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Abstract

We present a non-parametric method for calibrating jump-diffusion
models to a finite set of observed option prices. We show that the usual
formulations of the inverse problem via nonlinear least squares are ill-
posed and propose a regularization method based on relative entropy:
we reformulate our calibration problem into a problem of finding a risk
neutral jump-diffusion model that reproduces the observed option prices
and has the smallest possible relative entropy with respect to a chosen
prior model. Our approach allows to conciliate the idea of calibration by
relative entropy minimization with the notion of risk neutral valuation
in a continuous time model. We discuss the numerical implementation
of our method using a gradient based optimization algorithm and show
via simulation tests on various examples that the entropy penalty resolves
the numerical instability of the calibration problem. Finally, we apply
our method to data sets of index options and discuss the empirical results
obtained.
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tistical Symposium (Taipei 2002), Maphysto (Aarhus & Copenhagen), University of Freiburg,
University of Warwick and INRIA. We thank Marco Avellaneda, Frédéric Bonnans, Stephane
Crépey and Dilip Madan for helpful remarks.

1



Contents

1 Introduction 3

2 Model setup 4
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1 Introduction

The insufficiency of diffusion models to explain certain empirical properties of
asset returns and option prices has led to the development, in option pricing
theory, of a variety of jump-diffusion models based on Lévy processes[4, 14, 13,
12, 23, 25, 24, 27, 31]. A widely studied class is that of exponential Lévy pro-
cesses in which the price of the underlying asset is written as St = exp(rt + Xt)
where r is the discount rate and X is a Lévy process defined by its character-
istic triplet (b, σ, ν) (see section 2.1). While the main concern in the literature
has been to obtain efficient analytical and numerical procedures for computing
prices of various options, a preliminary step in using the model is to obtain
model parameters – here the characteristic triplet of the Lévy process – from
market data by calibrating the model to market prices of (liquid) call options.
This amounts to solving the following inverse problem:

Calibration Problem 1. Given prices of call options C∗t (Ti,Ki), i ∈ I, find a
Lévy triplet (b, σ, ν) such that the discounted asset price St exp(−rt) is a mar-
tingale and the observed option prices are given by their discounted risk neutral
expectations:

∀i ∈ I, C∗t (Ti, Ki) = e−r(T−t)E(b,σ,ν)[(S(Ti)−Ki)+|St = S]. (1)

Note that, in order to price exotic options, we need to retrieve the risk
neutral process and not only its conditional densities (also called the state price
densities) as in [1]. Problem (1) is equivalent to a moment problem for the
Lévy process X, which is typically an ill posed problem: there may be either
no solution at all or an infinite number of solutions. Even in the case where we
use an additional criterion to choose one solution from many, the dependence
on input prices may be discontinuous, which results in numerical instability of
calibration algorithm.

In order to circumvent these difficulties, we propose a regularization method
based on relative entropy minimization. Our method is based on the idea that,
unlike the diffusion setting where different volatility structures lead to singular
(non equivalent) measures (and therefore infinite relative entropy), two Lévy
processes with different Lévy measures can define equivalent measures. It turns
out that the relative entropy of exponential Lévy models is a simple functional
of their Lévy measures which can be used as a regularization criterion for solving
the inverse problem (1) in stable way. Our approach leads to a nonparametric
method for calibrating jump-diffusion models to option prices, extending similar
methods previously developed for diffusion models [29].

The paper is structured as follows. Section 2 defines the model set-up and
recalls some useful properties of Lévy processes and relative entropy. Section
3 proposes a well-posed formulation of the calibration problem as that of find-
ing a jump-diffusion model that reproduces observed option prices and has the
smallest possible relative entropy with respect to some carefully chosen prior
measure. Section 4 discusses the numerical implementation of the calibration
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method, the main ingredient of which is an explicit representation for the gra-
dient of the criterion being minimized (section 4.4).

To assess the performance of our method we first perform numerical exper-
iments on simulated data : calibration is performed on a set of option prices
generated from a given exp-Lévy model. Results are presented in section 5:
while the non-linear least squares algorithm does not converge in a stable way
our algorithm allows to retrieve the Lévy measure while avoiding high sensitiv-
ity to the prior. The precision of recovery is especially good for medium and
large sized jumps but small jumps are hard to distinguish from a continuous
diffusion.

Section 6 presents empirical results obtained by applying our calibration
method to a data set of DAX index options. Our tests reveal a density of jumps
with strong negative skewness. While a small value of jump intensity seems
sufficient to calibrate the observed implied volatility patterns, the shape of the
density of jump sizes evolves across maturities, indicating the need for departure
from time homogeneity.

2 Model setup

We consider here the class of exponential Lévy models where the risk neutral
dynamics of the underlying asset is given by St = exp(rt + Xt) where Xt is a
(time-homogeneous) jump-diffusion process, also called a Lévy process.

2.1 Lévy processes: definitions

A Lévy process is defined as a stochastic process Xt with stationary independent
increments which is continuous in probability. Without loss of generality we
assume that X0 = 0. The characteristic function of Xt has the following form,
called the Lévy-Khinchine representation [30]:

E[eizXt ] = exp{t(−1
2
az2 + iγ0z+

∫ ∞

−∞
(eizx − 1− izx1|x|≤1)ν(x)dx)} (2)

where a > 0 and γ0 are real constants and ν is a positive measure verifying

ν({0}) = 0
∫ +1

−1

x2ν(dx) < ∞
∫

|x|>1

ν(dx) < ∞ (3)

We will denote the set of such measures by L(R). Any Lévy process X can be
decomposed into a Brownian motion with drift, a jump process J1

t with jumps
sizes less than or equal to 1 and a jump process J2 with jumps sizes > 1 [30]:

Xt = a Wt + γ0t + J1
t + J2

t (4)
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J2 (resp. J1) can then be considered as a superposition of independent Poisson
(resp. compensated Poisson) processes with various jump sizes x, ν(dx) being
the intensity (probability per unit time) of jumps of size x. If the measure ν(dx)
admits a density with respect to the Lebesgue measure, we will call it the Lévy
density of X and denote its value by ν(x).

The sample paths of a Lévy process are discontinuous; one may always choose
a version of the process such that all sample paths are right continuous with
left limits (càdlàg). (Xt, t ∈ [0, T ]) therefore defines a probability measure of
the space of càdlàg functions on [0, T ]. One can therefore choose Ω to be this
space, Ft to be the corresponding σ-field generated by the paths between 0 and
t completed by null sets and F = FT .

In general ν is not a probability measure:
∫

ν(dx) need not even be finite.
In the case where λ =

∫
ν(dx) < +∞, the Lévy process is said to be of finite ac-

tivity and the measure ν can then be normalized to define a probability measure
µ on R− {0} which can be interpreted as the distribution of jump sizes:

µ(dx) =
ν(dx)

λ
(5)

In this case X is called a compound Poisson process and λ which is the average
number of jumps per unit time, is called the intensity of jumps. In this case the
truncation of small jumps is not needed and the Lévy-Khinchin representation
reduces to:

E[eizXt ] = exp{t(−1
2
az2 + iγz +

∫ ∞

−∞
(eizx − 1)ν(x)dx)} (6)

For further details on Lévy processes see [9, 20, 30].

2.2 Exponential Lévy models

Let (St)t∈[0,T∗] be the price of a financial asset modeled as a stochastic process
on a filtered probability space (Ω,F ,Ft,Q). Under the hypothesis of absence of
arbitrage there exists a measure equivalent to Q under which (St) is a martin-
gale. We will assume therefore without loss of generality that Q is already one
such martingale measure.

We call exponential Lévy model, a model where the dynamics of St under
Q is represented as the exponential of a Lévy process:

St = ert+Xt (7)

Here Xt is a Lévy process with characteristic triplet (σ,γ,ν) and the interest rate
r is included for ease of notation. Since the discounted price process ertSt = eXt

is a martingale, this gives a constraint on the triplet (σ,γ,ν):

φ(1) = 0 ⇐⇒ γ = γ(σ, ν) = −σ2

2
−

∫
(ey − 1− y1|y|≤1)ν(dy) (8)

We will assume this relation holds in the sequel.
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Different exponential Lévy models proposed in the financial modeling liter-
ature simply correspond to different parametrizations of the Lévy measure:

• Compound Poisson models: Xt =
∑Nλ(t)

i=1 Yi, Yi ∼ ν0 IID )
Merton model [27]: µ = N(0, σ2)
Poisson jumps: ν =

∑n
k=1 pkδyk

.
Double exponential [23] : ν(x) = [1x>0pα1e

−α2x + (1− p)α2e
−α2x1x<0]

• Variance Gamma [24] ν(x) = A|x|−1 exp(−η±|x|)
• Tempered stable1 processes [22, 12]: ν(x) = A±|x|−(1+α) exp(−η±|x|)
• Normal inverse gaussian process [6]
• Hyperbolic and generalized hyperbolic processes [14, 13]
• Meixner process [31]: ν(x) = Ae−ax

sinh(x)

The price of an option is computed as a discounted conditional expectation
of its terminal payoff under the risk-neutral probability Q. By stationarity and
independence of increments of Xt, the value of a call option can be expressed
as:

C(t, S;T = t + τ, K) = e−rτE[(ST −K)+|St = S] (9)
e−rτE[(Serτ+Xτ −K)+] = Ke−rτE(ex+Xτ − 1)+ (10)

Defining the log forward moneyness variable

x = ln(S/K) + rτ (11)

one can express the option price via u(τ, x) = erτC(t, S;T = t+τ,K)/K which
then takes a simpler form:

u(τ, x) = E[(ex+Xτ − 1)+] =
∫

ρ(t, dy)(ex+y − 1)+ (12)

The pattern of call option prices thus only depends on the current level of
underlying and the Lévy triplet (σ, ν, γ(σ, ν)).

2.3 Equivalence of measures for Lévy processes

One of the interesting properties of models with discontinuous sample paths is
that the class of martingale measures equivalent to a given one is quite large.
This remains true even of one restricts the price process to remain of exponential-
Lévy type under the risk neutral measure. The following result, stated without
proof, gives a description of the set of Lévy processes equivalent to a given one.
Similar results may be found in [20].

Proposition 1 (Sato [30], Thm 33.1 & 33.2 ). Let (Xt,P ) and (Xt,P ′) be
two Lévy processes with characteristic triplets are (a,γ,ν) and (a′,γ′,ν′ defined
by their corresponding probability measures on the space of càdlàg trajectories.
Then P |Ft and P ′|Ft are mutually absolutely continuous for all t if and only if
the three following conditions are satisfied:

1Also called ”truncated Lévy flights” in the physics literature.
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1. a = a′

2. The Lévy measures are mutually absolutely continuous with
∫ ∞

−∞
(eφ(x)/2 − 1)2ν(dx) < ∞ (13)

where φ(x) is defined by eφ(x) = dν′
dν

3. If a = 0 then we must in addition have γ′ − γ =
∫ 1

−1
x(ν′ − ν)(dx)

The Radon-Nikodym derivative is given by

dP ′|Ft

dP |Ft

= eUt (14)

where Ut is a Lévy process with characteristic triplet

aU = aη2 (15)

νU = νφ−1 (16)

γU = −1
2
aη2 −

∫ ∞

−∞
(ey − 1− y1|y|≤1)(νφ−1)(dy) (17)

and η is chosen so that

γ′ − γ −
∫ 1

−1

x(ν′ − ν)(dx) = aη

With this choice of drift we have EP [eUt ] = 1

The above result shows an interesting feature of models with jumps compared
to diffusion models: we have considerable freedom in changing the Lévy measure,
and therefore the option prices, while retaining the equivalence of measures.

Example: tempered stable processes The tempered stable process (also
called ”truncated” stable processes), introduced by Koponen [22], has a Lévy
measure of the following form:

ν(x) =
e−β+x

x1+α+ 1x≥0 +
e−β−|x|

|x|1+α− 1x<0 (18)

with β+ > 0, β− > 0, 0 < α+ < 2 and 0 < α− < 2. Two tempered stable
processes are mutually absolutely continuous if and only if their coefficients α+

and α−, which describe the behavior of the Lévy measure near zero, coincide.
In fact, the condition (13) for, say, the Lévy measure on the positive half-axis
is: ∫ ∞

0

(
e−

1
2 (β+

2 −β+
1 )x

x
α
+
2 −α

+
1

2

− 1

)2
e−β+

1 x

x1+α+
1

dx
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When α+
2 < α+

1 the integrand is equivalent to 1

x1+α
+
1

near zero and, hence, is

not integrable; the case α+
2 > α+

1 is symmetric. However, when α+
2 = α+

1 , the
integrand is equivalent to 1

xα
+
1 −1

and is always integrable.
This simple example shows that one can change freely the distribution of

large jumps (as long as the new Lévy measure is absolutely continuous with
respect to the old one) but one should be very careful with the distribution
of small jumps (which is determined by the behavior of the Lévy measure near
zero). This is a good property since large jumps are the ones which are important
from the point of view of option pricing: they affect the tail of the return
distribution and option prices in an important way. This is precisely the degree
of freedom we will use in order to calibrate option prices while remaining in a
class of measures equivalent to a given one.

Compound Poisson case A compound Poisson process is a pure jump Lévy
process which has almost surely a finite number of jumps in every interval.
This means that if two Lévy processes satisfy the conditions of mutual absolute
continuity listed in proposition 1 and one of them is of compound Poisson type,
the other one will also be of compound Poisson type since these processes must
have the same almost sure behavior of sample functions. If the jump parts
of both Lévy processes are of compound Poisson type the conditions of the
proposition 1 are somewhat simplified:

Corollary 1. Suppose that the jump part of Xt is of compound Poisson type.
Then P |Ft and P ′|Ft are mutually absolutely continuous for all t if and only if
the following conditions are satisfied:

1. a = a′

2. The jump part of X ′
t is of compound Poisson type and the two jump size

distributions are mutually absolutely continuous.

3. If a = 0 then we must in addition have γ′ = γ

The Radon-Nikodym derivative is given by

dP ′|Ft

dP |Ft

= eUt (19)

where Ut is a Lévy process with jump part of compound Poisson type. Its char-
acteristic triplet is given by (15)-(17).

Proof. First of all, the condition (13) is fulfilled automatically as
∫ ∞

−∞
(eφ(x)/2 − 1)2ν(dx) ≤ 2

∫ ∞

−∞
(ν(dx) + ν′(dx)) < ∞ (20)

As can be seen from the form of its characteristic triplet (15)-(17), the Radon-
Nikodym derivative process Ut also has jump part of compound Poisson type

8



because
∫ 1

−1

νU (dx) =
∫ 1

−1

[νφ−1](dx) =
∫

−1≤φ(y)≤1

ν(dy) < ∞ (21)

2.4 Relative entropy for Lévy processes

The notion of relative entropy or Kullback-Leibler distance is often used as mea-
sure of closeness of two equivalent probability measures. In this section we recall
its definition and properties and compute the relative entropy of the measures
generated by two risk neutral exp-Lévy models.

Define (Ω,F) as the space of real-valued cadlag functions defined on [0, T ].
Let P and Q be two equivalent probability measures on this path space. The
relative entropy of Q with respect to P is defined as

E =
∫

Ω

ln(
dQ
dP

)dQ

If we introduce the function f(x) = x ln x, which is clearly convex, we can write
the relative entropy

E = EP[f(
dQ
dP

)]

It is readily observed that the relative entropy is a convex functional of Q.
Jensen’s inequality shows that it is always non-negative:

E = EP[f(
dQ
dP

] ≥ f(EP[
dQ
dP

]) = f(1) = 0

As the relative entropy is equal to zero when dQ
dP = 1 almost surely, it follows

from the convexity that it is equal to zero only if dQ
dP = 1 almost surely. The

following result shows that, in the case where the measures are generated by
exponential Lévy models, the relative entropy can be expressed in terms of the
Lévy measures:

Proposition 2. Let P and Q be equivalent measures on (Ω,F) generated by ex-
ponential Lévy models with Lévy triplets (a,γP ,νP ) and (a,γQ,νQ). The relative
entropy E(Q,P) is then given by:

E(Q|P) =
T

2σ2

{
γQ − γP −

∫ 1

−1

x(νQ − νP )(dx)
}2

+

T

∫ ∞

−∞
(
dνQ

dνP
ln(

dνQ

dνP
) + 1− dνQ

dνP
)νP (dx) (22)
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If P and Q are both risk neutral measures, the relative entropy reduces to:

E(Q|P) =
T

2a

{∫ ∞

−∞
(ex − 1)(νQ − νP )(dx)

}2

+ T

∫ ∞

−∞
(
dνQ

dνP
ln(

dνQ

dνP
) + 1− dνQ

dνP
)νP (dx) (23)

Proof. Consider an exponential Lévy processes defined by (7). From the bijec-
tivity of the exponential it is clear that the filtrations generated by Xt and St

coincide. It is therefore equivalent to compute the relative entropy of the log-
price processes (which are Lévy processes). To compute the relative entropy of
two Lévy processes we will use expression (14) for Radon-Nikodym derivative:

E =
∫

ln(
dQ
dP

)
dQ
dP

dP = EP [UT eUT ] (24)

where (Ut) is a Lévy process with characteristic triplet given by formulae (15)
- (17). Let φt(z) denote its characteristic function and ψ(z) its characteristic
exponent, that is,

φt(z) = EP [eizUt ] = etψ(z)

Then we can write:

EP [UT eUT ] = −i
d

dz
φT (−i) = −iTeTψ(−i)ψ′(−i)

= −iTψ′(−i)EP [eUT ] = −iTψ′(−i)

From the Lévy-Khinchin formula we know that

ψ′(z) = −aUz + iγU +
∫ ∞

−∞
(ixeizx − ix1|x|≤1)νU (dx)

We can now compute the relative entropy as follows:

E = aUT + γUT + T

∫ ∞

−∞
(xex − x1|x|≤1)νU (dx)

=
T

2
aη2+T

∫
(yey−ey+1)(νP φ−1)(dy) =

T

2
aη2+T

∫
(
dνQ

dνP
ln(

dνQ

dνP
)+1−dνQ

dνP
)νP (dx)

where η is chosen such that

γQ − γP −
∫ 1

−1

x(νQ − νP )(dx) = aη

Since we have assumed a > 0, we can write

1
2
aη2 =

1
2a

{
γQ − γP −

∫ 1

−1

x(νQ − νP )(dx)
}2
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which leads to (22). If P and Q are martingale measures, we can express the
drift γ using a and ν:

1
2
aη2 =

1
2a

{∫ ∞

−∞
(ex − 1)(νQ − νP )(dx)

}2

Substituting the above in (22) yields (23).

Observe that, due to time homogeneity of the processes, the relative entropy
(22) or (23) is a linear function of T : the relative entropy per unit time is
finite and constant. The first term in the relative entropy (22) of the two Lévy
processes penalizes the difference of drifts and the second one penalizes the
difference of Lévy measures.

In the risk neutral case the relative entropy only depends on the two Lévy
measures νP , νQ. For a given reference measure νP , expression (23) viewed as
a function of νQ defines a positive (possibly infinite) functional on the set of
Lévy measures L(R):

H : L(R) → [0,∞]
νQ → H(νQ) = E(Q(νQ, σ)),P(νP , σ)) (25)

We shall call H the relative entropy functional. Its expression is given by (23).
It is a positive convex functional of νQ, equal to zero only when νQ ≡ νP .

Compound Poisson case When the jump parts of both Lévy processes are
of compound Poisson type with jump intensities λQ and λP and jump size
distributions µQ and µP , the relative entropy takes the following form in the
risk neutral case:

E
T

=
λQ

λP
ln

λQ

λP
+ λP − λQ +

λQ

λP

∫ ∞

−∞
ln

(
µQ(x)
µP (x)

)
µQ(x)dx

+
1
2a

{∫ ∞

−∞
dx(ex − 1)(λP µP (x)− λQµQ(x))

}2

(26)

2.5 Examples

Example 1: Consider two tempered stable processes that are mutually abso-
lutely continuous and have Lévy densities given by:

νQ(x) =
e(−β1−1)x

x1+α
1x≥0 +

e(−β1+1)|x|

|x|1+α
1x<0

νP (x) =
e(−β2−1)x

x1+α
1x≥0 +

e(−β2+1)|x|

|x|1+α
1x<0

with β1 > 1 and β2 > 1 imposed by the no-arbitrage property. The relative
entropy of Q with respect to P will always be finite because we can write for
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the first term in (23) (we consider for definiteness the positive half-axis):
∫ ∞

−∞
(ex − 1)(νQ − νP )(dx) =

∫ ∞

−∞
dx

(1− e−x)(e−β1x − e−β2x)
xα

which is finite because for small x the numerator is equivalent to x2 and for
large x it decays exponentially. For the second term in (23) on the positive
half-axis we have: ∫ ∞

−∞
(
dνQ

dνP
ln(

dνQ

dνP
) + 1− dνQ

dνP
)νP (dx) (27)

=
∫ ∞

−∞

e(−β2−1)x − e(−β1−1)x − x(β1 − β2)e(−β1−1)x

xα
(28)

which is again finite because for small x the numerator is equivalent to x2 and
for large x we have exponential decay.

Example 2: Suppose now that in the previous example α = 1, β1 = 2 and
β2 = 1. In this case, although Q and P are equivalent, the relative entropy of Q
with respect to P is infinite. Indeed, on the negative half-axis dνQ

dνP = e|x| and the

criterion 13 of absolute continuity is satisfied but the dνQ

dνP ln
(

dνQ

dνP

)
dνP = 1

|x|
and the second term in (23) diverges at infinity.

3 The calibration problem for exp-Lévy models

The calibration problem consists in identifying the Lévy measure ν and the
volatility σ from a set of observations of call option prices. If we knew call
option prices for one maturity and all strikes, we could deduce the volatility
and the Lévy measure in the following way:

• Compute the risk-neutral distribution of log price from option prices using
the Breeden-Litzenberger formula

qT (k) = e−k{C ′′(k)− C ′(k)} (29)

where k = ln K is the log strike.

• Compute the characteristic function (2) of the stock price by taking the
Fourier transform of qT .

• Deduce σ and the Lévy measure from the characteristic function. This is
particularly easy in the compound Poisson case, since the third term in
the exponent in (2) is bounded. One has:

σ2 = lim
u→∞

−2 lnφT (u)
Tu2

γ = lim
u→∞

1
T ln φT (u) + 1

2σ2u2

iu

and the Lévy measure ν can be found by Fourier inversion.
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Thus, if we knew with absolute precision a set of call option prices for all strikes
and a single maturity we could deduce all parameters of our model and thus
compute option prices for other maturities. In this case, option price data for any
other maturity can only contradict the information we already have but cannot
give us any further information. The procedure described above is however not
applicable in practice for at least three different reasons. First, we do not know
call prices for all strike prices but for only for a finite number of them. Actually
this number may be quite small (between 10 and 40 in the empirical examples
given below). Therefore the derivatives and limits in the formulae above are
actually extrapolations and interpolations of the data and our inverse problem
is largely under-determined. Second, even if option prices were known for all
strikes and maturities, the data generating process is probably not within the
exponential Lévy class due to specification error: for example, it is well known
that the term structure of implied volatilities is not correctly reproduced by such
models [32]. Therefore the problem (1) with equality constraints will typically
have no solution: one can hope at best for a solution approximately verifying
the constraints. The third difficulty is due to the presence of observational
errors (or simply bid-ask spreads) in the market data. Taking derivatives of
observations as in (29) can amplify these errors, rendering unstable the result
of the computation. For these reasons, it is necessary to reformulate problem
(1) as an approximation problem.

3.1 Non-linear least squares

In order to obtain a practical solution to the calibration problem, many au-
thors have resorted to minimizing the in-sample quadratic pricing error (see for
example [4, 7]):

(σ, ν) = arg inf
N∑

i=1

ωi|Cσ,ν(t0, S0, Ti,Ki)− C∗t0(Ti,Ki)|2 (30)

the optimization being usually done by a gradient-based method. While, con-
trarily to (1), one can always find some solution, the minimization functional
is non-convex so a gradient descent may not succeed in locating the minimum.
Given that the number of calibration constraints (option prices) is finite (and
not very large), there may be many Lévy triplets which reproduce call prices
with equal precision and this means the pricing error can have many local min-
ima or, more typically, the error landscape will have flat regions in which the
error has a low sensitivity to variations in model parameters (see below).

As a result the calibrated Lévy measure is very sensitive not only to the input
prices but also to the numerical starting point in the minimization algorithm.
Figure 1 shows an example of this instability: the two graphs represent the result
of a non-linear least squares minimization where the variable is the vector of
discretized values of ν on a grid. In both cases the same option prices are used,
the only difference being the starting points of the optimization routines. In
the first case a Merton model with intensity λ = 1 is used, in the second a
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Merton model with intensity λ = 5. As can be seen in figure 1, the results
of the minimization are totally different! One may think that in a parametric
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 Calibrated Lévy density: no regularization

Figure 1: Lévy measure calibrated to DAX option prices, maturity 3 months
via non-linear least squares method. The starting measure for both graphs is
a Gaussian; the jump intensity is initialized to 1 for the red curve and to 5 for
the blue one.

model with few parameters one will not encounter this problem of multiple
minima since there are (many) more options than parameters. This is in fact
not true, as illustrated by the following empirical example. Figure 2 represents
the magnitude of the quadratic pricing error for the Merton model [27] on a
data set of DAX index options, as a function of the diffusion coefficient σ and
the jump intensity λ, other parameters remaining fixed. It can be observed
that if one increases the jump intensity while decreasing the diffusion volatility
in a suitable manner the calibration error stays approximately at the same
level, leading to a flat direction in the error landscape. In fact the number
of parameters is much less important from a numerical point of view than the
convexity of the objective function to be minimized.

3.2 Regularization

The above remarks show that reformulating the calibration problem into a non-
linear least squares problem does not resolve the uniqueness and stability issues:
the inverse problem remains ill-posed. To obtain a unique solution in a stable
manner we must introduce a regularization method [16]. One way to induce
uniqueness and stability of the solution is to add to the least-squares criterion
(32) a penalization term:

(σ∗, ν∗) = arg inf
N∑

i=1

ωi|Cσ,ν(t0, S0, Ti,Ki)− (C∗t0(Ti,Ki)|2 + αF (Q,Q0) (31)
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Figure 2: Quadratic pricing error as a function of model parameters, Merton
model, DAX options.

where the term F , which is a measure of closeness of the model Q to a prior
Q0, is chosen such that the problem (31) becomes well-posed. Problem (31)
can be understood as that of finding an jump-diffusion model satisfying the
conditions (1), which is closest in some sense –defined by F (Q,Q0)– to a prior
(jump-diffusion) model.

Many choices are possible for the penalization term. From the point of view
of uniqueness and stability of the solution, the criterion used should be convex
with respect to the parameters (here, the Lévy measure). It is this convexity
which was lacking in the nonlinear least squares criterion (38).

A useful and widely used regularization criterion is provided by the relative
entropy or Kullback Leibler distance E(Q,Q0) of the the pricing measure Q with
respect to some prior model Q0.

The relative entropy has several interesting properties which make it a pop-
ular choice as a regularization criterion [16]. First, as explained in section 2.4,
the relative entropy plays the role of a pseudo-distance of the (risk-neutral)
measure from the prior. Moreover the relative entropy becomes infinite if Q is
not absolutely continuous with respect to the prior: using it as penalty function
therefore guarantees that the solution will be a positive measure, absolutely
continuous with respect to the prior.From the point of view of information the-
ory minimizing relative entropy with respect to some prior measure corresponds
to adding the least possible amount of information to the prior in order to cor-
rectly reproduce observed option prices. Finally, the relative entropy of Q with
respect to Q0 is an explicitly computable functional H(ν) of the Lévy measure
ν: it is given by (25). As remarked above H is a convex functional of the Lévy
measure ν, with a unique minimum minimum at ν = ν0.

The prior probability measure with respect to which the relative entropy will
be calculated, may correspond for example to a jump-diffusion model estimated
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from historical data. In this case one can infer it from the historical data on
the underlying. This is not the only possibility: the choice of the prior measure
will be discussed in more detail in section 4.2.

The calibration problem now takes the form:

Calibration Problem 2. Given a prior jump-diffusion model Q0 with char-
acteristics (σ0, ν0) find a Lévy measure ν which minimizes

J (ν) = αH(ν) +
N∑

i=1

ωi(Cν
Ti

(ki)− C∗(Ti,Ki))2 (32)

where H(ν) is the relative entropy of the risk neutral measure with respect
to the prior, whose expression is given by (25). Here the weights ωi are positive
and sum up to one; they reflect the relative importance of reproducing different
option prices precisely. For example, they may reflect the width of corresponding
bid-ask intervals:

ωi =
1

|Cbid
i − Cask

i | (33)

The choice of weights is addressed in more detail in section 4.1.
The functional (32) therefore consists of two parts: the relative entropy func-

tional, which is convex in its argument ν and the quadratic pricing error which
measures the precision of calibration. The coefficient α, called the regularization
parameter defines the relative importance of the two terms: it characterizes the
trade-off between prior knowledge of the Lévy measure and the information con-
tained in option prices. The latter is positive and bounded from above (because
option prices are bounded from above by the current stock value). Since the
positivity of ν is guaranteed by the form of the relative entropy functional, we do
not need to impose any additional conditions on the functional (32): the finite
dimensional discretization (32) will always have a minimum. This can be seen
in the following way: since the prior measure has a finite intensity, we can find
some value λmax such that the intensity of the calibrated measure will always be
smaller than λmax (because when the intensity of the calibrated measure grows
infinitely, the relative entropy will also tend to infinity). Lévy measures with
intensity smaller than λmax form a compact set (for example, with respect to
L1 norm which in this case is simply the intensity) and a continuous function
on a compact set always has a minimum.

If α is large enough, J , the convexity properties of the entropy functional
stabilize the solution of problem (32) : the solution will depend continuously
on the input prices (see appendix B). When α → 0, we recover the non-linear
least squares criterion (38). Therefore the correct choice of α is important: it
cannot be fixed in advance but its ’optimal’ value depends on the data at hand
and the level of error δ (see section 4.3). It can be shown (see appendix B) that
the solutions of (32) depend continuously on the input prices and that, for a
suitable choice of α, they converge to a minimum entropy least squares solution
when the error level tends to zero.
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3.3 Relation with previous literature

3.3.1 Relation with minimal entropy martingale measures

The concept of relative entropy has been used in several contexts as a criterion
for choosing pricing measures [2, 15, 17, 19, 21, 18, 28]. We briefly recall them
here in relation to the present work.

In the absence of calibration constraints, the problem studied above reduces
to that of identifying the equivalent martingale measure with minimal relative
entropy with respect to a prior model. This problem has been widely studied
and it is known that this unique pricing measure (minimal entropy martingale
measure) defines the “least favorable market completion” in the sense that it
minimizes the exponential utility of the optimal trading strategy [15, 17, 18]. It
satisfies:

Q = arg min
Q

max
X
{EP (u(e + X − EQ(X)))}

where the min is taken over all equivalent martingale measures, the maximum is
taken over all Ft-measurable random variables, P is the historical measure and
e the initial capital. maxX{EP (u(e + X −EQ(X)))} is the maximum expected
(exponential) utility that can be obtained by trading in derivatives and the
underlying without constraints in a market where the prices are determined by
Q. Although we only consider here the class of measures corresponding to Lévy
processes, if the prior measure is a Lévy process then the MEMM is known to
define again a Lévy process [28]. However the notion of MEMM does not take
into account the information obtained from observed option prices.

To take into account the prices of derivative products traded in the mar-
ket, Kallsen [21] introduced the notion of consistent pricing measure, that is, a
measure that correctly reproduces the market-quoted prices for a given number
of derivative products. He studies the relation of the minimal entropy consis-
tent martingale measure (the martingale measure that minimizes the relative
entropy distance to a given prior and respects a given number of market prices)
to exponential hedging. He finds that this MECMM defines the “least favorable
consistent market completion” in the sense that it minimizes the exponential
utility of the optimal trading strategy over all consistent martingale measures
(see also [15]). It satisfies:

Q = arg min
Q

max
X
{EP (u(e + X − EQ(X)))}

where the min is taken over all consistent equivalent martingale measures, the
max is taken over all FT -measurable random variables, P is the prior/historical
measure and e the initial capital.

The minimal entropy measure studied in this article is not equivalent to
the MECMM studied by Kallsen because we impose an additional restriction
that the calibrated measure should stay in the class of measures corresponding
to Lévy processes. It can be shown that the two measures only coincide in
the case where there is no calibration constraints. However, in the case where
calibration constraints are present our measure can be seen as an approximation
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of the MECMM which stays in the class of Lévy processes. The usefulness of this
approximation is clear: whereas the MECMM is an abstract notion for which one
can at most assert existence and uniqueness, the one studied here is actually
computable (see below) and can easily be used directly for pricing purposes.
Therefore our framework can be regarded as a computable approximation of
Kallsen’s minimal entropy constrained martingale measure.

3.3.2 Relation with calibration algorithms based on relative entropy
minimization

In a series of papers [2, 3], Avellaneda and collaborators have proposed a non-
parametric method based on relative entropy minimization for calibrating a
pricing measure. In [2] the calibration problem is formulated as one of finding a
pricing measure which minimizes relative entropy with respect to a prior given
calibration constraints:

Calibration Problem 3.

Q = arg min
Q∼Q0

E(Q,Q0) under EQ(S(Ti)−Ki)+ = C∗t (Ti,Ki), i = 1 . . . n (34)

where minimization is performed over all (not necessarily ”risk neutral”)
probability measures Q equivalent to Q0. Problem (34) is still ill-posed since the
equality constraints may be impossible to verify simultaneously due to model
mis-specification: a solution may not exist. However, it is not necessary to
consider equality constraints like those in (34) since the market option prices
are not exact but always quoted as bid-ask intervals. In a subsequent work,
Avellaneda et al [3] consider a regularized version of problem (34) with quadratic
penalization of constraints.

Q = arg min
Q∼Q0

E(Q,Q0) +
n∑

i=1

|C∗(Ti,Ki)− EQ(S(Ti)−Ki)+|2 (35)

In both cases the state space is discretized and the problem solved by a dual
method: the result is a calibrated (but not necessarily ”risk neutral”) probability
distribution on a discrete set of paths.

Although our formulation (32) looks quite similar to (35), there are several
important differences. First, while the numerical solution of our problem (32)
is done via discretization of the state space, the continuous version (32) is al-
ready well posed. By contrast in (35), the discretization is essential in making
the problem meaningful; the continuous limit is very subtle and not easy to de-
scribe2. Second, while the minimization in (35) is performed over all equivalent
measures (the optimization variables are the probabilities themselves), in our
case the minimization is performed over equivalent measures corresponding to
jump-diffusion (exp-Lévy) models, parametrized by their Lévy measure ν: the
optimization variable is ν. While restricting the class of models, this approach

2We thank Patrick Cattiaux for discussions on this point.
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has an advantage: it guarantees that we remain in the class of risk neutral mod-
els, which is not the case in [3]. Finally, in [3] the result of the calibration is a
set of weights, which can then be used to price other options by Monte Carlo.
In our case the result of the calibration is the Lévy measure ν, which can then
be used to price option either via Monte Carlo ( by simulating the process) or
by solving a partial integro-differential equation [4], which may be preferable
for American or barrier options.

4 Numerical implementation

As explained in section 3, we tackle the ill-posedness of the initial calibration
problem by transforming it into an optimization problem:

ν∗ = arg inf
ν∈L(R)

J (ν) (36)

J (ν) = αH(ν) +
N∑

i=1

ωi|Cσ,ν(t0, S0, Ti, Ki)− C∗t0(Ti, Ki)|2

We now describe a numerical algorithm for solving the optimization problem
(36). There are four main steps in the numerical solution:

• Choice of the weights assigned to each option in the objective function.

• Choice of the prior measure Q0 from the data.

• Choice of the regularization parameter α.

• Solution of the optimization problem (36) for given α and Q0.

We shall describe each of these steps in detail below. This sequence of steps can
be repeated a few times in order to minimize the influence of the choice of the
prior.

4.1 The choice of weights in the minimization functional

The relative weights ωi of option prices in the minimization functional should
reflect our confidence in individual data points which is determined by the liq-
uidity of a given option. This can be assessed from the bid-ask spreads, but the
bid and ask prices are not always available from option price data bases. On
the other hand, it is known that at least for the options that are not too far
from the money, the bid-ask spreads is of order of tens of basis points (< 1%).
This means that in order to have errors proportional to bid-ask spreads, one
must minimize the differences of implied volatilities and not those of the option
prices. However, this method involves many computational difficulties (numeri-
cal inversion of the Black-Scholes formula at each minimization step). A feasible
solution to this problem is to minimize the square differences of option prices

19



weighted by the Black Scholes ”vegas” evaluated at the implied volatilities of
the market option prices.

N∑

i=1

(I(Cν
Ti

(ki))− Ii)2 ≈
N∑

i=1

∂I

∂C
(Ii)|Cν

Ti
(ki)− C∗i |2 =

N∑

i=1

(Cν
Ti

(ki)− Ci)2

Vega2(Ii)
(37)

where I(.) denotes the Black Scholes implied volatility as a function of option
price and Ii denotes the market implied volatilities.

4.2 Determination of the prior

From a ”Bayesian” perspective, one would expect the user to specify a prior: in
this case, the user would have to specify a Lévy measure ν0 and a diffusion coeffi-
cient σ0. For example, these could be the result of the statistical estimation of a
jump diffusion model for the time series of asset returns. However, typically the
user may not have such detailed views and it is important to have a procedure
to generate a reference measure Q0 automatically from options data. To do this
we use an auxiliary jump-diffusion model (e.g. Merton model) described by the
volatility parameter σ0 and a few other variables (denoted by θ) parametrizing
the Lévy measure: ν0 = ν0(θ). This model is then calibrated to data using the
standard least squares procedure (32):

(σ0, ν0) = arg inf
σ,θ

ε(σ, ν(θ))

ε(σ, ν(θ)) =
N∑

i=1

ωi|Cσ,ν(θ)(t0, S0, Ti,Ki)− C∗t0(Ti,Ki)|2 (38)

Since the objective function is not convex, a simple gradient procedure may not
give the global minimum. However, as we will see, the solution (σ0, ν0) will
be iteratively improved at later stages and should only be viewed as a way to
regularize the optimization problem (36) so the minimization procedure at this
stage need not be very precise.

4.3 Determination of the regularization parameter

As remarked above, the regularization parameter α determines the tradeoff
between the accuracy of calibration and the numerical stability of the results
with respect to the input option prices. It is therfore plausible that the right
value of α should depend on the data at hand and should not be determined a
priori.

One way to achieve this tradeoff is by using the Morozov discrepancy prin-
ciple [16]. First, we minimize the quadratic pricing error (30). The value of
ε(σ0, ν0) of this optimization problem can now be interpreted as a measure of
”model error”: if ε(σ0, ν0) = 0 then it means that perfect calibration is achieved
by the prior but typically ε(σ0, ν0) = ε0 > 0 where ε0 represents the the ’dis-
tance’ of market prices to model prices i.e. it gives an a priori level of quadratic
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pricing error that one cannot really hope to improve upon while staying in the
same class of models. Note that here we only need to find the minimal value
of (30) and not to locate its minimum so a rough estimate is sufficient and the
presence of “flat” directions is not a problem.

Now let (σα, να) be the solution of (36) for a given regularization parameter
α > 0. Then the a posteriori quadratic pricing error is given by ε(σα, να), which
one expects to be a bit larger than ε0 since by adding the entropy term we have
sacrificed some precision in order to gain in stability. The Morozov discrepancy
principle consists in minimizing this loss of precision through regularization by
choosing α such that

ε(σα, να) ' ε0 (39)

In pratice we fix some δ > 1, δ ' 1 (for example δ = 1.1) and numerically solve

ε(σα, να) = δε0 (40)

The left hand side is a differentiable function of α so the solution can be obtained
with a small number of iterations for example by Newton’s (or a dichotomy)
method with a few iterations.

4.4 Computation of the gradient

In order to minimize the functional (36) using a BFGS gradient descent method,
the essential step is the computation of the gradient. We represent the Lévy
measure ν by discretizing it on a grid (xi, i = 1..N) where xi = x0 + i∆x. The
grid must be uniform in order to use the FFT algorithm for option pricing. This
means that we effectively allow a fixed (but large) number of jump sizes and
calibrate the intensities of these jumps. The Lévy process is then represented
as a weighted sum of independent standard Poisson processes with different
intensities, which is none other than the discretization of the Lévy Khinchin
representation (2).

In order to use the BFGS gradient descent method to find the minimum, we
need to compute the gradient of the functional (36) with respect to the Lévy
measure ν. If we were to compute this gradient numerically, the complexity
would increase by a factor equal to the number of grid points. A crucial point
of the method is that we are able to compute the gradient of the option prices
with only a two-fold increase of complexity compared to computing prices alone.
Due to this optimization, the execution time of the program changes on average
from several hours to about a minute on a standard PC.

We now compute the variational derivative of the option price. Here for the
sake of simplicity all the computations are carried out in the continuous case. In
the discretized case the idea is the same, but the Fréchet derivative is replaced
by the usual gradient and all the formulae become more cumbersome.

The functional which maps Lévy measure into option price is defined by
formulae (2) and(57). To show that all functions that we are working with are,
in addition to their other arguments, functionals of the Lévy measure, we will
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write it as a second argument in square brackets (zT (k)[ν]). Let us take an
admissible test function h and compute the directional derivative of zT (k)[ν] in
the direction h. By definition

DhzT (k)[ν] =
∂

∂ε
{zT (k)[ν + εh]}|ε=0 (41)

We then obtain under sufficient integrability conditions on the stock price pro-
cess, combining the formulae (2)-(57) and performing the differentiation with
respect to ε that the directional derivative DhzT (k) of the option price with
respect to the Lévy density is given by:

DhzT (k)[ν] =
1
2π

∫ ∞

−∞
dve−ivk−rT TeTψ(v−i)

iv(1 + iv)∫ ∞

−∞
dxh(x){eivx − 1− ivex + iv} (42)

By interchanging the two integrals, we can compute, again under sufficient in-
tegrability conditions, the Fréchet derivative DzT of the option price :

DzT (k)[ν] =
1
2π

∫ ∞

−∞
dve−ivk−rT TeTψ(v−i)

iv(1 + iv)
{eivx − 1− ivex + iv} (43)

By rearranging terms and separating integrals we have:

DzT (k)[ν] =
T

2π

∫ ∞

−∞
dve−iv(k+x) e

−rT eTψ(v−i) − eivrT

iv(1 + iv)
−

T

2π

∫ ∞

−∞
dve−ivk e−rT exp(Tψ(v − i))− eivrT

iv(1 + iv)
+

T

2π

∫ ∞

−∞
dve−ivk e−ivx+ivrT − eivrT

iv(1 + iv)
−

T (ex − 1)
2π

∫ ∞

−∞
dve−ivk−rT eTψ(v−i)

1 + iv
(44)

Here the first two terms may be expressed in terms of the option price function,
the third one does not depend on the Lévy measure and can be computed
analytically and the last one is a product of a simple function of x and some
auxiliary function which does not depend on x (and therefore must be computed
only once for each gradient evaluation). Finally we obtain:

DzT (k)[ν] = TzT (k + x)− TzT (k) + T (1− ek+x−rT )+ − T (1− ek−rT )+−
T (ex − 1)

2π

∫ ∞

−∞
dve−ivk−rT exp(Tψ(v − i))

1 + iv
=

T (CT (k + x)− CT (k))− (ex − 1)
T

2π

∫ ∞

−∞
dve−ivk−rT exp(Tψ(v − i))

1 + iv
(45)
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Fortunately, this expression may be represented in terms of the option price and
one auxiliary function. Since we are using FFT to compute option prices for the
whole price sheet, we already know these prices for the whole range of strikes.
As the auxiliary function will also be computed using the FFT algorithm, the
computational time will only increase by a factor of two.

4.5 The algorithm

Here is the final numerical algorithm as implemented in the numerical examples
given below.

1. Calibrate an auxiliary jump-diffusion model (Merton model) to obtain an
estimate of volatility σ0 and a candidate for the prior Lévy measure ν0.

2. Fix σ = σ0 and run least squares (α = 0) using gradient descent method
with low precision to get estimate of ”distance to model”

ε20 = inf
ν

N∑

i=1

ωi|Cσ0,ν
i − C∗i |2. (46)

3. Use a posteriori method described in 4.3 to compute optimal regulariza-
tion parameter α∗ acheiving tradeoff between precision and stability:

ε(α∗) =
N∑

i=1

ωi|Cσ,ν
i − C∗i |2 ' ε20 (47)

The optimal α∗ is found by running the gradient descent method (BFGS) several
times with low precision.

4. Solve variational problem for J (ν) with α∗ by gradient-based method
(BFGS) with high precision using either a user-specified prior or result of 1) as
prior.

5 Numerical tests

In order to verify the accuracy and numerical stability of our algorithm, we
have first proceeded to test it on simulated data sets of option prices generated
using a jump diffusion model. This allows us to explore the magnitude of finite
sample effects and to assess the importance of the two different stages of the
calibration procedure described in section 4. In the first series of tests, option
prices were generated using Kou’s jump diffusion model [23] with a diffusion
part σ0 = 10% and a Lévy density:

ν(x) = λ[1x>0pα1e
−α2x + (1− p)α2e

−α2x1x<0] (48)

In the tests we have taken an asymmetric density with the left tail heavier than
the right one (α1 = 1/0.07 and α2 = 1/0.13). The intensity was taken to be
λ = 1 and the last constant p was chosen such that the density is continuous at
x = 0. The option prices were computed using the Fourier transform method
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Figure 3: Lévy measure calibrated to option prices simulated from Kou’s jump
diffusion model with σ0 = 10%. Left: σ has been calibrated in a separate step
(σ = 10.5%). Right: σ was fixed to 9.5% < σ0.

described in the appendix. The maturity of the options was 5 weeks and we
used 21 equidistant strikes ranging from 6 to 14 (the spot being at 10). In order
to capture tail behavior it is important to have strikes quite far in and out of
the money. As the prior model we use Merton’s jump diffusion model. In this
model the jump part of the log price is a compound Poisson process and the
jump sizes are normally distributed with mean zero:

Xt = bt + σWt +
Nλ

t∑

i=1

Yi Yi ∼ N(0, γ2) IID (49)

In Merton’s model the price of a call option can be expanded as a weighted
superposition of Black Scholes prices with weights exponentially converging to
zero. This series expansion allows fast computation of call prices which is nec-
essary for the first step of the algorithm described in section 4.

After generating sets of call option prices from Kou’s model using the FFT
method desribed in the appendix, the algorithm described in section 4 was
applied to the option prices obtained. Figure 3 compares the non-parametric
reconstruction of the Lévy density to the true Lévy density which, in this case,
is known to be (48). As observed in figure 4, the accuracy of calibration at
the level of option prices and/or implied volatilities is satisfying with only 21
options. Comparing the jump size densities obtained with the true one, we
observe that we retrieve successfully the main features of the true density with
our non-parametric approach. The only region in which we observe a detectable
error is near zero: very small jumps have a small impact on option prices. In
fact, the gradient of our calibration criterion (computed in section 4.4) vanishes
at zero which means that the algorithm does not modify the Lévy density in
this region: the intensity of small jumps can not be retrieved accurately. The
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Figure 4: Calibrated vs simulated (true) implied volatilities corresponding to
figure3 for Kou model [23].

redundancy of small jumps and diffusion component is well known in the context
of statistical estimation on time series [8, 26]. Here we retrieve another version
of this redundancy in a context of calibration to a cross sectional data set of
options.

Comparing the left and right graphs in figure 3 further illustrates the redun-
dancy of small jumps and diffusion: the two graphs were calibrated to the same
prices and only differ in the diffusion coefficients. Comparing the two graphs
shows that the algorithm compensates the error in the diffusion coefficient by
adding jumps to the Lévy density such that, overall, the accuracy of calibration
is maintained (the standard deviation is 0.2% ).

The stability of the algorithm with respect to initial conditions can be ex-
amined by perturbating the starting point of the optimization routine and ex-
amining the effect on the output. As illustrated in figure 5, the entropy penalty
removes the sensitivity observed in the non-linear least squares algorithm (see
figure 1 and section 3.1). The only minor difference between the two calibrated
measures is observed in the neighborhood of zero i.e. the region which, as
remarked above, has little influence on option prices.

In a second series of tests we examine how our method performs when applied
to option prices generated by an infinite activity process such as the variance
gamma model. We assume that the user, ignoring that the data generating
process has infinite activity, chooses a (misspecified) prior which has a finite
jump intensity (e.g. the Merton model).
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Figure 5: Levy densities calibrated to option prices generated from Kou model,
using two different initial measures with intensities λ = 1 and λ = 2.

Option prices for 30 strike values were generated using the variance gamma
model [24] with no diffusion component (σ0 = 0) and the calibration algorithm
was applied using as prior a Merton jump-diffusion model. Figure 6 shows
that even though the prior is misspecified, the result reproduced the implied
volatilities with good precision (the error is less than 0.5% in implied volatility
units). The calibrated value of the diffusion coefficient of σ = 7.5%, while the
Lévy density has been truncated near zero to a finite value (figure 7 left): the
algorithm has substituted a non-zero diffusion part for the small jumps which
are the origin of infinite activity. Figure 7 further compares the Lévy measures
obtained when fixing σ to two different values: we observe that a smaller value
of the volatility parameter leads to a greater intensity of small jumps.

Here we observe once again the redundancy of volatility and small jumps,
this time in an infinite-activity context. More precisely this example shows that
call option prices generated from an infinite activity jump-diffusion model can
be reproduced with arbitrary precision using a compound Poisson model with
finite jump intensity. This leads us to conclude that for a finite (but realistic)
number of observations, infinite activity models like variance gamma are hard to
distinguish from finite activity compound Poisson models on the basis of option
prices.
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Figure 6: Implied volatility smile for variance gamma model with σ0 = 0 com-
pared with smile generated from the calibrated Lévy measure. Calibration yields
σ = 7.5%

6 Empirical results

To illustrate our calibration method we have applied it to a data set of daily
series of prices and implied volatilities for options on the DAX (German index)
from 1999 to 2001. A detailed description of data formats and filtering proce-
dures can be found in [11]. Some of the results obtained on this data set are
described below.

6.1 Empirical properties of the Lévy density

Figure 8 illustrates the typical shape of a risk neutral Lévy density obtained
from our data set: it is peaked at zero and highly skewed towards negative
values.

The effect of including the entropy penalty can be assessed by comparing
the results obtained when changing the prior and/or the initialization in the
algorithm. Figure 9 compares the Lévy measures obtained with different priors:
in this case the jump intensity of the prior (a Merton model) was shifted from
λ = 1 to λ = 5. Compared to the high sensitivity observed in the nonlinear
least squares algorithm (figure 1), we observe that adding the entropic penalty
term has stabilized our algorithm.

The logarithmic scale in figure 9 allows the tails to be seen more clearly. Re-
call that the prior density is gaussian, which shows up as a symmetric parabola
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Figure 7: Lévy measure calibrated to variance gamma option prices with σ = 0
using a compound Poisson prior with σ = 10% (left) and σ = 7.5% (right).
Increasing the diffusion coefficient decreases the intensity of small jumps in the
calibrated measure.

on log scales. It is readily seen that the Lévy measures obtained are far from
being symmetric: the distribution of jump sizes is highly skewed towards nega-
tive values. Figure 13 shows the same result across calendar time, showing that
this asymmetry persists across time. This effect also depends on the maturity
of options in question: for longer maturities (see 14) the support of the Lévy
measure extends further to the left.

The area under the curves shown here is to be interpreted as the (risk neutral)
jump intensity. While the shape of the curve does vary slightly across calendar
time, the intensity stays surprisingly stable: its numerical value is empirically
found to be λ ' 1, which means around one jump a year. Of course note
that this is the risk neutral intensity: jump intensities are not invariant under
equivalent change of measures. Moreover this illustrates that a small intensity
of jumps λ can be sufficient for explaining the shape of the implied volatility
skew for small maturities. Therefore the motivation of infinite activity processes
does not seem clear to us, at least from the viewpoint of option pricing.

6.2 Testing time homogeneity

While the literature on jump processes in finance has focused on time homo-
geneous (Lévy) models, practitioners have tended to use time dependent jump
or volatility parameters. Here we can investigate time homogeneity in a non-
parametric way by separately calibrating the Lévy measure to various option
maturities. Figure 10 shows Lévy measures obtained by running the algorithm
separately for options of different maturity. The null hypothesis of time ho-
mogeneity would imply that all the curves are the same, which is apparently
not the case here. However computing the areas under the curves yields simi-
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Figure 8: Lévy density calibrated to DAX option prices, maturity 3 months.

lar jump intensities across maturities: this result can be interpreted by saying
that the risk neutral jump intensity is relatively stable through time while the
shape of the (normalized) jump size density can actually change. Of course,
this is a more complicated form of time dependence than simply having a time
dependent intensity.

These results can be further used to investigate what form of time depen-
dence is appropriate to introduce in order to capture the empirically observed
term structure of implied volatilities. Whether introducing such time depen-
dence in the jump density is an appropriate way to extend such models is not
obvious to us.

7 Conclusion

We have proposed a non-parametric method for identifying, in a numerically sta-
ble fashion, a risk neutral jump-diffusion model consistent with market prices of
options and equivalent to a prior model. We have also presented a stable compu-
tational implementation and tested its performance on simulated and empirical
data. Theoretically our method can be seen as a computable approximation
to the notions of minimal entropy martingale measures, made consistent with
observed market prices of options. Computationally, it is a stable alternative
to current least squares calibration methods for jump-diffusion models. The
jump part is retrieved in a non-parametric fashion: we do not assume shape
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Figure 9: Logarithm of Lévy density calibrated to DAX option prices, maturity
3 months. Logarithmic scale.

restrictions on the Lévy measure. Finally, our approach allows to conciliate the
idea of calibration by relative entropy minimization [2] with the notion of risk
neutral valuation in the continuous time limit.

Our method can complement in various ways the existing literature on para-
metric jump-diffusion models in option pricing. First, using a non-parametric
calibration is not necessarily incompatible with using a parametric model for
pricing. Our method can be used as a specification test for choosing the correct
parametric class of jump diffusion models. Second, we provide a computational
approach for estimating risk-neutral jump processes from options data which
can be potentially applied to other models where jump processes have to be
deduced from observation of contingent claims: credit risk models are typically
such examples. Third, separate calibration of the jump density to various option
maturities can be used to investigate time inhomogeneity in a non-parametric
way. Finally, our approach can be extended to other inverse problems in which
an unknown jump process has to be identified, such as calibration problems for
stochastic volatility models with jumps [5, 7]. We intend to pursue these issues
in our future research.
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Figure 10: Lévy measures calibrated to DAX options, all maturities. Each curve
corresponds to a different maturity.
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calibrated separately.
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Figure 12: Lévy measures calibrated to DAX options, logarithmic scale.
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Figure 13: Results of calibration at different dates for shortest maturity. DAX
index options.
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[19] Goll T. & Rüschendorf L. (2001): Minimax and minimal distance martin-
gale measures and their relationship to portfolio optimization, Finance and
Stochastics, 5, no. 4, 557–581.

[20] Jacod, J. & Shiryaev, A.N. (1987) Limit theorems for stochastic processes
, Berlin: Springer.

[21] Kallsen, J. (2001): Utility-Based Derivative Pricing. in: Mathematical Fi-
nance - Bachelier Congress 2000, Berlin: Springer.

[22] Koponen, I. (1995) Analytic approach to the problem of convergence of
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A Option pricing by Fourier transform

We recall here the expression, due to Carr & Madan [10] of option prices in terms
of the characteristic function of the Lévy process. Due to the special structure
of the characteristic function in these models, it is convenient to express option
prices in terms of the characteristic function. In particular, for a European call
option with log strike k

CT (k) = e−rT EQ[(esT − ek)+] (50)

where sT is the terminal log price with density qT (s). The characteristic function
of this density is defined by

φT (u) ≡
∫ ∞

−∞
eiusqT (s)ds. (51)

On the other hand, as remarked above, the characteristic function of the log
price is given by the Lévy-Khinchin formula (here we limit ourselves to the
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compound Poisson case):

φT (u) = exp{T (−1
2
σ2u2 + iγ(ν)u +

∫ ∞

−∞
(eiux − 1)ν(x)dx)} (52)

γ(ν) = r − σ2

2
−

∫ ∞

−∞
(ex − 1)ν(x)dx (53)

In some important cases this characteristic function is known analytically; oth-
erwise one can discretize the Lévy measure and use (in the compound Poisson
case) the Fast Fourier transform to compute the characteristic function.

Following Carr and Madan [10] we use Fourier transform methods to evaluate
the expression (50) for a given Levy measure. To do so we observe that although
the call price as a function of log strike is not square integrable, the time value
of the option, that is, the function

zT (k) = E[(esT − ek)+]− (1− ek−rT )+

equal to the price of the option (call or put) which is for given k out of the
money (forward), may be square integrable. Here we have assumed without
loss of generality that s0 = 0. Let ζT (v) denote the Fourier transform of the
time value:

ζT (v) =
∫ +∞

−∞
eivkzT (k)dk (54)

It can be expressed in terms of the characteristic function of the log-price
in the following way. First, we note that since the discounted price process is a
martingale, we can write

zT (k) = e−rT

∫ ∞

−∞
qT (s)ds(es − ek)(1k≤s − 1k≤rT )

Next, we compute ζ(v) by interchanging integrals

ζT (v) = e−rT

∫ ∞

−∞
dk

∫ ∞

−∞
dseivkqT (s)(es − ek)(1k≤s − 1k≤rT )

= e−rT

∫ ∞

−∞
qt(s)ds

∫ rT

s

eivk(ek − es)dk

A sufficient condition allowing us to justify the interchange of integrals is
that the stock price have a moment of order 1 + α for some positive alpha or

∃ α > 0 :
∫ ∞

−∞
qT (s)e(1+α)sds < ∞ (55)

We can write for the inner integral:
∫ rT

s

|ek − es|dk ≤ erT − es, if rT ≥ s (56)
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and ∫ s

rT

|ek − es|dk ≤ es(s− rT )1s>rT , if rT < s

We see that under the condition (55) both expressions when multiplied by qT (s)
are integrable with respect to s and we can apply Fubini’s theorem to justify
the interchange. The inner integral is computed in a straightforward fashion,
and after computing the outer integral for some terms and reexpressing it in
terms of the characteristic function of the log stock price, we obtain

ζT (v) =
e−rT φT (v − i)− eivrT

iv(1 + iv)
(57)

The martingale condition guarantees that the numerator is equal to zero for
v = 0. Under the condition (55), we see that the numerator becomes an analytic
function and the fraction has a finite limit for v → 0. The option prices can
now be found by inverting the Fourier transform:

zT (k) =
1
2π

∫ +∞

−∞
e−ivkζT (v)dv (58)

Remark When the Lévy measure has bounded support K then it is easy to
show using (58) that the option price

zT (k) : L1(K) → R
ν → zT (k)[ν] (59)

defines a continuous functional of ν.

B Properties of solutions

We present here some properties of the solutions of our regularized problem
in the discretized case (i.e. the Lévy measure is concentrated on a discrete
grid). This is actually the only case that is interesting from the point of view
of numerical implementation. A proof in the case where Lévy measure is con-
centrated on a bounded interval may be constructed using the general theory
exposed for example in ([16], section 10.6). We shall denote by H the relative
entropy functional defined in (25): H(ν) = E(Q(σ, ν),Qσ, ν0). Define δ > 0 as
the observational error on the data C∗: ||C∗ − C|| ≤ δ where C∗ is the vector
of observed option prices and C a vector of arbitrage free (’true’) prices.

The solution of (32) is in general not unique due to the non-convexity of the
pricing functional. It depends continuously on the data in the following sense:

Proposition 3. Let α > 0 and let {Ck} and {νk} be sequences where Ck → C∗

and νk is the solution of problem (32) with C∗ replaced by Ck. Then there exists
a convergent subsequence of {νk} and the limit of every convergent subsequence
is a solution of (32).
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Remark: if the solution of (32) is unique this is just the definition of conti-
nuity.

Proof. To simplify the notation we write F (ν) for a set of model prices and
||F (ν)−C∗||2 for the sum of squared differences of model prices corresponding
to Lévy measure ν and market prices C∗. Let {Ck} be a sequence of data sets
converging to C∗ and {νk} be the corresponding sequence of solutions:

νk = arg inf{||F (νk)− Ck||2 + αH(ν)}

By construction we have:

||F (νk)− Ck||2 + αH(ν) ≤ ||F (ν)− Ck||2 + αH(ν), ∀ν ∈ L(R) (60)

hence the sequences ||νk|| and ||F (νk)|| are bounded. Since we work in a finite-
dimensional space, we can find a convergent subsequence νm → ν∗ of {νk}.
Using the continuity of the pricing functional we have F (νm) → F (ν∗). This
together with (60) and the continuity of the relative entropy functional implies:

∀ν ∈ L(R), ||F (ν∗)− C∗||2 + αH(ν) = lim{||F (νm)− Cm||2 + αH(ν)} ≤
lim{||F (ν)− Cm||2 + αH(ν)} = ||F (ν)− C∗||2 + αH(ν).

Hence, we have proven that ν∗ is a minimizer of ||F (ν)− C∗||2 + αH(ν).

Let M be the set of Lévy measures ν corresponding to least square solutions
which minimize the criterion (30). Assume that

∃ν ∈ M, E(Q(σ, ν),Q0) < ∞ (61)

Then a minimum-entropy least squares solution is defined as a solution of

inf
ν∈M

E(Q(σ, ν),Q0) (62)

The next proposition describes how the solutions of (32) converge towards
minimum-entropy least squares solutions as the error level δ decreases.

Proposition 4. Let
||C∗ − C|| ≤ δ

and let α(δ) be such that α(δ) → 0 and δ2/α(δ) → 0 as δ → 0. Then every
sequence {νδk

α(δk)} where δk → 0 and νδk

α(δk) is a solution of problem (32) has
a convergent subsequence. The limit of every convergent subsequence is a a
minimum entropy least squares solution. If the minimum entropy least squares
solution is unique, then

lim
δ→0

νδ
α(δ) = x∗

where x∗ is the solution of (62).
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Proof. Let the sequences {νδk

α(δk)} and δk be as above and ν∗ be a minimum

entropy least squares solution. Then by definition of νδk

α(δk) and using the triangle
inequality we have

||F (νδk

α(δk))− Cδk ||2 + α(δk)H(νδk

α(δk)) ≤ α(δk)H(ν∗) + ||F (ν∗)− C||2 + δ2
k

Hence, when we pass to the limit

lim
k→∞

||F (νδk

α(δk))− Cδk || = ||F (ν∗)− C|| (63)

Again from triangle inequality and the definition of ν∗ we obtain

α(δk)H(νδk

α(δk)) ≤ α(δk)H(ν∗) + 2δ2
k

This means (dividing by α(δk)) that

lim sup H(νδk

α(δk)) ≤ H(ν∗) (64)

and that the sequence νδk

α(δk) is bounded. Hence we it has a subsequence νδm

α(δm)

converging towards some measure ν as m → ∞. (63) shows that ν is a least
squares solutions and from (64) we see that is is a minimum entropy least
squares solution. The last assertion follows from the fact that in this case every
subsequence of νδk

α(δk) has a subsequence converging towards ν∗.
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