the same size consisting of
loans to group ι only. This immediately follows from the fact that the size of
the investment in group ι (λι), does not enter the expression for the tail in-
dex. To provide some further insight, we focus on the definition of ι. Assume
a factor model that is identical across groups, gi(f, ε) ≡ g(f, ε), but with the
idiosyncratic risk factors still allowed to have different distributions across
groups. According to (14), ι characterizes the group that has the thickest
right-hand tails for the idiosyncratic risk component. Thus, the group with
the heaviest idiosyncratic tail dictates portfolio credit loss tail behavior. In
particular, the heavier this tail compared to the tail of f , the lighter the tail
of portfolio credit losses C, see also Frey and McNeil (2001). The intuition
for this result follows from the limiting approach taken. Idiosyncratic risk
is diversifiable and therefore not incorporated in C, which only depends on
common risk f . If a part of the portfolio has a strong idiosyncratic risk
component, this part of the portfolio is less likely to be pushed into default
by movements in common risk only. In the extreme right-hand tail of credit
losses, all bonds in the portfolio have to default due to adverse common risk
realizations only. As argued, the most problematic cases in this respect are
precisely the bonds in group ι, which are more easily pushed into default by
idiosyncratic risk compared to common risk. Therefore, this group entirely
determines the tail behavior near the maximum credit loss.

4 Second order tail expansion

In Section 2, we showed that the tail index of credit losses is only influenced
by portfolio quality s∗ in the CreditRisk+ specification of Gordy (2000), and
not in the CreditMetrics framework. In the present section, we prove that
credit quality does also influence the tail behavior of credit losses in the
CreditMetrics framework, but through a different channel. We again focus
on a homogeneous portfolio and the linear factor model Sj = ρf+(1−ρ2)1/2εj
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with Gaussian risk factors. In order to study the impact of changes in credit
quality on portfolio credit losses in a CreditMetrics framework, we consider
a second-order tail approximation. In particular, we derive an expression for
the slowly varying function L(·) in (11) that is correct up to first order. In
the Appendix, we prove the following theorem.

Theorem 6 Given the homogeneous Gaussian linear factor model setting

Sj = ρf +
√

1 − ρ2 εj,

for ρ ∈ [−1, 1], the distribution of C has a tail expansion for c ↑ 1 of the
form

P [C > c] = (1 − c)(1−ρ2)/ρ2 · L(1/(1 − c)), (16)

where L is a function that is slowly varying at infinity and that satisfies

L(x) =
ρ(ln(x2))

1−3ρ2

2ρ2

√
1 − ρ2

exp

[
−(s∗)2

2ρ2
+

s∗
√

ln(x2)
√

1 − ρ2

2ρ2

]
· (1 + o(1)). (17)

The theorem gives a more explicit form of the slowly varying function
L(·) in the tail expansion. Gathering the components of L(x) that depend
on x, we have

L(x) ∝ exp

[
1 − 3ρ2

2ρ2
ln(ln(x2)) +

s∗
√

ln(x2)
√

1 − ρ2

2ρ2

]
. (18)

The dominant term in L(x) as a function of x ↑ ∞ is therefore

exp

[
s∗

√
ln(x2)

√
1 − ρ2

2ρ2

]
. (19)

First note that s∗ = Φ−1(p) for a default probability p. For p less than
50%, the default threshold s∗ will be negative. Moreover, s∗ is increasing
in p. If s∗ < 0, (19) is decreasing in x, because ρ2 ≤ 1. The smaller the
default probability p, the faster the rate of decline of (19) in x. A higher
level of portfolio quality, i.e., a lower p and more negative s∗, increases the
rate of tail decline for credit losses. Therefore, less far out in the credit loss
tail, tails may appear thinner than suggested by the result in Theorem 3.
This effect, however, is only of second order. In the extreme tail, the slowly
varying function is again dominated by the factor (1−c)(1−ρ2)/ρ2

in (16). This
contrasts with the finding for the CreditRisk+ model in Section 2, where s∗

entered the tail index of credit losses directly.
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5 Concluding remarks

In this paper, we followed a limiting approach to determining the distribution
of aggregate portfolio credit risk. Using a general (nonlinear) latent factor
model, we decomposed credit risk into a systematic and an idiosyncratic risk
factor. The model allows for different rates of tail decay for the underlying
risk components. We proved that under general conditions the distribution of
portfolio credit losses exhibits a polynomially decaying tail. This is important
for credit risk management.

We showed that the tail index of credit losses for homogeneous portfolios
directly relates to the tail indices of the systematic and idiosyncratic risk
components, and to the functional specification of the factor model. The
results were illustrated by computing the tail decay rate of aggregate credit
losses for the CreditMetrics and CreditRisk+ models, two of the most com-
mon credit risk portfolio models available in the literature. This revealed a
striking difference: the portfolio quality has a first-order effect on the rate of
tail decline under the specification of CreditRisk+ as given in Gordy (2000),
but not under that of CreditMetrics.

Moreover, we showed that the tail index of portfolio credit losses is very
small if the tail of the systematic risk component is much heavier than the
tail of the idiosyncratic risk component. In particular, the density of credit
losses may then be increasing towards the edges of its support. This means
that extreme credit losses may show up with a much larger probability than
suspected on the basis of a factor model with Gaussian systematic and id-
iosyncratic risk.

We generalized our analytical results to a heterogeneous portfolio set-
up by allowing distributions of idiosyncratic risk, default probabilities, and
loan exposures to differ across subsets of loans in the portfolio. The results
turned out to be very similar to the homogeneous case. The tail thickness of
credit losses is determined by that part of the portfolio that has the heaviest
idiosyncratic tail. In particular, the credit loss tail shape of a heterogeneous
portfolio is the same as that of a homogeneous portfolio consisting solely of
the bonds with the heaviest idiosyncratic tail.

We also investigated the effect of changes in credit quality as measures
by the magnitude of the default threshold. We found that portfolio quality
affects credit loss tail behavior rather differently in the CreditMetrics com-
pared to the CreditRisk+ framework. Whereas the portfolio quality directly
enters the tail index in a CreditRisk+ setting, it only influences CreditMetrics
portfolio losses indirectly via the so-called slowly varying function.
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Appendix: Proofs

Proof of Theorem 1: Consider the filtration defined by the σ-fields Fn = σ(f, ε1, . . . , εn)
and the process M given by Mn =

∑n
j=1 ξj , with ξj = 1{Sj < s∗}−P (Sj < s∗|f). We show

that M is a zero mean martingale with respect to this filtration. To that end we compute
E[ξn|Fn−1] = E[1{g(f,εn)<s∗}|σ(f, ε1, . . . , εn−1)]. Due to the assumed independence of
f, ε1, ε2, . . . this is equal to P (Sj < s∗|f) = P (g(f, εn) < s∗|f) = P (εn < ε(f, s∗)|f).
Invoking the assumed independence one more we can rewrite this as F (ε(f, s∗)). Hence
the martingale property follows together with C = P (Sj < s∗|f) = F (ε(f, s∗)). In the
same vain one computes var (ξn|Fn−1) = C(1 − C) < 1 a.s. Hence it follows from the
strong law for martingales (Theorem 12.14 in Williams (1991)) that Mn

n → 0 a.s., which
is equivalent to the assertion of the theorem.

Proof of Theorem 2: If H is the distribution functions of C, then we have for all
c ∈ (0, 1) that H̄(c) = 1 − H(c) = G(f(s∗, F−1(c))), since C = F (ε(f, s∗)). The result
will follow from the composition rule for regular varying functions, see Bingham et al.
(1987), Proposition 1.5.7. It states that the composition R1 ◦R2 of two regularly varying
functions (at infinity) R1 and R2 with indices θ1 and θ2 is regularly varying with index
θ1θ2 if R2(x) → ∞ as x → ∞. To apply this proposition (two times) to the function
H̄ one switches to the auxiliary function h defined by h(x) = G(f(s∗, F−1(1 − 1/x))).
First we verify that x → F−1(1 − 1/x))) is regularly varying at infinity. It follows from
Assumption 1 that F−1 is well defined and that limx→∞ F−1(1 − 1/x))) = ∞. From
Theorem 1.5.12 of Bingham et al. (1987) we obtain that this function is regularly varying
with exponent −1/ν1. A twofold application of the composition rule is now justified under
Assumptions 1 and 2A.

Proof of Theorem 3: In the course of the proof we need certain properties of functions
belonging to the classes Ma(θ). We give these properties first. The following statements
parallel Seneta (1976), pages 18–19, and Bingham et al. (1987), Proposition 1.5.7. If
f is increasing (with θ > 0) and f ∈ M∞(θ), then f−1 ∈ M∞(1/θ). Similarly, if
f is decreasing (with θ < 0), then f−1 ∈ M0(1/θ). We also have that f ∈ Ma(θ1)
and g ∈ Mb(θ2) with limx→b g(x) = a implies that f ◦ g ∈ Mb(θ1θ2). Furthermore, if
f ∈ Ma(θ) then fα ∈ Ma(αθ) and if f ∈ Ma(θ1) and g ∈ Ma(θ2), then fg ∈ Ma(θ1+θ2).

We now start proving the theorem. The function φ defined by φ(x) = log F̄ (x) (here
F̄ = 1 − F ) belongs to M∞(ν2). It then follows that φ−1 belongs to M−∞(1/ν2). For
y → −∞ we have

φ−1(y) = (
y

ν1
)1/ν2Lφ−1(y).

As a consequence, we can write

F̄−1(t) = F−1(1 − t) =
(

log t

ν1

)1/ν2

LF−1(t),

where LF−1(t) = Lφ−1(log t) is so that limt→0 LF−1(t) = 1, since limx→∞ ε(x) = 0.
Using the assumptions on f , we can write

f(s∗, F−1(1 − t)) = −ζ
1/µ2
2

(
log t

ν1

)1/µ2

L
ν2/µ2

F−1 (t)(1 + η̃(t)),
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with η̃(t) = η(F−1(1 − t)) = η(( log t
ν1

)1/ν2LF−1(t)). Notice that η̃(t) → 0 for t → 0.
As a result we get

H̄(1 − t) = exp (αk(t) log t) ,

with

α =
µ1ζ2
ν1

,

k(t) = LF−1(t)ν2(1 + η̃(t))µ2(1 + ξ̃(t)),

and
ξ̃(t) = ξ(f(s∗, F−1(1 − t))).

Notice that also ξ̃(t) → 0 for t → 0.

In order to have that t 7→ H̄(1− t) is regularly varying at zero with coefficient α, we have
to prove that for t → 0

log H̄(1 − xt) − log H̄(1 − t) → α log x,

which amounts to
(k(tx) − k(t)) log t + k(tx) log x → log x.

Hence, we verify that
lim
t→0

k(tx) = 1

and
lim
t→0

(k(tx) − k(t)) log t = 0. (A1)

The first limit is obvious from the definition of k and the convergence of η and ξ. The
second limit will be treated by using properties of functions belonging to the relevant
classes M(θ). We make the substitutions y = log t and z = log x. Putting `(y) = k(ey)
we rewrite equation (A1) as

lim
y→−∞

y(`(y + z) − `(y)) = 0. (A2)

Observe that

`(y) = Lφ−1(y)ν2(1 + η(φ−1(y)))µ2(1 + ξ(f(s∗, φ−1(y)))).

Since φ−1(y) → ∞ when y → −∞ we can draw the following conclusions, using the
properties listed at the beginning of the proof. The functions Lφ−1 , 1 + η ◦ φ−1 and
1 + ξ(f(s∗, φ−1(·))) belong to M−∞(0). Hence we find that also ` ∈ M−∞(0). Next we
invoke the mean value theorem to write `(y + z)− `(y) = z`′(y + z∗) for some z∗ between
zero and z. But then y(`(y + z) − `(y)) = z y

y+z∗
(y+z∗)`′(y+z∗)

`(y+z∗) `(y + z∗) → 0. This shows
that (A2) is valid and concludes the proof of the theorem.

Proof of Theorem 4: Note that

P [C > c] = P

[
m∑

i=1

λi[1 − Fi(εi(f, s∗i ))] < 1 − c

]
. (A3)
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Notice that in (A3) we are interested in extreme events that are determined in terms of
f . If c tends to one, then the event {C > c} can alternatively be expressed as {f < l},
where l tends to −∞. What we want to show is that the tail behavior of C, which is
determined by the tail behavior of

∑m
i=1 λi[1 − Fi(εi(f, s∗i )) is essentially determined by

that of 1 − Fι(ει(f, s∗ι )). More precisely, we show that for c ↑ 1, we have P (C > c) ∼
P (1 − Fι(ει(f, s∗ι )) <

1−c
K ).

We use the following auxiliary result. Let g and h be two (measurable) increasing
functions, such that limx→∞ f(x)/g(x) = 1. Let X be a random variable with distribution
function FX that is such that for all x one has FX(x) < 1. Consider the random variables
g(X) and h(X). If h(X) has a regularly varying tail at infinity, then also g(X) has a
regularly varying tail, with the same index as h(X). A similar statement holds for left
tails.

Proof of the auxiliary result: Fix δ > 0 and choose x0 such that x > x0 implies
| g(x)
h(x) − 1| < δ. Consider then P (g(X) > u), where u is sufficiently big, such that we

must have X > x0. Then we have P (g(X) > u) ≤ P (h(X) > u
1+δ ) and P (g(X) > u) ≥

P (h(X) u
1−δ ). Hence we have the double inequality

P (h(X) > u
1−δ )

P (h(X) > u)
≤ P (g(X) > u)

P (h(X) > u)
≤

P (h(X) > u
1+δ )

P (h(X) > u)
.

Let θ < 0 be the index of regular variation of the right hand tail of h(X). Using that h(X)
has a regularly varying right tail, we then obtain that lim supu→∞

P (g(X)>u)
P (h(X)>u) ≤ (1 + δ)θ

and lim infu→∞
P (g(X)>u)
P (h(X)>u) ≥ (1 − δ)θ. Since this is true for all δ > 0, we conclude that

limu→∞
P (g(X)>u)
P (h(X)>u) = 1.

But then

P (g(X) > ut)
P (g(X) > u)

=
P (g(X) > ut)
P (h(X) > ut)

· P (h(X) > u)
P (g(X) > u)

· P (h(X) > ut)
P (h(X) > u)

converges to tθ as u → ∞.
The auxiliary result can now be used with f instead of X and letting

∑m
i=1 λi[1 −

Fi(εi(f, s∗i )) take the role of g(X) and K(1 − Fι(ει(f, s∗ι ))) the role of h(X).

Proof of Theorem 5: Similar to the proof of Theorem 4.

Proof of Theorem 6: Using the fact that for x ↓ −∞ we have Φ(x) = φ(x)/|x|(1 +
O(|x|−2)), we obtain for ξ ↓ 0 that

P [C > 1 − ξ] = Φ

(
s + Φ−1(ξ)

√
1 − ρ2

ρ

)

∼
φ

(
s+Φ−1(ξ)

√
1−ρ2

ρ

)

|s+Φ−1(ξ)
√

1−ρ2|
ρ

= exp

(
− s2

2ρ2
− sΦ−1(ξ)

√
1 − ρ2

2ρ2

) [
φ

(
Φ−1(ξ)

)

|Φ−1(ξ)|

] 1−ρ2

ρ2 |Φ−1(ξ)|(1−ρ2)/ρ2

∣∣∣∣
s+Φ−1(ξ)

√
1−ρ2

ρ

∣∣∣∣
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∼ exp

(
− s2

2ρ2
− sΦ−1(ξ)

√
1 − ρ2

2ρ2

)
[ξ]

1−ρ2

ρ2
|Φ−1(ξ)|(1−ρ2)/ρ2

|s+Φ−1(ξ)
√

1−ρ2|
ρ

. (A4)

Let Φ̂(x) = φ(x)/|x|, then

Φ̂−1(ξ) =
− exp[− 1

2`(1/(2πξ
2))]√

2πξ2
,

with `(·) the Lambert-W function, i.e., the solution to

`(x) · exp[`(x)] = x.

For large positive x, we have asymptotically that

`(x) = ln(x) − ln(ln(x)) + o(ln(ln(x))),

such that
Φ̂−1(ξ)

ξ↓0
= −

√
− ln(2πξ2). (A5)

Substituting Φ−1(ξ) in (A4) by (A5), we obtain the desired result.
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