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Abstract

This paper applies to the static hedge of barrier options a technique,
mean-square hedging, designed to minimize the size of the hedging error
when perfect replication is not possible. It introduces an extension of
this technique which preserves the computational efficiency of mean-
square hedging while being consistent with any prior pricing model
or with any linear constraint on the hedging residual. This improves
on current static hedging methods, which aim at exactly replicating
barrier options and rely on strong assumptions on the availability of
traded options with certain strikes or maturities, or on the distribution
of the underlying asset.

Derivatives markets have become an essential part of the global economic
and financial system in the past decade. Growth in trading activity has
been particulary fast in over-the-counter (OTC) markets, which have become
the dominant force in the industry.1 One factor in the success of OTC
markets has been their ability to offer new, ”exotic” derivatives customized
to customers’ needs. Among the most successful OTC option products are

∗The author thanks Casper de Vries, Terry Cheuk, Ton Vorst, and seminar participants
at Eurandom, Groningen University, Erasmus University, and at the University of Twente.
The usual disclaimer applies.

1As of December 1999, OTC transactions accounted for around 86 percent ($88 trillion)
of the total notional value of derivatives contracts, exchanges for about 14 percent ($14
trillion). (source: IMF International Capital Markets, Sept. 2000.)
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barrier options. The payoff of a barrier option depends on whether the
price of the underlying asset crosses a given threshold (the barrier) before
maturity. The simplest barrier options are ”knock-in” options which come
into existence when the price of the underlying asset touches the barrier and
”knock-out” options which come out of existence in that case. For example,
an up-and-out call has the same payoff as a regular, ”plain vanilla,” call if
the price of the underlying asset remains below the barrier over the life of
the option but becomes worthless as soon as the price of the underlying asset
crosses the barrier.

Barrier options fulfill different economic needs and have been widely
used in foreign-exchange and fixed-income derivatives markets since the mid
1990s. (Steinherr (1998) and Taleb (1996) discuss issues linked with using
barrier options.) Barrier options reduce the cost of modifying one’s exposure
to risk because they are cheaper than their plain-vanilla counterparts. They
help traders who place directional bets enhance their leverage and investors
who accept to keep some residual risk on their books reduce their hedging
costs. More generally, barrier options allow market participants to tailor
their trading strategies to their specific market views. Traders who believe in
a market upswing of limited amplitude prefer to buy up-and-out calls rather
than more expensive plain vanilla calls. In contrast, fund managers who use
options to insure only against a limited downswing prefer down-and-out puts.
Using barrier options, investors can easily translate chartist views into their
trading strategies. (Clarke (1998) presents detailed applications of these
instruments to technical trading in foreign-exchange markets.) Options with
more complex barrier features are also traded. Naturally, traders who use
barrier options to express their directional views on the market do not want
to hedge their positions; they use such options to gain leveraged exposure
to risk. In contrast, their counterparties may not be directional players with
opposite views but rather dealers who provide liquidity by running barrier
option books and hedge their positions.

Barrier options are difficult to hedge because they combine features of
plain vanilla options and of a bet on whether the underlying asset price hits
the barrier. Merely adding a barrier provision to a regular option signifi-
cantly impacts the sensitivity of the option value to changes in the price or
the volatility of the underlying asset: The ”Greeks” of barrier options behave
very differently from those of plain vanilla options (Figure 1).2 The discon-
tinuity in the payoff of barrier options complicates hedging, especially those
that are in the money when they come out of existence (such as up-and-out
calls and down-and-out puts). Delta hedging these options is particularly
unpractical. For example, when the price nears the barrier and the option
is about to expire, the Delta (and the Gamma) of an up-and-out call takes
large negative values because the option payoff turns into a spike in this re-
gion. Vega also turns negative when the price of the underlying asset is close

2The Greeks are the sensitivities of the option price to changes in the parameters and
are used to assess risk. They include Delta (the first-order derivative of the option value
with respect to the price of the underlying asset), Gamma (its second-order derivative with
respect to the same parameter), and Vega (the derivative of the option value with respect
to the volatility).
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to the barrier because a volatility pickup near the barrier increases the like-
lihood of the price passing through it. In contrast, the Delta, Gamma, and
Vega of regular options are always positive and ”well behaved” functions.

Despite the difficulties associated with hedging barrier options, banks
write large amounts of those instruments to accomodate customer demand
and typically prefer to hedge their positions. Moreover, when devising hedg-
ing strategies, banks have to face the limitations of real markets, like trans-
action costs, discrete trading, and lack of liquidity. One way of addressing
these concerns is to limit the frequency of trading and, in the limit, to solely
consider static hedging. To compensate the associated loss of flexibility, one
may prefer to hedge barrier options with regular options instead of with
the underlying asset and a riskless bond because regular options are more
closely related to barrier options. Derman, Ergener, and Kani (1995) (there-
after DEK) and Carr, Ellis, and Gupta (1998) (thereafter CEG) model static
hedging of barrier options with regular options on the same underlying as-
set. They are able to achieve perfect replication of the barrier option but, to
achieve this result, they need strong assumptions on the availibility of reg-
ular options with certain strikes or maturities, or on the distribution of the
underlying asset. Their assumptions are not all satisfied in actual markets
and DEK and CEG do not present a structured approach on how to adapt
their techniques in this case.

The paper presents an alternative methodology. Instead of aiming at
perfectly replicating a barrier option, we choose to approximate it. The
metric used to gauge the fit of the hedge is the mean of the square of the
hedging residual (the difference between the payoff of the claim and that
of the hedging portfolio), leading to the ”mean-square hedging” method
introduced in Duffie and Richardson (1991) and Schweizer (1992). We also
extend the mean-square hedging methodology to make the hedging portfolio
consistent with linear constraints. For example, we can incorporate the
requirement that the value of the portfolio coincide with the value that a
given pricing model affects to the barrier option.

Financial economists have developed other hedging methods in incom-
plete markets. The ”super-hedging” strategy of El Karoui and Quenez (1995)
satisfies investors who want to avoid any shortfall risk (the risk that the value
of the hedging portfolio be below that of the asset it is designed to hedge).
For investors willing to hedge only partially, ”quantile hedging” achieves the
lowest replication cost for a given probability of shortfall and fits well the
popular value-at-risk (VaR) approach (Föllmer and Leukert (1999)). How-
ever, Vorst (2000) indicates that portfolio optimization under VaR constraint
can lead to unattractive risk profiles.

An important difference between the present paper and the approaches
cited above, or the current literature on mean-square hedging, is that this
paper aims at providing a framework that investors can use to implement
mean-square hedging to a case of practical importance: barrier options.
To do so, it uses only discrete-time techniques and can be adapted to any
pricing model. In contrast, current research focuses on the theoretical issues
of introducing mean-square or quantile hedging in continuous-time models
where jumps or stochastic volatility render markets incomplete.
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The remainder of the paper is organized as follows. Section 1 briefly
reviews hedging principles and summarizes the contributions of DEK and
CEG. Section 2 introduces the theory of mean-square hedging and section
3 applies this technique to hedging an up-and-out call in an environment
similar to the one used in DEK. Section 4 presents our own extension to
mean-square hedging and section 5 applies it to hedging an up-and-out call
under some constraints on the residual.

1 Hedging Barrier Options

Financial modelers typically rely on the assumption that markets are com-
plete and compute the prices of derivative assets via hedging arguments. In
contrast, practitioners of finance face the limitations of real markets and the
impossibility of perfect hedging.

1.1 Hedging and Pricing in Complete and Incomplete Mar-
kets

Pricing derivatives securities typically uses a hedging argument based on
the assumption that markets are complete or dynamically complete, that is,
that any claim can be replicated by trading marketable assets because there
are enough instruments or because trading can take place sufficiently often.
Under these conditions, the no-arbitrage price of any derivatives product is
the cost of the replicating portfolio and securities can be valued indepen-
dently of investors’ preferences. Black and Scholes (1973) derive the price of
plain vanilla options and Merton (1973) that of barrier options (and other
derivatives) by showing how continuous trading in the underlying stock and
in a riskless bond replicates the option’s payoff in every state of the world.

In contrast, when claims cannot be perfectly replicated by trading mar-
ketable assets, any hedging strategy leaves some residual risk and investors’
attitudes toward risk affect the pricing of the claims. For example, Hull
and White (1987) introduce stochastic volatility in a model otherwise sim-
ilar to Black-Scholes. As a result, markets are incomplete and to price a
call option on the stock, they assume that investors demand no compensa-
tion for the risk generated by the randomness of the volatility of the stock
returns. Introducing transaction costs or non-continuous trading into the
basic Black-Scholes framework also renders markets incomplete.

In practice, market frictions are unavoidable and hedging barrier options
(or other assets) dynamically would be prohibitively costly; practitioners
rebalance their hedging portfolios less frequently than possible as a way to
save on transaction costs, adopting instead static hedging strategies. Pricing
models, however, rarely take market frictions into account but are instead
sophisticated enhancements of the Black-Scholes approach. As a result, pric-
ing and hedging, which are two sides of the same coin in complete-market
models, are rather disconnected in practice.

In the following, we consider the problem of hedging an up-and-out call.
Static hedging strategies have been introduced in DEK and CEG. In this
context, a ”static strategy” involves the constitution of a hedging portfolio
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in the current period together with the liquidation of this portfolio when the
barrier is attained and is essentially a constrained dynamic strategy. ”Pure
static strategies” would require the hedge to be liquididated only at the ex-
piration of the option even if the barrier has been hit before. Models of
static hedging allowing liquidation neglect the liquidation risk, that is, the
risk that the prices at which one can liquidate the hedging portfolio differ
from those anticipated at the creation of the hedge. Pure static strategies
have no liquidation risk but cannot replicate the essentially dynamic prop-
erties of barrier options. In contrast, if the trader can unwind the hedge
at model-based prices, strategies allowing liquidation more closely replicate
the barrier option. In the following, replication is deemed ”perfect” if the
hedging error is zero conditional on assets being traded at model-implied
prices.

Liquidation risk is due to the failure of models to forecast market prices
with certainty. Hence, static hedging strategies with liquidation contain
more market risk than pure hedging strategies. However, the later are not
exempt from such risk. For example, they typically rely on assumptions on
the probability distribution of the underlying asset. Pure static strategies
are hardly used in practice. For example, few traders would plan not to
unwind the hedge when the underlying asset price crosses the barrier and
the knock-out option goes out of existence. However, pure static strategies
are easier to visualize than strategies allowing liquidation and will be briefly
used in the paper as didactic tools.

The static hedging strategies presented in DEK and CEG achieve perfect
replication of the barrier option payoff by relying on the availability of traded
options with arbitrary strikes or maturities. DEK acknowledge that the
hedge is imperfect when only a limited array of maturities is available.3

CEG can replicate the barrier option with few regular options but make
strong assumptions on the probability distribution of the underlying asset.
They point to the relaxation of such assumptions and the derivation of an
approximate hedge as the main potential extension of their research.

The current paper paper is an extension of both these papers and is meant
to be ”user friendly.” To hedge a given barrier option, the investor chooses
the instruments he wishes to include in the hedging portfolio; the probability
distribution of the risk factor driving the prices of the hedging instruments
and of the barrier option (in the paper, this factor is the underlying asset
price); a pricing model to evaluate all assets; and, possibly, some linear
constraints on the hedging residual. In return, the procedure outlined in the
paper gives him the optimal hedging portfolio. Our approach yields the same
results as DEK or CEG when their assumptions are imposed, but extends
their results to cases where their assumptions are violated.

Such an extension is necessary because of the real practical limitations
of DEK’s and CEG’s methods. For example, they cannot be used to hedge

3In that case, the hedging portfolio based on their method exactly replicates the value
of the barrier option only at some future time and market levels, which are determined
by the the maturities and the strikes of regular options available in the market. However,
market participants may be more interested in an average measure of fit rather than into
perfectly replicating the barrier option for some times and price levels.
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an up-and-out call with a barrier above the strikes of traded regular options
whereas this type of barrier option is actually offered to customers.4

We now examine in more details DEK’s and CEG’s procedures. To
simplify, we assume that the underlying asset is a stock and that its price
has zero drift.

1.2 Static Hedging with Instruments of Different Maturities:
The Derman, Ergener, and Kani Model

Taking as given the law of motion of the underlying asset price, DEK aim at
replicating the dynamics of the barrier option by taking positions in regular
options with a rich enough array of maturities. They achieve perfect repli-
cation of the barrier option, for a chosen range of times and stock prices,
provided the stock price is allowed to move only at discrete intervals and that
one can trade regular options maturing at those times and with appropriate
strike prices. A drawback of this method is that, when choosing a finer price
grid in the tree to price the barrier option, the hedger must take positions
in an increasing number of regular options with intermediate maturities to
accomodate the corresponding increase in the number of subperiods.

The hedging strategy chosen by DEK is to replicate the value of the
barrier option on its boundary, that is, at expiry and at the barrier. Since the
value of any asset is determined by its payoff on the boundary, replicating the
value of the barrier option on its boundary also guarantees the replication
of the barrier option at every point within the boundary. Before giving
a detailed example of DEK’s method applied to an up-and-out call, let’s
summarize their approach in four steps. First, hedge the up-and-out call
at expiry with two regular options: one with the same strike as the barrier
option to replicate its payoff below the barrier and another to cancel out the
payoff of the regular call at the barrier. Second, compute the value of the
hedging portfolio the preceding period. Third, set to zero the value of the
hedging portfolio at the barrier that period by taking a position in a regular
option with intermediate maturity. Fourth, iterate the previous two steps
until the current period.

We now present DEK’s method in some detail because we will use the
same framework to present our alternative method. The DEK method relies
on trading options at model-implied prices before expiry; it does not provide
a pure static hedging strategy and is subject to liquidation risk. Table 1
illustrates DEK’s procedure. Like them, we use a binomial tree to model the
price process of the underlying asset: each period, the asset price increases
or decreases by 10 units with probability 1/2 (Tree 1). The riskless interest
rate is assumed to be zero. The goal is to hedge a 6-year up-and-out call with
strike 60 and barrier 120 by trading three regular options: a 6-year call with
strike 60, a 6-year call with strike 100, and a 3-year call with strike 120. Using
the fact that the value of an asset equals its expected value the following
period and proceeding backwards from expiry, we recursively compute the

4Clarke (1998) points out that, when up-and-out calls and down-and-in puts are used
by directional traders to gain exposure to movements in the underlying asset price, the
barrier is set far away from the current spot price.

6



prices of the regular options at every node. The result is displayed in Trees 2
and 3 for the long-term options, those for the short-term option are omitted.
Trees 4 and 5 present the hedging portfolio as it is progressively built. Tree
6 shows the price of the barrier option at each node. In each tree, the shaded
region represents the boundary of the barrier option.

Looking at Trees 2 and 6 reveals that the regular and the barrier options
have identical payoffs at expiry for stock prices below the barrier but not
for those at (or above) it: the regular call pays out 60 when the stock price
is 120 while the barrier option is worth zero. Using a standard 6-year call
struck at 100, we can offset the regular option’s payoff at expiry on the
barrier without affecting its payoff below the barrier. Tree 4 shows the value
of a the portfolio constituted by adequate long and short positions in the
two regular options. The portfolio has the proper payoff on the boundary
except in year 2. We correct this using a regular call option struck at 120
and maturing in year 3. Tree 5 shows that the new portfolio matches the
value of the barrier option on the barrier but not above it. Liquidating the
hedging portfolio at market prices when the underlying asset price hits the
boundary makes the value of the hedging strategy coincide with that of the
barrier option, transforming Tree 5 in Tree 6.

The binomial trees above are only meant as an illustration of DEK’s
method. Their technique is flexible enough to be applied on more complex
trees, for example, trees calibrated to match the market prices of liquid
options, using for example the method in Derman and Kani (1994).

1.3 Static Hedging with Instruments of Identical Maturities:
The Carr, Ellis, and Gupta Method.

DEK match the barrier option’s dynamics with regular options of interme-
diate maturities. However, such options may not be available in the market.
CEG offer an alternative: by making strong enough assumptions on the
distribution of the stock price, they are able to replicate the barrier option
with regular options that all mature at the same time as the barrier option.
Assuming that the stock price has zero drift and that the implied volatility
smile is symmetric, CEG derive a symmetry relation between regular puts
and calls:

C(K) K−1/2 = P (H) H−1/2 if (K H)1/2 = S, (1)

where C(K) is the value of a call struck at K, P (H) the value of a put struck
at H, and S is the price of the asset.5 This relation, which is an extension
of Bates (1988) is valid at any time before and including expiry.

Using the symmetry relation, CEG are able to perfectly hedge any Eu-
ropean barrier option by building a portfolio of plain vanilla options whose
value is zero when the price of the underlying asset crosses the barrier and

5The implied volatility is the volatility that equates the Black-Scholes formula with the
actual price of the option. Implied volatilities form a ”smile” when they increase at strikes
further away from the forward price. The horizontal axis in implied volatility graphs is
often the logarithm of the ratio of the strike prices relative to the forward price of the
underlying asset and the symmetry of the smile in CEG has to be understood is this
context.
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has the same payoff as the barrier option when the barrier has not been hit
before expiry. For example, one can hedge a down-and-out call with strike
K and barrier H (with H < K) by buying a standard call struck at K and
selling K H−1 puts struck at H2 K−1. The puts offset the value of the stan-
dard call when the stock price equals H because of the put-call symmetry.
When the underlying asset price remains above H until maturity, the puts
expire worthless (since H2 K−1 < H) while the standard call and the barrier
call have identical payoffs. Hedging other barrier options is more complex
but uses the same logic.

There are some limitations on the applicability of CEG’s method. First,
options with strikes at levels prescribed by the theory at not always available
in the market. For example, in the preceding example, even if the barrier
option’s strike (K) and barrier (H) correspond to strikes of traded plain
vanilla options, it is less certain that H2 K−1 is a traded strike. More gener-
ally, the barrier must belong to the range of marketable options’ strikes for
the put-call symmetry to be applied. This is not always the case. Second,
and more importantly, implied volatilities in actual markets often exhibit
non-symmetric smiles (Bates (1991 and 1997)).

2 Alternative method: Mean-square Hedging

DEK and CEG rely on strong assumptions on the availibility of standard
options with given strikes or maturities, or on the distribution of the stock
price. Furthermore, they offer no clear way to adapt their methods to cases
where their assumptions are violated.

An alternative approach is to approximate as best as possible the random
payoff of the barrier option with a given set of instruments. Since the option
may be imperfectly replicated, one has to choose a metric to measure how
close the hedge approximates the option. One possibility is to use the mean
of the square of the hedging error. Minimizing this quantity yields ”mean-
square hedging.”

Remark 1 Mean-square hedging perfectly replicates the barrier option when
the assumptions in DEK or CEG are satisfied.

The advantage of this method compared to DEK and CEG is that it provides
guidance to the hedger when their assumptions are not satisfied, for example,
when one of the standard options needed to perfectly replicate the claim is
not available in the market.

To simplify, we only consider the hedging error at maturity. More gen-
erally, regulations may dictate whether one decides to minimize the discrep-
ancy between the value of the hedge and that of the asset only at maturity
or over the life of the hedge. New American and international regulations
(FAS 133 of the U.S. Financial Accounting Standards Board and IAS 39
of the International Accounting Standards Committee) restrict the use of
”hedge accounting,” that is, the possibility of deferring losses and gains on
the hedging strategy until the risk is realized (e.g. the maturity of the barrier
option). As a consequence, companies have to include more often in their
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reported income the difference between the value of the hedge and that of
the asset they want to hedge. In such cases, one should take into account
the hedging residual at each reporting time.

2.1 Principle: Minimizing the Mean of the Hedging Error
Squared

The following introduces in some generality the principles behind mean-
square hedging. Naturally, mean-square hedging can be used to hedge any
type of claim, not just barrier options.

Assume that the underlying asset price can take n values and that there
are no short-sale constraints, taxes, or other market frictions. We model
assets as random variables taking values in Rn. Let E be the set of all
such random variables; it is an n-dimensional linear space and is called the
”payoff space.” Assume that one can trade k assets z1, . . . , zk with k ≤ n.
Write z the k-dimensional vector composed of those assets and L(z) the
set of all the linear combinations of elements of z; it is called the space of
marketable assets. Assume that the zi’s are linearly independent, in the
sense that no component of z can be replicated by a linear combination of
the others. The vector z is a basis of L(z) and this space is k-dimensional.
When n = k, markets are complete because any claim can be duplicated by
a linear combination of the zi’s (or other marketable assets). When n > k,
markets are incomplete. We focus on this case and assume n > k.

Call x the claim we want to hedge, β the asset allocation in the hedging
portfolio; the portfolio payoff is z′β, where the ”prime” superscript denotes
transposition. We choose β to minimize the mean-square of the residual
against a given probability measure. The objective is hence to

min
β

E[(x− z′β)2] (2)

and the optimal β is
β = E[zz′]−1E[zx]. (3)

Equation (3) defines the estimator of the coefficient on z using ordinary least
squares. This property makes mean-square hedging very intuitive. More-
over, when the riskless bond is included in the marketable assets, the hedg-
ing residual has mean zero and the ”R Squared” can be used to gauge the
quality of the optimal hedge since it measures the goodness of fit in a regres-
sion. Finally, the optimal hedge of some claim x ∈ E can be geometrically
interpreted as the orthogonal projection of x on L(z), written proj(x|L(z)).

Remark 2 Because of the linearity of mean-square hedging,

1. Hedging a portfolio of assets is equivalent to hedging each asset in the
portfolio individually,

2. One can mean-square hedge any asset by combining the hedging port-
folios of n artificial assets called contingent claims.
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The first property is of interest to banks because they typically hedge
their option books as whole portfolios. The second property uses the linearity
of mean-square hedging to save on computer time by computing E[zz′]−1

only once. The ”state-contingent” claims are artificial assets which are not
traded but form a practical basis in which to express all assets of interest.
Each of the n contingent claim pays $1 in a given state and $0 in all the
others. Call xi the state-contingent claim with non-zero payoff in state i and
let X = (xi)n

i=1. This random vector can be hedged in a mean-square sense
using the k×n matrix γ = E[zz′]−1 E[zX ′]. Any asset x ∈ E can be written
as x = X ′α. The mean-square hedging portfolio of x is defined by z′β with
β = γα.

Mean-square hedging can also easily accommodate position limits. First,
run the hedging program and list the assets for which the prescribed holdings
are higher than the limits. Then, rerun the hedging program constraining
the holdings of these assets to match the position limits. For example, let
x be the asset to be hedged, assume that the position limits are binding for
the first q assets, and write z′ = (z′1, z

′
2) and β′ = (β′1, β

′
2) where z1 is the

q-dimensional vector of those assets and β1 is their holdings in the hedging
portfolio. Fix β1 equal to the position limits and write x̃ = x − z′1β1. Run
the hedging program on x̃ to get the optimal β2.

Preferring static hedging over dynamic hedging because of transaction
costs and then letting mean-square hedging determine the optimal static
strategy might be seen as contradictory because mean-square hedging ig-
nores transaction costs. On the other hand, optimal strategies that take
into account market frictions like the bid-ask spread appear much harder to
compute. Applying mean-square hedging to a static hedging strategy can
be viewed as a compromise: one acknowledges the existence of transaction
costs by choosing to hedge statically and obtains some computable answer
by using mean-square techniques.

2.2 Pure Static Strategies and Strategies Allowing Liquida-
tion

Mean-square hedging can accomodate the case where the hedging portfolio
is held until maturity and that where it is liquidated at model-implied prices
as soon as the underlying asset price crosses the barrier, with the proceeds
of the liquidation being rolled over until maturity. To compute the hedging
portfolio in that case, we substitute the liquidation values of the marketable
assets to their original last-period payoffs for all paths in the tree for which
the price of the underlying asset crosses the barrier. This substitution does
not affect the prices of marketable assets before the barrier is hit.6

Alternatively, one can choose pure static strategies. Using only pure
static strategies and instruments with the same maturity as the barrier op-
tion greatly simplifies the hedging problem because one need only hedge the
conditional expectation of the option payoff conditioned on the underlying

6This follows from the fact that the price of any asset is the mean of its discounted
payoff and from the law of iterated expectations. The riskless interest rate is assumed to
be zero.
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asset price at expiry (called the ”conditional payoff”).7 Conditioning on the
stock price at maturity removes the path dependency of the option payoff
from the analysis and reduces the dimension of the hedging problem: instead
of considering the number of possible paths between the initial period and
expiry, we only have to consider the number of nodes at expiry. Accordingly,
the number of states is reduced from 2n to n+1 for binomial trees and from
3n to 2n + 1 for trinomial trees.

3 Application

We apply mean-square hedging using binomial and trinomial trees. Strike
and barrier levels can be assumed to correspond to nodes in the tree because
an option with a strike (or a barrier) between two nodes has the same payoff
as the option with the strike (or the barrier) adequately placed at one of the
nodes.

We choose the framework used to present DEK’s method but we con-
strain the strategies to be purely static or allow liquidation but exclude from
the marketable assets one of the three regular options used to hedge the bar-
rier option. We also formally introduce the riskless bond as a traded asset.
It was not part of the hedging portfolio before, because the barrier option
could be perfectly replicated using only the regular options. It is used to
roll forward the proceeds of the liquidation until the maturity of the barrier
option.

When hedging is imperfect, hedging errors typically are path dependent
and cannot be represented on a tree. We use the conditional expectation
of the value of the hedging portfolio conditioned on the price of the stock
(called the ”conditional value”) to visualize the fit of the mean-square hedg-
ing portfolio. We plot this conditional value at maturity against the possible
values of the stock; we also display the conditional values at every node.

The upper panel in Figure 2 shows the conditional values of the three
regular options potentially available to hedge the barrier option (two 6-year
calls with strikes 60 and 100 and one 3-year call with strike 120) conditional
on the last-period stock price (”the conditional payoff”). Conditional value
and intrinsic value coincide for the options expiring at the last period but
not for the short-maturity option. Every last-period stock price is the end-
node of several paths (except the highest and the lowest price to each of
which only one path converges). The higher the last-period stock price, the
more likely it is that the short-term option expires in the money along the
paths leading to it. Consequently, the growth in the conditional value of the
short-term option accelerates as the last-period stock price increases.

If regular options are available with strikes equal to all possible stock
price levels between (and including) the strike and the barrier of the barrier
option, it is possible to perfectly hedge the conditional value of the barrier
option. Doing so would not zero out the hedging error on the barrier option

7This is because proj(x|L(z)) = proj(E[x|S]|L(z)) when the random vector z is a
function of S, the stock price at maturity.
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itself but would lead to the best purely static strategy.8 Most importantly,
the regular option struck at the barrier allows one to set to zero the value of
the hedging portfolio for stock prices above the barrier. In contrast, when
only two regular options are available, the conditional values of the hedging
portfolio and of the barrier option necessarily differ, even if the riskless bond
is added to the marketable assets. The middle panel of Figure 2 shows the
conditional value of the barrier option (the dashed line) and that of the
optimal hedging portfolio using only the long-term options (the solid line).
Including the short-term option does not significantly change the quality of
the hedge. When no regular options with strikes at or above the barrier are
available, the conditional hedging error grows linearly with the asset value
when the latter increases above the barrier because, for asset prices above
the barrier, the value of the barrier option is zero whereas the payoff of the
hedging portfolio is linear in the stock price. However, the likelihood of
large hedging errors is small and decreases with the magnitude of the losses,
reflecting the thining tails of the probability distribution of the stock price
(the lower panel).

Table 2 displays the conditional value of the barrier option (Tree 1) and
of the optimal hedging portfolio based on all three options and the riskless
bond when only purely static strategies are allowed (Tree 2). Comparing
Trees 1 and 2 reveals significant expected discrepancies that arise early on
and grow with time. The fit is particularly bad above the barrier.

Liquidation provides added flexibility in the hedging strategy and results
in a significant improvement in the quality of the hedge. As shown in the up-
per panel of Figure 3, liquidating the regular options at model-based prices
when the stock price hits the barrier creates more kinks in their conditional
values, reflecting their increased usefulness as hedging tools. Although hedg-
ing the conditional value of the barrier option would not yield the correct
hedge for the barrier option itself, we compare the conditional value of the
hedging portfolio to that of the barrier option as a way of visualizing the
quality of the hedge.

As shown in Tree 3 in Table 2, liquidation allows the conditional value
of the hedging portfolio to be very close to that of the barrier option at
every node in the tree even when the 3-year call option is not included in
the portfolio. The middle panel of Figure 3 points to a good fit in the tails
of the conditional value of the barrier option. The results above suggest
that the 6-year calls, which allow the replication of the barrier option on or
below the barrier at maturity, are the major hedging instruments. This is
confirmed by including the short-term option but excluding the 6-year call
with strike 100. As shown in Tree 4, including the short-term option in
the hedging portfolio results in a better conditional fit up until the second
year, but the exclusion of the longer-term option creates large conditional

8The hedging procedure can be implemented graphically: first, use the regular call with
the same strike as the barrier option to match the conditional value of the barrier option
between the strike and the stock price immediately above it. Second, take a position
in a regular option struck at that price to equate the conditional values of the hedging
portfolio and of the barrier option between that price and the next. Iterate until the
barrier is reached.
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deviations for periods near maturity. The lower panel of Figure 3 reveals a
bad conditional fit in the lower tail.

Table 3 shows the asset allocation in the hedging portfolio in the different
scenarios used above. When liquidation is allowed, excluding the short-term
option has a limited impact on the amounts of the long-term options held in
the hedging portfolio (column 2) compared to when the hedger is allowed to
trade all three options (column 1). The ”R Squared” suggests a near-perfect
hedge (neglecting liquidation risk). In contrast, excluding the long-term
option with the highest strike or allowing all three options but excluding
liquidation greatly impacts the composition of the hedging portfolio and
dramatically lowers the goodness of fit (colums 4 and 5). The riskless bond
plays a noticeably larger role when the fit is poor. In the limit, if the values
of the hedging instruments were uncorrelated with that of the barrier option,
the best hedging strategy would be to invest the value of the barrier option
in the riskless bond and nothing in the other hedging instruments.

3.1 The Relation Between Hedging and Pricing

The value of the mean-square hedging portfolios obtained above coincides
with the price of the barrier option derived from the tree. Choosing the
risk-neutral probability distribution implied by the tree to compute mean-
square hedges guarantees this desirable result. Other choices may create
discrepancies between pricing and hedging the barrier option.

Call π the pricing functional on L(z), that is, the linear function which to
any marketable asset associates its price. This function is uniquely defined by
the exogenously given prices of the marketable assets and can be extended to
E by defining the price of any asset x in E as the value of the best matching
portfolio obtained through mean-square hedging. In mathematical terms,
calling π̂ the extension of π to E formed in this maner, for all x ∈ E,

π̂(x) = π( proj(x|L(z)) )
= π(β′z)
= β′π(z),

(4)

with β = E[zz′]−1E[zx]. Naturally, π̂ depends on the probability distribu-
tion used to compute mean-square hedges.

Conversely, any exogenously given pricing functional π̃ on E defines
a probability distribution on E. Write qi = π̃(xi) where xi is the state-
contingent claim with non-zero payoff in state i. The qi’s are positive be-
cause π̃ is assumed to admit no arbitrage opportunities and they sum up to 1
because the riskless bond, which pays $1 in every state and is worth $1 (the
riskless interest rate is assumed to be zero) can be replicated by holding all
the contingent claims. Hence, the qi’s define a probability distribution, Q,
on E. It is the risk-neutral implied by π̃ because, for all x ∈ E, π̃(x) = EQ[x]
where EQ denotes the expectation operator against Q.

Theorem 1
When Q is used to compute the hedges, the pricing functional derived from
mean-square hedging coincides with π̃.
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Proof: For all x ∈ E.

π̂(x) = π( proj(x|L(z)) )
= π̃( proj(x|L(z)) )
= EQ[ proj(x|L(z)) ]
= EQ[x ]
= π̃(x)

(5)

The first line comes from the definition of π̂; the second from the fact that all
pricing functionals on E coincide with π on L(z); the third line stems from
the definition of Q; the fourth line uses the fact that EQ[x−proj(x|L(z)] = 0
provided the riskless bond is a marketable asset; this is similar to including
a constant term as an explanatory variable in a regression to insure that the
residual has mean zero.

4 Hedging Consistently with Prices of Non-marketable
Assets

The risk-neutral measure is merely a convenient pricing tool and combines
properties of both the real-world probability distribution and of the compen-
sation that investors demand for taking on additional risk. An investor might
be more interested in minimizing its hedging uncertainty using the real-world
measure than using the risk-neutral measure. However, if the investor uses
mean-square hedging with the real-world measure, the value of the hedging
portfolio could differ from the value of the barrier option implied by pricing
models. Moreover, mean-square hedging might affect negative prices to non-
marketable claims with positive payoffs in all states because of its linearity.
The key is that investors may be interested in adopting mean-square hedging
because of its simplicity but may not be willing to replace current pricing
tools.

The following introduces a method that preserves the computational sim-
plicity of mean-square hedging and makes the value of the hedging portfolio
consistent with the (exogenously given) price of the security it is supposed
to hedge. This is done by requiring the price of the hedging error to be
zero. The method presented below is flexible enough to incorporate any
other linear constraint on the hedging residual. We present the method in
some detail below before introducing some applications.

4.1 Principle: a Geometric Approach

This section introduces the new method in an intuitive, geometric fashion.
Theorem 2 in the next section generalizes the approach and presents the
results in a more rigorous way. Proofs are relegated to the appendix. As
before, let E be the n-dimensional payoff space, z the k-dimensional vector
of marketable assets, L(z) the linear space spanned by z, π a given pricing
functional on E. The objective is, for any given x, to build a portfolio of
marketable assets that best replicates asset x and has price π(x). We are
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hence interested into writing any x ∈ E as

x = z′β + ε (6)

with π(ε) = 0. For convenience, write kerπ = {u ∈ E, π(u) = 0} and F⊥ the
set of all elements of E orthogonal to elements of F , itself a linear subspace
of E.

Since the hedging residual generated by mean-square hedging is orthog-
onal to L(z), a natural extension of this method that incorporates the new
constraint π(ε) = 0 is to impose that, within kerπ, ε be orthogonal to L(z).
Figure 4 shows mean-square hedging and its extension in a 3-dimensional
space. Assets are represented as vectors and random variables that are or-
thogonal with respect to the probability measure are shown as orthogonal
vectors. The space of marketable assets, L(z), is assumed to be a plane.
The upper panel represents mean-square hedging as the orthogonal projec-
tion on L(z). The middle panel introduces the set of payoffs with zero price,
kerπ, to which the hedging residual must belong. Since E is a 3-dimensional
space and π(y) = 0 imposes one constraint on y, kerπ is a plane. Its in-
tersection with L(z) is a line because the no-arbitrage condition precludes
all marketable assets from having zero price, so that kerπ and L(z) cannot
coincide. The hedging error must belong to kerπ and, within that set, be
orthogonal to L(z), that is, be orthogonal to L(z) ∩ kerπ. We conclude
that the hedging error belongs to kerπ ∩ [L(z) ∩ kerπ]⊥. The lower panel
shows the result of the new hedging method: an asset x is hedged using
the decomposition x = z′β + ε with ε ∈ kerπ ∩ [L(z) ∩ kerπ]⊥. This de-
composition is unique, linear in x, and defines a projection on L(z), call
it P̃ [ |L(z)], characterized by its image set (Im(P̃ [ |L(z)])) and its null set
(ker(P̃ [ |L(z)])).

To summarize, one hedging strategy consistent with the pricing func-
tional π is characterized by the linear projection P̃ [ |L(z)] defined by:

{
Im(P̃ [ |L(z)]) = L(z)
ker(P̃ [ |L(z)]) = kerπ ∩ [kerπ ∩ L(z)]⊥

(7)

This result is generalized to hedging consistently with multiple linear
constraints and the associated projection is characterized further in theorem
2 in the next section. If π is the pricing functional obtained from mean-
square hedging, P̃ [ |L(z)] is the orthogonal projection on L(z).9 If π is not
the mean-square hedging pricing functional, P̃ [ |L(z)] is a non-orthogonal
linear projection on L(z) with direction kerπ ∩ [kerπ ∩ L(z)]⊥.

4.2 Hedging Consistently with p Linear Constraints

The mean of the hedging residual obtained from the hedging strategy above
may fail to be zero. We can easily incorporate this new constraint or impose
p linear constraints on the hedging residual. These constraints can be ex-
pressed as Ψ(ε) = 0, where Ψ is a p-dimensional linear function with p < k.

9If π is the mean-square pricing functional, ker π = L(z)⊥ so that ker(P̃ [ |L(z)]) =
L(z)⊥ ∩ [L(z)⊥ ∩ L(z)]⊥ = L(z)⊥.
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The linear functional Ψ is defined on E, we can also apply it on vectors of
elements of E by using the following convention: if x is a r × 1 vector of
random variables in E, Ψ(x) is a r × p matrix. Consequently, if x1 and x2

are r1 × 1 and r2 × 1 vectors and A is a r1 × r2 matrix such that r1 = Ar2,
then, Ψ(r1) = AΨ(r2).

Assumption 1
1. Ψ is such that E = L(z) + ker(Ψ), that is, for all x ∈ E, there exist

v ∈ L(z) and ε ∈ E such that x = v + ε and Ψ(ε) = 0,

2. Ψ(z) is full rank.

The first assumption guarantees that it is possible to hedge claims in E using
marketable assets such that the hedging residual satisfies the constraints
encapsulated in Ψ. We assume that such constraints can be satisfied; the
objective is to find the best way to do so. The second assumption imposes
that the rank of Ψ(z) is p and means that none of the p restrictions implied
by Ψ are redundant. We assume without loss of generality that the last p
components of z are linearly independent.

Using the same geometric principle as above, we define the hedging strat-
egy consistent with the constraints.

Theorem 2
1. One hedging strategy consistent with the constraint Ψ(ε) = 0 is char-

acterized by the linear projection P̂ [ |L(z)] defined by:

{
Im(P̂ [ |L(z)]) = L(z)
ker(P̂ [ |L(z)]) = ker(Ψ) ∩ [ker(Ψ) ∩ L(z)]⊥

(8)

2. There exists some u ∈ E such that

P̂ [x|L(z)] = z′β with β = E[uz′]−1E[ux] (9)

3. The projection P̂ [ |L(z)] coincides with the constrained least squares
regression of x on z.

Proof: See appendix.

When the hedging residual has mean zero, the ”R squared” can also
be used to measure the fit of the hedging portfolio with the barrier op-
tion. The advantage of our method compared to a direct use of constrained
least squares lies in its computational efficiency, a crucial property to prac-
titioners. In contrast, off-the-shelf formulae for constrained least squares
regression coefficients appear much more complex. Another advantage is its
intuitive geometrical interpretation.

Remark 3 Because of the linearity of mean-square hedging under constraints,

1. Hedging a portfolio of assets under linear constraints on the hedging
residual is equivalent to hedging each asset in the portfolio individually,
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2. One can hedge any asset under such constraints by combining the hedg-
ing portfolios of the contingent claims.

Relevant linear constraints on ε include




π(ε) = 0
E[ε] = 0
E[ε|S ∈ G] = 0
E[ε|S ∈ G] = aE[x|S ∈ G]

(10)

where S is the price of the underlying asset at maturity, G is an interval on
the real line, and a is a scalar. The last two constraints above become risk-
management tools when they are seen as saturated versions of economically
more meaningful constraints like:

E[ε|S ∈ G] ≤ 0
E[ε|S ∈ G]/E[x|S ∈ G] ≤ a

(11)

Constraints like
P (ε > α) = a1

E[ε |ε > α] = a2
(12)

cannot be accommodated in the present framework because they are not
linear. (The parameters a1 and a2 above are the ”value-at-risk” and the
”mean-excess loss” on the hedging strategy at a given ”significance level” α,
assuming the trader loses money if the hedging residual is positive). How-
ever, if the realizations of the hedging error are large when S ∈ G, then
constraining E[ε|S ∈ G] indirectly imposes some tail condition on the hedg-
ing error. Intuitively, hedging a barrier option or other non-linear claims
with standard options should generate larger errors when the price of the
underlying asset takes values outside the range of marketable strikes or far
from the barrier because the hedger has fewer ”degrees of freedom” in those
areas.

Linear constraints insure the linearity of the hedging operator P̂ [ |L(z)]
and the computational efficiency of the hegding method. In contrast, con-
straints like Ψ(ε) = a are not linear when a 6= 0 even if Ψ is.

5 Application

We return to the example illustrating DEK’s method. The objective is to
hedge the barrier option excluding the short-term call from the hedging
portfolio, which insures that the hedge is imperfect. We use the risk-neutral
probability distribution implied by the tree and impose some restrictions on
the hedging error. First, we constrain the hedging residual to be zero when
the stock price at maturity reaches its maximum; second, we impose the
additional constraint that the mean of the residual, and therefore its price,
be zero.

Figure 5 shows the conditional payoffs at maturity of the barrier option
(the dashed line), of the hedging portfolio when no constraint is imposed
(the light grey line), when the hedging residual is constrained to be zero at
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the maximum of the stock price (the upper panel) and under the additional
constraint that the mean of the hedging residual be zero (the lower panel).
When no constraint is imposed, the hedging error arising from mean-square
hedging has mean zero because the hedging portfolio includes the riskless
bond. The first constraint shifts up the conditional value of the optimal
hedging portfolio for high levels of the stock price but has little effect for
lower stock prices (where the conditional fit is very good). This leads to
a non-zero mean for the hedging error (and a lower price for the hedging
portfolio). Imposing a zero-mean condition on the hedging residual shifts
down the conditional value of the hedging portfolio for lower stock prices,
which offsets the upward shift when the stock price is high. Comparing
columns 2 and 3 in Table 3 reveals that imposing the additional constraint
that the hedging error be zero when the stock price reaches its maximum
at maturity and has mean zero also has a moderate impact on the portfolio
allocation and the goodness of fit. This is partly because, in this example,
the hedging residual is already very small when no constraint is imposed.
In trees used in practice, the underlying asset price may take values farther
above the barrier with positive probabilities and imposing a tail constraint
on the hedging residual may more significantly impact asset allocation.

To provide another illustration of our extension to mean-square hedging,
we assume now that the returns on the stock follow a geometric Brownian
motion with zero drift. We choose a trinomial tree to evaluate the assets
because such tree offers more flexibility in the position of the nodes with
respect to the barrier than binomial trees (Cheuk and Vorst (1996)). Since
the distribution of the stock satisfies CEG’s assumptions, any barrier option
can be replicated if regular options with strikes called for by CEG are traded.

We require the hedging portfolio to be consistent with the pricing model
implied by the tree, but choose a different probability distribution to com-
pute hedges. The new distribution affects the same probability to every
path in the tree. This increases the likelihood of tail events relative to the
risk-neutral distribution as shown in the top panel of Figure 6. We then com-
pare the hedging portfolios based on the risk-neutral distribution to those
obtained using the alternative probability distribution under the constraint
that hedging portfolios be consistent with the pricing functional implied by
the tree and generate mean-zero hedging errors. In each case, both purely
static strategies and strategies allowing liquidation are considered. The asset
to hedge is an at-the-money up-and-out call option with barrier above the
strikes of all marketable options so that hedging is necessarily imperfect.

The lower panels of Figure 6 shows the conditional payoffs of the barrier
option and of the hedging portfolios, conditioned on the underlying stock
price at expiry assuming admissible hedging strategies are purely static (the
middle panel) and allowing the liquidation of the hedging portfolios at model-
based prices when the barrier is reached (the lower panel). When liquidation
is precluded, optimal hedging portfolio strongly depend on the probability
distribution used. Two determining factors in the shape of the hedging
portfolio are the probability mass between the barrier (H) and the highest
possible asset value smaller than the barrier (H−) and the probability mass
to the right of H. Between H− and H, the conditional payoff of the barrier
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option drops from its maximum to zero. In our example, the highest strike
available to the hedger is H− and, consequently, the conditional payoff of
the hedging portfolio is linear in the asset price for prices above H−. The
hedger has to decide whether to fit better the drop in the value of the barrier
option between H− and H or the flat portion of its value above H.

The probability distribution based on the equiprobability of paths af-
fects more mass to asset values above H− than the lognormal distribution.
However, the increase in the probabilities is relatively greater for stock val-
ues between H and H− than for those strictly above H.10 Consequently,
the hedger is more weary of deviations between the conditional value of the
barrier option and that of the hedging portfolio for values of the underlying
asset between H− and H than for those above H. Therefore, hedging errors
are larger in the tails when the hedging strategy assumes that each path is
equiprobable than using the lognormal distribution, even though assuming
equiprobability of paths puts less mass in the center of the distribution and
more mass in its periphery.

When hedging strategies allow liquidation, the choice of the probability
distribution makes little difference in the resulting hedging portfolios. Intu-
itively, allowing liquidation significantly improves the fit between the payoff
of the barrier option and that of the hedging portfolio so that hedging er-
rors are small and the probability distribution used has less impact on the
hedging strategy. In the limit, if one was able to perfectly mimic the payoff
of the barrier option, the probability distribution would be irrelevant.

6 Conclusion

Barrier options have become widely traded securities in the past recent years.
Market professionals can easily price these instruments using existing evalu-
ation tools but find them hard to hedge. This illustrates the dichotomy that
market incompleteness introduces between pricing and hedging. Moreover,
to save on transaction costs, an unavoidable feature of real markets, prac-
titioners prefer to adjust their hedging portfolios only infrequently. In re-
sponse, researchers have devised ”static strategies” where the hedging port-
folio is liquidated if the barrier is reached (in the case of a knock-out option)
but is otherwise not modified before maturity. However, current research
in static hedging still aims at perfectly replicating the barrier option. To
achieve this goal, one has to make strong assumptions on the availability of
regular options with certain strikes or maturities, or on the distribution of
the underlying asset. This greatly impairs the implementability of the pro-
posed hedging procedures in real-world situations (where these assumptions
are not valid).

This paper proposes an alternative approach. It aims at replicating ”as
best as possible” the barrier option while taking into account more features
of the real world than current research in the field. The tool of choice is

10There are only two possible stock prices strictly above H. They are located at the end
of the possible price range and at the last kink of the two probability distributions. The
difference between the two probability distributions is fairly small at those two points.
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”mean-square hedging” and is extended to incorporate linear constraints on
the hedging residual. One advantage of the method is that the value of the
hedging portfolio can be made to coincide with the price attributed to the
barrier option by any given pricing model. Another advantage is that it can
incorporate constraints on the tail of the hedging residual, which contributes
to managing risk.
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Appendix

Proof of Theorem 2

1. Let’s show that
{

L(z) + ker(Ψ) ∩ [ker(Ψ) ∩ L(z)]⊥ = E,
L(z) ∩ ker(Ψ) ∩ [ker(Ψ) ∩ L(z)]⊥ = {0}, (13)

where 0 is the null vector in E. (In the following, 0 refers to null
vectors of various dimensions.) If equation (13) above is true, we can
define a projection, P̂ [ |L(z)], with

{
Im(P̂ [ |L(z)]) = L(z)
ker(P̂ [ |L(z)]) = ker(Ψ) ∩ [ker(Ψ) ∩ L(z)]⊥

(14)

The second line in equation (13) is obviously true. Given assumption
1, to obtain the first line, it is sufficient to show that ker(Ψ) can be
decomposed as:

ker(Ψ) = ker(Ψ) ∩ L(z) + ker(Ψ) ∩ [ker(Ψ) ∩ L(z)]⊥ (15)

To show this, let ε ∈ ker(Ψ) and project ε on ker(Ψ) ∩ L(z).

ε = P [ε| ker(Ψ) ∩ L(z)] + η = v + η, (16)

where P [ | ker(Ψ) ∩ L(z)] is the orthogonal projection. By definition,
η⊥ ker(Ψ) ∩ L(z). Moreover, Ψ(η) = 0 because Ψ is linear and ε and
v are elements of kerΨ, Hence

η ∈ ker(Ψ) ∩ [ker(Ψ) ∩ L(z)]⊥ (17)

and equation (15) follows.

2. Let show that there exists some u ∈ E such that

P̂ [x|L(z)] = z′β with β = E[uz′]−1E[ux]. (18)

Any x ∈ E can be written as x = z′β + ε where ε ∈ ker(P̂ [ |L(z)]). By
definition, for any basis in ker(P̂ [ |L(z)])⊥, E[uε] = 0. Hence,

E[uz′]β = E[ux] (19)

To prove that the k × k matrix E[uz′] is invertible, let α be any k-
dimensional real vector such that

α′E[uz′] = 0, (20)

and show that α = 0. Writing v = α′u, equation (20) is equivalent
to E[vz′] = 0, that is, v ∈ L(z)⊥. Hence, v ∈ Im(P̂ [ |L(z)])⊥ and
v ∈ ker(P̂ [ |L(z)])⊥. Since, for all two subspaces W1 and W2 of a
finite-dimensional space, W⊥

1 ∩W⊥
2 = (W1+W2)⊥, v ∈ (Im(P̂ [ |L(z)]+
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ker(P̂ [ |L(z)])⊥, or equivalently, v ∈ E⊥, that is, v = 0. Now, since
u is a linearly independent vector, α′u = 0 implies α = 0. Hence, the
matrix E[uz′] is invertible and equation (19) is equivalent to

β = E[uz′]−1 E[ux] (21)

The coefficient β is unique even though u is not. If u1 and u2 are two
bases in ker(P̂ [ |L(z)])⊥, there exists a k-dimensional invertible matrix
T such that u1 = T u2. This matrix drops out of the computation of
β.

3. Let’s show that P̂ [ |L(z)] defined in (14) coincides with the constrained
least squares projection. First, we characterize the constrained least
squares projection. Then, we prove it is the same as P̂ [ |L(z)].

(a) Let’s apply constrained least squares to find β solving

x = z′β + ε s.t. Ψ(ε) = 0. (22)

Since Ψ is a p-dimensional linear functional on E, there exists a
p-dimensional random vector m ∈ E so that, for any vector y of
random variables in E.

Ψ(y) = E[ym′] (23)

The constraint on the regression residual can be written:

E[xm′] = β′E[zm′] (24)

where E[zm′] = Ψ(z) is a k × p full-rank matrix (assumption 1).
The Lagrangean for the constrained optimization problem is

L = β′E[zz′]β − 2β′E[zx] + x2 + 2{E[xm′]− β′E[zm′]}λ (25)

where 2λ is the p× 1 vector of Lagrangean multipliers. The first-
order condition with respect to β implies that

β = E[zz′]−1 {E[zx] + E[zm′]λ} (26)

Substituting the expression above for β in equation (24), we ob-
tain

λ = {E[mz′]E[zz′]−1E[zm′]}−1{E[mx]− E[mz′]E[zz′]−1E[zx]}
(27)

The matrix E[mz′]E[zz′]−1E[zm′] is invertible because E[zm′] is
full rank. The coefficients λ and β are linear in x. Consequently,
constrained least squares defines a linear projection on L(z), call
it P̄ [ |L(z)].

(b) Let’s show that P̄ [ |L(z)] = P̂ [ |L(z)]. Since Im(P̂ [ |L(z)]) =
Im(P̄ [ |L(z)]), the two projections are equal if and only if

ker(P̂ [ |L(z)]) = ker(P̄ [ |L(z)]). (28)
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Moreover, since these two linear spaces have the same (finite)
dimension, it suffices to show that one is included in the other.
Let’s show that ker(P̄ [ |L(z)]) ⊂ ker(P̂ [ |L(z)]). Let β and ε be
the regression coefficient and the residual in the constrained least
square regression. Let’s show that ε⊥ ker(Ψ) ∩ L(z). A random
variable y ∈ E is an element of ker(Ψ)∩L(z) if and only if y = z′θ
for a k-dimensional real vector θ and Ψ(y) = 0, that is, if and only
if {

y = θ′z
θ′E[zm′] = 0

(29)

Showing ε⊥y is equivalent to showing E[yx] = E[yz′β]. This is
done below.

E[yz′β] = E[yz′]β
= θ′E[zz′]β
= θ′{E[zx] + E[z′m]λ}
= E[(θ′z)x] + θ′E[z′m]λ
= E[yx]

(30)

Using equation (30) and Ψ(ε) = 0, we get that ε ∈ ker(P̂ [ |L(z)]).
Consequently, ker(P̄ [ |L(z)]) ⊂ ker(P̂ [ |L(z)]) and, hence, P̂ [ |L(z)] =
P̄ [ |L(z)].

Computing u in β = E[uz′]−1 E[ux].

Let y ∈ ker(Ψ) ∩ L(z) and θ such that y = θ′z. Then,

Ψ(z)′θ = 0. (31)

This equality imposes p linear constraints on θ and allows us to write p of its
components as linear combinations of the others. More precisely, decompose
Ψ(z) and θ as

Ψ(z) =
(

Ψ(z1)
Ψ(z2)

)
, θ =

(
θ1

θ2

)
, (32)

where Ψ(z1) is (k − p)× p; Ψ(z2) is p× p; θ1 is (k − p)× 1; θ2 is p× 1.

θ′Ψ(z) = 0 ⇔ θ′1Ψ(z1) + θ′2Ψ(z2) = 0
⇔ θ2 = −[Ψ(z2)−1]′Ψ(z1)′θ1

(33)

(Note that Ψ is defined on column vectors only so that we must work with
Ψ(z), not Ψ(z′).) Equation (33) implies that

y ∈ ker(Ψ) ∩ L(z) ⇔ y = z′θ with θ = Ab (34)

where b is a (k − p)× 1 real vector and

A =
(

Ik−p

−[Ψ(z2)−1]′Ψ(z1)′

)
(35)
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where Ik−p is the (k − p)-dimensional identity matrix. Consequently, any
y ∈ ker(Ψ)∩L(z) can be written as y = b′(A′z) with A the k×(k−p) matrix
defined above and b a (k − p)-dimensional vector.

ε ∈ [ker(Ψ) ∩ L(z)]⊥ ⇔ b′E[ε (A′z)] = 0 all b ∈ Rk−p

⇔ E[ε (A′z)] = 0
(36)

Besides, ε ∈ kerΨ if and only if Ψ(ε) = E[εm′] = 0. We conclude that

ε ∈ ker(Ψ) ∩ [ker(Ψ) ∩ L(z)]⊥ ⇔ E[uε] = 0 with u =
(

m
A′z

)
(37)

which implies that P̂ [x|L(z)] = z′β with β = E[uz′]−1 E[ux].

24



References

Bates, David, 1988, The crash premium: Option pricing under asymmetric
processes, with applications to options on the Deutschemark futures, Work-
ing Paper, the University of Pennsylvania.

Bates, David, 1991, The crash of 87: Was it expected? The evidence from
options markets, Journal of Finance 46, 1009-1044.

Bates, David, 1997, The skew premium: option pricing under asymmetric
processes, in Advances in Futures and Options Research, vol 9, 51-82.

Black, Fischer, and Myron Scholes, 1973, The pricing of options and corpo-
rate liabilities, The Journal of Political Economy, 81, 637-659.

Carr, Peter, Katrina Ellis, and Vishal Gupta , 1998, Static hedging of exotic
options, Journal of Finance, 53, 1165-1190.

Cheuk, Terry, and Ton Vorst, 1996, Complex Barrier Options, Journal of
Derivatives, 4(1), 8-22.

Clarke, David, 1998, Global foreign exchange: introduction to barrier op-
tions, unpublished manuscript (http://www.hrsltd.demon.co.uk/marketin.htm).

Derman, Emanuel, Deniz Ergener, and Iraj Kani, 1995, Static Options Repli-
cation, Journal of Derivatives, 2 (4), 78-95.

Derman, Emanuel, and Iraj Kani, 1994, Riding on a smile, Risk, 7 (2), 32-39.

Duffie, Darrell and Henry Richardson, 1991, Mean-variance hedging in con-
tinuous time, Annals of Applied Probability, 1, 1-15.

El Karoui, Nicole and M. Quenez, 1995, Dynamic programming and pricing
of contingent claims in an incomplete market, SIAM Journal of Control
Optimization, 33 (1), 29-66.
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Time Time
0 1 2 3 4 5 6 0 1 2 3 4 5 6

Tree 1 Tree 4
Stock 160 6-year call with strike 60 -80

150 6-year call with strike 100 -60
140 140 -40 -40

130 130 -20 -20
120 120 120 -3.7 0 0

110 110 110 6.9 12.5 20
100 100 100 100 12.2 17.5 25 40

90 90 90 17.5 22.5 30
80 80 80 17.5 20 20

70 70 12.5 10
60 60 5 0

50 0
40 0

Tree 2 Tree 5
6-year call with strike 60 100 6-year calls with strike 60 and 100 -80

90 3-year call with strike 120 -60
80 80 -40 -40

70 70 -12.5 -20
60 60 60 0 0 0

50 50 50 8.7 12.5 20
40.3 40 40 40 13.1 17.5 25 40

30.6 30 30 17.5 22.5 30
21.25 20 20 17.5 20 20

12.5 10 12.5 10
5 0 5 0

0 0
0 0

Tree 3 Tree 6
6-year call with strike 100 60 Up-and-out call with strike 60 0

50 and barrier 120 0
40 40 0 0

30 30 0 0
21.3 20 20 0 0 0

14.4 12.5 10 8.75 12.5 20
9.4 7.5 5 0 13.1 17.5 25 40

4.4 2.5 0 17.5 22.5 30
1.25 0 0 17.5 20 20

0 0 12.5 10
0 0 5 0

0 0
0 0

Table 1: The Derman, Ergener, and Kani model. The trees represent the values at
each node of some asset portfolios. The components of the portfolio figure at the top-left
corner of each tree. 27



Time Time
0 1 2 3 4 5 6 0 1 2 3 4 5 6

Tree 1 Tree 3
Up-and-out call with strike 60 0 6-year calls with strikes 60 and 100 -1.6
and barrier 120 0 -1.6

0 0 -1.6 -0.4
0 0 -1.6 -0.1

0 0 0 -1.6 0.2 0.6
8.7 8.3 10 8.3 8.6 10.4

13.1 17.5 20.8 28 13.1 18.2 20.9 27.8
17.5 22.5 27 17.9 22.7 26.8

17.5 20 18.7 17.6 20 18.6
12.5 10 12.5 10

5 0 5.1 0.1
0 0.1

0 0.1

Tree 2. Pure static strategies Tree 4
6-year calls with strikes 60 and 100 -22.9 6-year call with strike 60 0
3-year call with strike 120 -15.2 3-year call with strike 120 0

-7.6 -6.3 0 5.7
0 1.5 0 6.9

7.3 9.5 9.6 0 8.5 10.2
11.5 14.5 17.5 8.7 11.5 12

13.1 15.7 19 25.3 13.1 17.4 14.5 13.9
14.8 16.9 20.1 17.5 17.6 15.8

13.8 14.8 14.8 17.7 17.7 16.6
10.8 9.5 17.9 17.9

6.8 4.2 18 18.1
4.2 18.1

4.2 18.1

Table 2: Conditional values conditioned on the stock price at time t. The trees
represent the conditional values at each node of the hedging portfolios. The components
of the portfolio figure at the top-left corner of each tree. The asset allocation is shown in
Table 3. All numbers are rounded to the first decimal. Hedging strategies allow liquidation
unless stated otherwise.
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Assets Asset allocation

Including Excluding
Liquidation Liquidation

(1) (2) (3) (4) (5)

6-year call with strike 60 1.00 0.99 0.98 -0.02 0.53
6-year call with strike 100 -3.00 -2.88 -2.74 n.a. -1.29
3-year call with strike 120 0.75 n.a. n.a. -3.41 -0.25
Riskless bond 0.00 0.01 -0.01 0.18 0.04

R Squared (percent) 100 99.5 98.8 21.7 43.2

Table 3: Hedging an up-and-out call with strike 60 and barrier 120. Columns
(1) to (5) show the asset allocations in the hedging portfolio and a measure of fit (the ”R
squared”) in five different scenarios: Allowing liquidation and trading the riskless bond
and the three options used in Derman, Ergener, and Kani (1995) (column 1); excluding
the short-term option from the marketable assets (column 2); imposing the additional
constraint that the hedging residual has zero mean and be zero when the stock price
reaches its maximum at maturity (column 3); imposing no such constraint but excluding
the long-term option with the highest strike from the marketable assets (column 4); or
excluding liquidation while trading in all three options and the riskless bond (column 5).
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Figure 1: The value and the Greeks of a regular call and of an up-and-out call.
The strike price of both calls is 1.0, the barrier is 1.55, maturities are 6 months (dashed line)
and 1 month (solid line); the underlying asset is assumed to follow a geometric Brownian
motion with volatility σ = 0.2; the interest rate is assumed to be zero.
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Figure 2: Pure static hedging strategies. Conditional values at maturity of the
regular options potentially available for hedging (upper panel), of the barrier option, and
of the hedging portfolio when the short-term option is excluded (middle panel). Probability
distribution of the stock price (lower panel).
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Figure 3: Static hedging strategies allowing liquidation. Conditional values at
maturity of the regular options potentially available for hedging (upper panel), of the
barrier option, of the hedging portfolio when the short-term option is excluded (middle
panel), and when the long-term option with the highest strike is excluded (lower panel).
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Figure 4: Geometric approach to hedging. Mean-square hedging (upper panel) and
hedging consistently with a given pricing functional (middle and lower panels).
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Figure 5: Constrained static hedging strategies allowing liquidation. Condi-
tional values at maturity of the barrier option, of the hedging portfolio with the short-
term option excluded and under the constraint that the hedging residual be zero at the
maximum price level (upper panel), and under the additional constraint that the mean of
the hedging residual be zero (lower panel). In both graphs, the light-gray curve represents
the conditional value of the hedging portfolio when no constraint is imposed.

34



1 H- H
Stock Price

0

5

10

15

20

25

P
r
o
b
a
b
i
l
i
t
y
H
%
L

1 H- H
Stock Price

-0.6

-0.4

-0.2

0

0.2

C
o
n
d
i
t
i
o
n
a
l
P
a
y
o
f
f

Pure Static

1 H- H
Stock Price

0

0.05

0.1

0.15

0.2

0.25

C
o
n
d
i
t
i
o
n
a
l
P
a
y
o
f
f

Allowing liquidation

Figure 6: Hedging consistently with a pricing functional using the risk-neutral
probability distribution and another probability distribution. The upper panel
shows the risk-neutral, lognormal, probability distribution (dashed line) and the one based
on the equiprobability of paths (solid line). The conditional portftolio payoffs following
pure static strategies are displayed in the middle panel; those based on strategies allowing
liquidation in the lower panel. In both cases, the long-dashed curves represent the con-
ditional payoffs when mean-square hedging uses the risk-neutral (lognormal) probability
distribution; the short-dashed curves show the conditional payoffs when hedging is based
on the equiprobability of paths; H denotes the barrier and H− the highest possible stock
price lower than the barrier. H− is the strike of a regular option used in hedging; H is
not.

35


