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Abstract

This paper presents the case for modeling asset price processes as
purely discontinuous processes of ¯nite variation with an in¯nite arrival
rate of jumps that have arrival rates completely monotone in the jump size.
The arguments address both the empirical realities of asset returns and
the implications of the economic principle of no arbitrage. Two classes
of economic models meeting these conditions are presented and linked.
An important example given by the variance gamma process is studied
in detail and used to design optimal derivative investment portfolios that
are calibrated to actual portfolios to reverse engineer trader preferences
and beliefs and infer personalized risk neutral measures termed position
measures. Illustrative comparisons of statistical, risk neutral and position
measures are also provided.

1 INTRODUCTION

Prices of assets determined in highly liquid ¯nancial markets are generally
viewed as continuous functions of time. This is true of the Black-Scholes [7],
and Merton [33] model of geometric Brownian motion for the dynamics of the
price of a stock, and of its many successors that include the stochastic volatility
models of Hull and White [23], Heston [22] and the more recent advances into
modeling the evolution of the local volatility surface by Derman and Kani [14] ,
and Dupire [15]. Jumps or discontinuities when considered, have been added on
as an additional orthogonal compound Poisson process also impacting the stock
as for example in Press[38], Merton [34], Cox and Ross [11], Naik and Lee [37],
Bates [6], and Bakshi and Chen [1]. This class of models is broadly referred
to as jump-di®usion models and as the name suggests they are mixture mod-
els studying the high activity and low activity events by using two orthogonal
modeling strategies.
The purpose of this article is to present the case for an alternative approach

that stands in sharp contrast to the above mentioned models and synthesizes
the study of high and low activity price movements using a class of purely
discontinuous price processes. The contrast with the above class of models is
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that the processes advocated here have no continuous component, as all jump-
di®usions must have, and furthermore, the discontinuities are in¯nite in number
with moves of larger sizes coming at a slower rate than moves of smaller sizes.
Additionally the jump-di®usion models have what is called in¯nite variation, in
that the sum of absolute price moves is in¯nity in any interval and one must
square these moves before their sum is ¯nite (the property of ¯nite quadratic
variation) while the processes we advocate are of ¯nite variation. Unlike jump-
di®usions, our processes model price up ticks and down ticks separately and the
price process can be decomposed as the di®erence of two increasing processes
representing the increases and decreases of prices. We shall also demonstrate
that the ¯nite variation property of the proposed models also enhances their
robustness and thereby their relevance for economic modeling.
This paper summarizes the ¯ndings of research that I have conducted over

the past 15 years in collaboration with a number of coauthors. The research
is still on going with a number of new and interesting developments already
in place, but we shall focus attention on what has been learned to date. The
papers that are summarized here are Madan and Seneta [32] , Madan and Milne
[30], Madan, Carr and Chang [29], Carr and Madan [9], [8], Geman, Madan and
Yor [18], Bakshi and Madan [5], [4].1

The case for purely discontinuous price processes is, as it should be, an ar-
gument with many facets. First we summarize the empirical ¯ndings on the
study of both the statistical and risk neutral processes and observe the empiri-
cal need to consider discontinuous processes as relevant candidates. Statistical
reality by itself, however, is not a convincing argument. Unsupported by a the-
oretical understanding of market fundamentals, statistical modeling is at best
a spurious coincidence. One must consider the implications of a fundamental
economic analysis. We show that economic analysis with the help of some deep
structural mathematical results points in the same direction: The use of purely
discontinuous price processes. Statistical reality and theoretical conviction are
ultimately no match for success. If the wrong model is brilliantly successful in
delivering results, while the right one is relatively barren then we have little
choice but to work with the incorrect model, bearing in mind its limitations.
To address this concern we present some of the successes of modeling with a
purely discontinuous price process. We match the success of Brownian motion in
option pricing and portfolio management with the success of the purely discon-
tinuous VG process obtained on time changing Brownian motion by a gamma
process. The improvement in option pricing is clear, eliminating the implied
volatility smile in the strike direction, and we are able to go further in portfolio
management and study the optimal management of portfolios of derivative se-
curities, a question that is relatively untouched in the di®usion context. In fact
we successfully calibrate observed derivative portfolios as optimal and employ
revealed preference methods to infer what we call the position measure but is
better known as the personalized state price density. The perspective of purely

1The last four of these papers are working papers and can be obtained from my web site:
www.rhsmith.umd.edu/¯nance/dmadan.
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discontinuous price processes, we conclude, is not only correct from a statistical
and theoretical viewpoint, but is also rich in results and interesting applications.
The statistical ¯ndings we summarize con¯rm from a variety of perspectives

that the local motion of the stock price is not Gaussian. This is true of both
the time series of moves and the pricing distribution of moves as re°ected in
option prices. Apart from these standard tests of normality we also consider
the behavior of extremal events. Relying on asymptotic laws of maxima and
minima of independent sampled observations,(See Embrechts, Kluppelberg and
Mikosch [16]) we employ long time series of returns and reject the hypothesis
that asset return distributions are locally Gaussian. They lie in the domain of
attraction of the Fr¶echet distribution that includes the log gamma formulation
of the VG process. Additionally we investigate empirically the relationship
between arrival rates of jumps of di®erent sizes with the jump size. The focus
of our attention is on whether arrival rates display a monotonicity with respect
to size, decreasing as the size rises, and whether the assumption of an in¯nite
arrival rate is supported by a casual analysis of arrival rates. We conclude in
favor of in¯nite and decreasing arrival rates.
From a theoretical perspective, we concentrate on the implications of no ar-

bitrage, a property that is fundamental to all models for the asset price process.
This property is shown to imply that asset prices in continuous time must be
modeled by a time changed Brownian motion. The question at issue is then the
nature of the time change. We investigate whether the time change could be
continuous, with the resultant implication of the continuity of the price process,
and show that this is possible only in economies where returns are locally Gaus-
sian and time is locally deterministic and non-random. Given the overwhelming
evidence on the lack of a locally Gaussian return distribution we are led to en-
tertain the lack of continuity of the price process. This modeling choice is also
consistent with observations on studying the relationship between time changes
and economic activity, whereby we learn that time changes are related to some
measure of the rate of arrival of orders or trades. As the latter have a random
element, and are not locally deterministic, this suggests that such properties are
inherited by the time change and hence once again we are led to the class of
discontinuous price processes.
Within the class of discontinuous processes we begin our search by focusing

attention in the ¯rst instance on processes with identical and independently dis-
tributed increments: A property shared with Brownian motion, the base model
for the underlying uncertainty in the continuous case. This leads naturally via
the L¶evy-Khintchine theorem for such processes to considering L¶evy processes
characterized by their L¶evy densities whose empirical counterparts are precisely
the relationship between arrival rates of jumps of di®erent sizes and the jump
size noted earlier in our empirical analysis. When the L¶evy density integrates
the absolute value of the jump size in the neighborhood of zero, a case we restrict
attention to, the process has ¯nite variation and can be decomposed into the
di®erence of two increasing processes that constitute our models for the price
up and down ticks. We suggest this model as a partial equilibrium model that
clears market buy orders with an up tick price response as the order is cleared
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through the limit sell book. The converse being the case for market sell orders
cleared through the limit buy book at a price down tick.
An alternative and interesting economic model for price responses goes back

to traditional dynamic models of price adjustment that represent the rate of
adjustment as a function of the level of excess demand in the economy. We term
this function relating the rate of change of prices to excess demand, the force
function of the economy. Modeling excess demand by Brownian motion we may
write the price process as the di®erence between price increases occurring during
positive excursions of Brownian motion less the cumulated decreases that occur
on negative excursions of Brownian motion. Such a price process is of course
open to arbitrage by trades that reverse themselves during a single excursion
of Brownian motion. For example, on a single positive excursion, one buys at
a price and then sells at a higher price in the same excursion. To avoid such
arbitrage, we restrict equilibrium trading to equilibrium times by requiring these
to occur at the zero set of Brownian motion. This is organized by evaluating the
disequilibrium price process at the inverse local time of Brownian motion. The
resulting price process inherits the property of being purely discontinuous from
inverse local time, and the process is the di®erence of two increasing processes
that cumulate price responses during positive and negative excursions.
The two models of discontinuous price processes, i) L¶evy processes and ii)

integrals of force functionals of Brownian motion to inverse local time, are sur-
prisingly related under the hypothesis of complete monotonicity of the L¶evy
density.2 Every force function has associated with it a completely monotone
L¶evy density and for every completely monotone L¶evy density there exists an
equivalent representation of the price process using a force function. The equiv-
alence is however a consequence of some deep results from number theory and
hence the surprise.
We also consider the issue of robustness of the economic model with respect

to tolerance of a heterogeneity of views on parameters and observe that the
property of bounded variation in the price process is critical for delivering such
robustness. Our concern in robustness with respect to views on parameters is
that di®erent beliefs should naturally allow for di®erent probabilities, but the
probabilities should remain equivalent and not become singular. With in¯nite
variation there are many cases where a change in certain parameters induces
singularity of measures.
With the theoretical and statistical foundations in su±cient harmony, and

two broad classes of models outlined in su±cient detail we turn our attention
to the study of particularly rich examples in this class of models. The basic
generalization of geometric Brownian motion we introduce is the V G process
that introduces two additional parameters providing control over skewness and
kurtosis. The model arises on evaluating Brownian motion with drift at a ran-
dom time given by a gamma process. The volatility of the gamma process

2The L¶evy density is completely monotone if each of its two halves on the positive and
negative side have the property of sign alternating derivatives or equivalently can be expressed
as Laplace transforms of positive functions on the positive half line. Hence, they are essentially
mixtures of exponential densities.
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provides control over kurtosis while the drift in the Brownian motion before the
time change controls skewness. We show that this model is successful in option
pricing, eliminating the smile in the strike direction with relative ease.
Fundamental to the world of purely discontinuous price processes is the

property of options being market completing assets with a genuine role to play
in the economy and a natural demand for these assets by investors. Recognizing
these properties we reconsider the problem of optimal derivative investment in
continuous time, keeping in place Mertonian [35] objective functions for the
investor but expanding the asset space to include all European options on the
underlying stock for all strikes and maturities. We ¯nd that for HARA utilities
and V G statistical and risk neutral measures the derivative investment problem
may be solved in closed form and leads in such economies to a healthy demand
for at-the-money short maturity options: Precisely the options with the greatest
liquidity in ¯nancial markets. One may view the Black-Scholes economy as
teaching us about stock delta positions in option hedging, while the ¯rst lessons
of investment in purely discontinuous high activity price processes are about
positioning in short maturity at-the-money options.
With some courage we consider replicating actual trader derivative positions

as optimal ones, allowing in the process adjustments in the level of risk aversion
in power utility and a view on subjective kurtosis that may di®er from the
statistically observed kurtosis level. Kurtosis is particularly hard to estimate as
its variance is of the order of the eighth moment. With this two dimensional
°exibility, we are amazingly successful in many instances in calibrating actual
spot slides as optimal wealth responses from the perspective of our continuous
time optimal derivative investment model.3 Having inferred risk aversion and
the characteristics of subjective probability consistent with replicating observed
positions as optimal, we may construct the personalized state price density
that values options at a dollar amount yielding a marginal utility that matches
the future expected marginal utility from holding the option. We call this state
price density the position measure and provide explicit constructions of position
measures, contrasting them with the risk neutral and statistical measures. We
¯nd generally that position measures are closer to the statistical measure and
lie between the statistical and risk neutral measure. This is consistent with the
view that traders are aware of relative frequency of occurrence of market moves
and their prices and accordingly make markets in option contracts.
The outline for the rest of the chapter is as follows. Section 2 presents a

summary of the statistical results. The economic consequences of no arbitrage
are described in section 3, while the two equivalent but apparently di®erent
economic models of the price process are summarized in section 4. The task
of constructing speci¯c examples consistent with the statistical and economic
observations of these sections is taken up in section 5. The basic operating model
of the V G process is introduced in section 6. Its successes in option pricing are
summarized in section 7. Optimal solutions to the asset allocation problem with

3The spot slide of a Derivatives book graphs the value of the book as a function of the
level of the underlying, typically varying the underlying in the range plus or minus 30% of
spot for equity assets.
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derivatives are presented in section 8 and employed to infer position measures
in section 9. Section 10 concludes.

2 PROPERTIES OF THE PRICE PROCESS

This section summarizes some of the broad properties of the statistical and risk
neutral price process. We address issues related to the normality of the motion,
the behavior of extreme moves and the shape of the density of arrival rates of
price moves. The emphasis in all cases is on the movement over short horizons
as we view the macro moves as cumulated short moves.

2.1 Long-tailedness of Historical Returns

We begin by considering some well known results about the long-tailedness of
the statistical return distribution and standard chi-square goodness of ¯t tests
of normality of the return distribution. Early results on these issues go back to
Fama [19] where both the independence of daily returns and their longtailedness
is documented. We now have data at much higher frequencies of observation
and report in Table 1 results on S&P 500 futures returns at these frequencies.
We focus attention on the level of the observed kurtosis and on Â2 goodness of
¯t tests for normality.

TABLE 1
High Frequency Tests of Normality

S&P 500 Futures Returns Nov.1992-Feb. 1993

1 Min. 15 Min. Hourly Daily

Kurtosis 58.59 13.85 5.97 10.31
Â2 test statistic 437.12 931.85 98.323 123.84
Â2 critical value 5% 9.26 5.7 3.57 0.989

Source : Dissertation of Thierry An¶e

University of Paris IX Dauphine and ESSEC 1997

We observe from Table 1 that the kurtosis is substantially higher than 3;
the kurtosis level of a Normal distribution. The Goodness of ¯t tests also over-
whelmingly reject the hypothesis of normality for returns over short durations.
We will note later, in the next section, that this has very signi¯cant implications
for modeling the dynamics of the price process.

2.2 Long-tailedness in Risk Neutral Distribution

Apart from the statistical return distribution we are also interested in the risk
neutral or pricing distribution as implied by option prices. This distribution
assesses the futures price of a binary derivative that pays a dollar at a future
date if the stock price is in a certain interval, as opposed to the likelihood of
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the occurrence of this event. The distribution may be recovered from observed
option prices with the density being given by the second derivative of the Eu-
ropean call option price, of maturity matching the future date, with respect to
the option strike as derived in Ross, [41] and Breeden and Litzenberger, [3]. If
the distribution describing the current prices of derivatives written on future
stock price events is Gaussian then an implication is that the implied volatility
obtained from equating the option price to the value given by the Black-Scholes
formula, should be constant as one varies the strike for a ¯xed maturity. On
the other hand, if this density is symmetric about a point, then the implied
volatilities though no longer necessarily °at with respect to strike, should be
symmetric about a point as well. Both these implications are contradicted by
what has come to be known as the implied volatility smile.
We present in Table 2 below, the implied volatility smile on S&P 500 Index

Options, based on out of the money options using only puts for strikes below, and
calls for strikes above, the spot price. These are the more liquid option markets.
The time period covered is June 1988 to May 1991 and we focus attention just
on the short maturity options. The choice of this focus is motivated by our
intention of studying the dynamics of the stock price process, which is but the
cumulation of short maturity moves.

TABLE 2
The Smile in Implied Volatilities

at shorter maturities below 60 days.

Moneyness June 1988- June 1989- June 1990-
Spot=Strike May 1989 May 1990 May 1991

< 0:94 17:27 16:16 19:70
0:94¡ 0:97 16:21 15:10 18:23
0:97¡ 1:00 16:33 15:83 18:65
1:00¡ 1:03 17:42 17:81 20:87
1:03¡ 1:06 19:04 20:65 22:27
> 1:06 21:84 25:70 25:57

Source: Bakshi, Cao and Chen, Journal of Finance (1997), page 2015.

We observe from Table 2, reading up the columns, that as the strike level
rises, the implied volatility falls sharply followed by a smaller rise as one crosses
the level of the spot price. We therefore clearly have a smile shape in the short
maturity implied volatility, but the left and right sides are not symmetric. We
may conclude from these observations that the left tail of the pricing distribution
is fatter than the right tail, and this re°ects a negative skewness in the distri-
bution. The existence of the smile itself is evidence of excess kurtosis (relative
to the normal distribution) in this density.
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2.3 The Behavior of Extreme Moves

Tables 1 and 2 are classical results on the statistical properties of densities asso-
ciated with price movements in ¯nancial markets. They summarize essentially
the narrow behavior of the return distribution as may be evidenced by noting
that most of the returns considered in the time series analysis are the ones
with the smaller magnitudes, and the range of moneyness reported in the im-
plied volatility curves is just within 6 percentage points over an average period
of a month. Hence the evidence presented is that of lack of normality in the
neighborhood of the zero return and one might wonder whether at least the tail
of the distributions is Gaussian. For the risk neutral distribution this has the
implication that the implied volatility curve °attens out as one gets into deep
out-of-the-money options on both sides, though the level at which the curves
°atten out may be di®erent on each side.
To focus attention on the behavior of the tails of the distribution with a

view to addressing whether this may be Gaussian, we consider the behavior of
extremes. It is shown in Embrechts, Kluppelberg and Mikosch [16], that the
asymptotic distribution of the maximum and minimum of independent drawings
from a Gaussian distribution is given up to shift and scale by the Gumbel
distribution. The other possible asymptotic distributions for these extremal
events are, again up to shift and scaling, the Weibull or Fr¶echet distribution. For
distributions that have as support the positive half line, the candidate limiting
distributions are just the Gumbell and Fr¶echet distributions.
The analysis of extreme events requires long time series of data and for

this purpose we obtained data on daily returns on the Dow-Jones Industrial
average (DJIA) for 100 years from 1897 ¡ 1997. Partitioning this data into
nonoverlapping intervals of 100 days, we constructed a series on the maximum
percentage daily rise and the maximum percentage daily drop in the DJIA
over the 100 days. We then arti¯cially nested the Gumbel and Fr¶echet log
likelihoods and tested the null hypothesis that the distribution of the extreme
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event is Gumbell, the limit of the Gaussian tail. Table 3 presents these results.

TABLE 3
Log-Likelihoods of The Distribution of Extremal Price Movements

Maximum Daily Percentage Rise and Fall in the DJIA over
100 Day Nonoverlapping Intervals for 100 years.

Maximum Daily Drop 100 Days
Gumbell Fr¶echet P-Value

1897-1997 768.37 808.58 0.00
1897-1945 380.22 389.98 0.01
1946-1997 409.93 434.74 0.00

Maximum Daily Rise 100 Days
Gumbell Fr¶echet P-Value

1897-1997 811.66 833.77 0.01
1897-1945 395.79 408.92 0.01
1946-1997 358.33 432.95 0.01

Source : Bakshi and Madan (1998),

\What is the Probability of a Stock Market Crash,"

Working Paper, University of Maryland.

Table 3 demonstrates that the normality hypothesis may also be rejected
as a model for the tails of the statistical distribution of daily returns. Given
the evidence on excess kurtosis, we would conjecture that these tails are heavier
than Gaussian and if the property is shared with the risk neutral distribution, as
we suspect it is, then implied volatilities must continue to rise as we get deeper
out-of-the-money, i.e., the implied volatility curves do not °atten out at either
end of the strike range. At this point we do not have documentary evidence on
very deep out-of-the-money implied volatilities but observations from current
market quotes on S&P 500 index options would suggest that this may well be
the case.

2.4 The Structure of the Arrival Rates of Price Moves

The arguments of this paper lead us to considering as models for the dynamics
of stock prices, purely discontinuous processes. Such processes, when they have
independent and identically distributed increments, are characterized by their
L¶evy densities that essentially count the rate of arrival of jumps of di®erent sizes.
These are a wide class of processes and structural properties if supported by data
are bene¯cial in limiting the class of models that need to be considered. One such
structural property is complete monotonicity of the L¶evy density, whereby large
jumps occur at a smaller rate than small jumps. This is a reasonable property to
expect as market participants facing price increases on buy orders and decreases
on sell orders have an incentive to minimize these impacts. Another structural
property is the aggregate arrival rate of jumps or moves, that could be ¯nite
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or in¯nite. We note in this regard that Brownian motion is an in¯nite activity
process as the actual sum of absolute price moves is itself in¯nite for Brownian
motion as it is a process of in¯nite variation. We note further that jump-
di®usions employ a compound-Poisson process for the arrival of jumps that
have a ¯nite arrival rate with the magnitude of jumps having, once again, a
normal distribution.
The models we propose in this paper, have in¯nite arrival rates of jumps

and in this regard they are closer to Brownian motion, but unlike Brownian
motion they are processes of ¯nite variation. This requires that the integral of
the L¶evy density be in¯nite, but the density times the jump size should have
a ¯nite integral near zero. A typical L¶evy density meeting these conditions is
of the form ® exp(¡¯ jxj)= jxj1+½ for jump size x with ½ > 0: The log arrival
rate is in this case linear in the jump size and the log of the jump size, with
the coe±cient on the log of the jump size being above unity. For ½ > 1 we
have in¯nite variation and ½ = 0 is the case of the gamma process or in this
case the di®erence of two gamma processes which we will note later is the V G
model. On the other hand if the jump sizes are exponentially distributed with a
¯nite arrival rate, as postulated for example in Das and Foresi [12] then the log
arrival rates are linear in just the size with the coe±cient on log size being 0 or
½ = ¡1: In contrast the log arrival rate of the compound-Poisson process with
Gaussian jump sizes (see Cox and Ross, [11]) is linear in the size and the square
of the size. Since the exponential of a negative quadratic shifts from being
concave near zero to convex near in¯nity, such a L¶evy density is not completely
monotone.
A cursory evaluation of these structural properties may be simply made by

regressing log arrival rates on the size of jumps, their log and their square.
For our 100 year data on daily returns on the DJIA we counted the number
of arrivals of jumps in the di®erent size categories and then regressed the log
of the empirically observed arrival rate on the size of the jump, its log and its
square. For the Cox and Ross [11] model the log arrival rates have a single
representation that is not distinguished by the sign of the jump while for the
Das and Foresi and V G type models, the parameters vary with sign, so the latter
two model estimates allow for this by separating out the positive and negative
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moves. Table 4 presents the results of these regressions.

TABLE 4
REGRESSION OF LOG ARRIVAL RATES

ON THE SIZES OF JUMPS
Standard Errors are in Parentheses

LOG ARRIVAL RATES OF DROPS
CONSTANT JUMP SIZE LOG SIZE R2

1897-1997 ¡9:88
(1:44)

¡31:6
(8:36)

¡1:92
(0:32)

0:97

1897-1945 ¡8:51
(1:45)

¡33:0
(8:53)

¡1:65
(0:32)

0:97

1946-1997 ¡12:35
(2:22)

¡32:0
(17:78)

¡2:41
(0:45)

0:95

LOG ARRIVAL RATES OF RISES
CONSTANT JUMP SIZE LOG SIZE R2

1897-1997 ¡11:55
(1:71)

¡24:5
(9:10)

¡2:25
(0:38)

0:96

1897-1945 ¡10:29
(1:65)

¡25:4
(8:97)

¡1:99
(0:37)

0:97

1946-1997 ¡13:66
(3:23)

¡25:8
(24:45)

¡2:67
(0:65)

0:93

ARRIVAL RATES FOR JUMP DIFUSSION
CONSTANT JUMP SIZE SIZE2 R2

1897-1997 ¡3:66
(0:53)

¡1:73
(3:86)

¡447
(66)

0:70

1897-1945 ¡3:36
(0:48)

¡1:77
(3:66)

¡421
(62)

0:71

1946-1997 ¡3:17
(0:65)

1:54
(8:98)

¡928
(191)

0:64

Source : Bakshi and Madan (1998)

\What is the probability of a stock market crash,"

Working Paper, University of Maryland

From Table 4 we observe that the coe±cient of log size in the ¯rst two
regressions is signi¯cantly di®erent from zero and may even be close to 2, which
de¯nitely argues against a process with a ¯nite arrival rate, as in Das and Foresi
[12]. As in a number of cases the coe±cient is estimated above two, the process
may be one of in¯nite variation. However, we cannot reject the hypothesis that
this coe±cient is below 2 and hence we may have a process of ¯nite variation.
As will be argued later, there are other reasons for entertaining a ¯nite variation
process and in the absence of strong evidence to the contrary we conclude in
favor of ¯nite variation processes with in¯nite arrival rates.
Regarding the comparison with the Cox and Ross [11] process with quadratic

log arrival rates, we note that the linear term is in all cases insigni¯cant, sug-
gesting a pure quadratic model, but note further that one explains only up to
70% of the variation in arrival rates compared with up to 97% of the variation
using the completely monotone density.
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2.5 Summary of Empirical Observations

We note from Tables 1 and 2 that both the statistical and risk neutral distri-
butions are for short intervals, not normal distributions. They have signi¯cant
levels of excess kurtosis and the risk neutral distribution in particular is also
skewed to the left with a heavier left tail than a right tail. This absence of
normality continues into the tail of the densities as re°ected by an analysis of
extremes in Table 3. From Table 4 we infer that a reasonable model could be
a pure jump model with an in¯nite arrival rate - L¶evy density integrating to
in¯nity - and a process of ¯nite variation. We also infer from Table 4, some
support for a completely monotone L¶evy density. Heavy risk neutral tails, if
con¯rmed, imply that implied volatilities are strictly U¡ shaped and do not
°atten out as one moves deep out of the money in both directions.

3 THE IMPLICATIONS OF ECONOMIC THE-
ORY

One of the most far reaching implications of economic theory are now recognized
to be the consequences of the no arbitrage hypothesis. From early beginnings
with the Ross' [42] theory of arbitrage, and its application to option pricing by
Black-Scholes [7] and Merton [33] to the development of the martingale theory of
pricing by Harrison and Kreps [20] and Harrison and Pliska [21] this hypothesis
has yielded many deep and interesting results. We demonstrate in this section
a continuation of these lessons and draw out more exactly the implications of
this hypothesis for modeling the dynamics of the asset price.
Before proceeding we note an important proviso with regard to this hypoth-

esis. Financial markets may display arbitrage opportunities and there are many
documented \so-called" anomalies that are suggestive of such a possibility, yet
it remains true that models of the price process to be employed in developing
derivative pricing models, must be free of arbitrage. This is so for the sim-
ple reason of preventing traders from arbitraging a ¯rm quoting arbitrageable
prices. That models must be arbitrage free goes without question.

3.1 The Stochastic Process Implications of No Arbitrage

Four results, one from mathematical ¯nance and the other three from the the-
ory of stochastic processes form the foundations for the stochastic process im-
plications of the hypothesis of no arbitrage. The ¯rst of these results, from
mathematical ¯nance, demonstrates that the absence of arbitrage is equivalent
to the existence of an equivalent martingale measure. The other results, from
the theory of stochastic processes, characterize martingales.

3.1.1 No Arbitrage and Martingales

This result has many proofs or no proof depending on the context and meaning
to be attached to the idea of no arbitrage. In discrete time and with ¯nitely

12



many states there is no ambiguity and the result is true with a proof going back
to Harrison and Kreps [20]. At the other extreme we have continuous time and
states given, at a minimum, by the relatively large set consisting of the paths
of the stock price process. Here the existence of martingale measures easily
implies the absence of arbitrage, but the implication in the reverse direction is
not available, and this is the direction that concerns us here. Essentially the
hypothesis of no arbitrage, merely asserting that one cannot combine a portfolio
of existing assets to earn a non-negative, non-zero, cash °ow at a negative
current price is too weak to deduce the existence of a martingale measure. For
interesting counterexamples of economies satisfying no arbitrage and yet not
satisfying the existence of a martingale measure the reader is referred to Jarrow
and Madan [25].
In these richer contexts allowing an in¯nity of dynamic trading strategies,

the hypothesis of no arbitrage must be strengthened to permit deduction of a
martingale measure. The strengthening required is topological in nature and
requires that one not be able to construct an approximation to an arbitrage
opportunity in some limiting sense and then it does follow that there exists
an equivalent martingale measure. The ¯rst results in this direction are due to
Kreps [28]. The di±culty with the result of Kreps [28] is the weak sense in which
the limit is taken, as the de¯nition of approximation lacks a sense of uniformity,
and what is regarded as an approximation may not be so from the perspective
of other economic agents.
The strongest results in this direction are due to Delbaen and Schachermayer

[13]. They employ a strong and uniform sense of no arbitrage and show that if
there is no random sequence of zero cost trading strategies converging in this
strong sense to a non-negative, non-zero cash °ow, with the random sequence
being uniformly bounded below by a negative constant, then there exists a
martingale measure and the converse holds as well. They term this hypothesis,
No Free Lunch with Vanishing Risk (NFLVR) and prove that it is equivalent to
the existence of an equivalent martingale measure.

3.1.2 Martingales and Semimartingales

The second important result in ascertaining the stochastic process implications
of the hypothesis of no arbitrage is Girsanov's theorem. This is pointed out by
Delbaen and Schachermayer [13] and amounts to noting that if there exists a
change of measure from the true statistical measure P to a martingale measure
or risk neutral measure Q such that under Q discounted asset prices are mar-
tingales, then it must be that under P the price process was a semimartingale
to begin with.
This is a very useful realization as it informs us that models for price pro-

cesses may safely be restricted to the class of semimartingale processes. Since
the class of semimartingales is very wide indeed, one might argue that this is not
a very important insight. On the other hand, a lot is known about the structure
of semimartingales and for a modeler it is useful to know that the search may be
constrained by this structure. Some recent examples of proposals for stock price
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processes that are not semimartingales include the use of fractional Brownian
motion with the arbitrage demonstrated in Rogers [40].
Semimartingales are a di±cult concept to communicate in precision, as they

go beyond the idea of a simple concept and are in fact a fairly complete and very
general theory of random processes, yet given their established importance to
the ¯eld of mathematical ¯nance today, it is imperative that we communicate
some of the °avor of this theory: And do so with brevity. There are at least two
approaches, one analytical and the other structural and it is best to consider
the structural approach. From this perspective a semimartingale is described
by its decomposition into a martingale plus a very general model for the drift of
the process. This certainly includes linear drift but also more general models of
the drift. One merely requires that this process be of ¯nite and integrable vari-
ation, as well as being predictable (i.e. the limit of left continuous functions).
Examples include Brownian motion with drift, solutions to stochastic di®eren-
tial equations like the mean reverting Cox, Ingersoll and Ross[10] interest rate
process and the VG model [29] with drift to be discussed later in the paper. To
appreciate what is not a semimartingale, we consider the discrete time continu-
ous state context studied by Jacod and Shiryaev [26] where they show that the
no arbitrage property is lost if zero is not in the relative interior of the support
of the multivariate return distribution over the discrete time step and hence the
arbitrage. We also learn from this paper, that not all semimartingales are stock
price models, as calendar time is a semimartingale with a zero martingale com-
ponent and has arbitrage if it was a price process. The important property is to
get zero into the relative interior of the support, at least in discrete time. Price
processes must be semimartingales with a non-zero martingale component.

3.1.3 Semimartingales and Time Changed Brownian Motion

The next result we employ in developing our understanding of the stochastic
process implications of no arbitrage is a fundamental characterization of all
semimartingales, due to Monroe [36]. This remarkable result shows that every
semimartingale can be written as a Brownian motion (possibly de¯ned on some
adequately extended probability space) evaluated at a random time. This result
is somewhat surprising at ¯rst, since Brownian motion, even if evaluated at a
random time, is suggestive of a martingale and as noted earlier semimartingales
include simple linear drifts like time itself. However, this is only a problem at
¯rst glance as the time change need not be independent of the Brownian motion
and calendar time t; for example, is Brownian motionW (t) evaluated at the ¯rst
time T (t) at which this same Brownian motion reaches t:
By this result the study of price processes is reduced to the study of time

changes for Brownian motion and one may consider both independent and de-
pendent time changes. One might ask what the time change represents? Ignor-
ing price changes that are the possible result of noise or liquidity trades, changes
in the price of an asset occur through trades motivated primarily for reasons
of information. The cumulated arrival of relevant information is a reasonable,
economically meaningful measure of the time change, that gets translated into
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buy or sell orders. Geman, Madan and Yor [18] consider many models for the
process of buy and sell orders and relate the time change in all these cases to
some measure of economic activity. In some cases the measure is just the num-
ber of trades while in other cases time is measured by the weighted sum of order
arrivals, where the weights vary with the size of the order.
When time is viewed in this economically fundamental manner the question

of dependence or independence of the time change becomes an interesting and
meaningful question. Certainly, some part of the order process and hence the
time change, one would expect, is motivated by observations of the price process.
This is the phenomenon of herding or runs on the asset. On the other hand if
the market is dominated by independent analysts who view the market price
as always providing us with the most e±cient and accurate valuation of the
asset, i.e. it is a discounted martingale under the right measure then there is
no information to be extracted from prices that the market has not already
extracted and so no analysts are motivated in their trades by observations of
price movements. They are bound to seek independent, and as far as possible,
private information, as the motivating basis of their trading decisions. This
interpretation of the process suggests an independent time change. We also note
that from a mathematical modeling viewpoint, it would be easier to work with
independent time changes though it is possible and we shall see cases where both
representations are possible for the same process. Generally, the independent
time change is the more tractable alternative and so far most of our successes
come from processes of this type. The broad consistency of this hypothesis with
the e±cient markets hypothesis is therefore an attractive feature.

3.1.4 Continuous Time Changes and Semimartingales

We come now to the crux of the issue, the continuity of the price process or oth-
erwise. This brings us to the third and ¯nal result from the theory of stochastic
processes shedding light on the nature of the price process as a consequence of
no arbitrage. We note ¯rst that as the price process is a time changed Brownian
motion, it will be a continuous process only if the time change is continuous.
The implications of supposing such continuity in the time change rely on results
characterizing continuous semimartingales (Revuz and Yor [39] page 190).
Let X(t) be a continuous semimartingale, be it the price process or the time

change. Let V (t) be the quadratic characteristic of the semimartingale X(t)
which exists by virtue of X being a semimartingale. In the terminology of Wall
Street the process V (t) is akin to the realized total variance on the process
X(t): If the process X(t) has a well de¯ned sense of a variance rate per unit
time, or equivalently V (t) is di®erentiable in t then the quadratic characteristic
is absolutely continuous with respect to Lebesgue measure and in this case we
may write the process X(t) as a stochastic integral with respect to Brownian
motion. Under these conditions there exist processes a(t), b(t) and a standard
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Brownian motion W (t) such that

X(t) = X(0) +

Z t

0

a(s)ds+

Z t

0

b(s)dW (s): (1)

Consider now the implications of X(t) being a time change and the price
process in turn. If X(t) is a time change, then it is an increasing process and
so b(t) must be identically zero. This implies that the time change is locally
deterministic with no uncertainty in local rate of time change which is then
a(t): If we view the time change, as suggested earlier, as a measure of economic
activity, proxied by the rate of arrival of information, orders, or size weighted
orders then one would expect some local uncertainty in the time change and
this argues against the use of a locally deterministic time change and hence by
implication, a continuous semimartingale as a model for the price process.
On the other hand if one views X(t) directly as a price process, the repre-

sentation (1) argues that the local motion of the stock return must be Gaussian.
Given the considerable evidence cited against the likelihood of this possibility,
we conclude once again that a continuous semimartingale is not an appropriate
model for the price process. Now it is possible that there is a continuous martin-
gale component in the price process in addition to a jump component as is the
case of jump di®usions but the necessity, of introducing such a di®usion term,
onto a functioning purely discontinuous model must be separately argued for.
As we will observe, the latter class of models contain many alternatives capable
of approximating very closely the structural characteristics of di®usions.

3.1.5 Summary of the consequences of no arbitrage

We showed in this section that no arbitrage implies via the existence of an
equivalent martingale measure, that the price process is a semimartingale. We
then observed that all semimartingales are time changed Brownian motions,
time changed by a random increasing time change. The resulting process could
be continuous only if the time change is locally deterministic. Relating time
changes to measures of economic activity with some local uncertainty we argued
that the price process was not a continuous process. We also observed that such
continuity implies that the process is locally Gaussian, for which we have ample
evidence to the contrary, and so once again we concluded that the process cannot
be continuous. The remaining sections will take up the issue of modeling using
purely discontinuous processes and demonstrate their e®ectiveness. The need to
add on an additional continuous process onto a functioning purely discontinuous
process must in our view be argued for on theoretical and empirical grounds.

4 ECONOMIC MODELS OF FINITE VARIA-
TION FOR ASSET PRICE PROCESSES

Statistical and Economic analysis suggests that we entertain purely discontinu-
ous price processes with possibly in¯nite arrival rates, and ¯nite variation. An
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attractive feature of ¯nite variation processes is that they may be decomposed
as the di®erence of two increasing processes, a property lost in Brownian mo-
tion and other processes of in¯nite variation. This permits, for the ¯rst time,
a separation of the price process into the process of up ticks and down ticks.
Our analysis of optimal contracting in such economies indicates that the major
demand for short maturity at-the-money options in such economies arises from
a desire on the part of investors to be positioned di®erently with respect to
upward and downward movements in the market, a position not attainable by
direct stock investment alone. Hence options, and short maturity at-the-money
options in particular, play a fundamental role in such economies: A role that
may be consistent with casual observations of high activity in these markets.
The next step forward from correctly adjusting ones delta or stock position
is the optimal positioning of the up and down deltas via option trades. To
e®ectively answer these questions it is imperative that we focus attention, sep-
arately, on the up and down forces of the market. We propose here two classes
of models, accomplishing this objective. The models di®er in their primitives
and are structurally distinct, yet we show in the next section, that under some
fairly reasonable conditions, they are in fact equivalent. However, tractability
is enhanced by working with both speci¯cations as it can be di±cult to ¯nd the
equivalent formulation from the alternate perspective.
The ¯rst class of models takes as primitives two increasing processes that

represent cumulated orders to buy and sell at market and models the price
responses as these orders are cleared through the limit sell and buy books re-
spectively. Economic activity and the related concepts of economic time re°ect
cumulated orders of both types in this representation of the price process. We
term this class of models the Order Processing Models (OPM).
The second class of models is related to traditional models of dynamic price

adjustment with price changes expressed as a function of the level of excess
demand in the economy. This response function is termed the force function
of the economy as it measures price pressure in its relationship with excess
demand. The excess demand itself is modeled by a Brownian motion with the
equilibrium points given by the zero set of Brownian motion. Economic time
in these models is given by cumulated squared price responses or the realized
variance. This class of models we refer to as Dynamic Price Adjustment Models
(DPA).

4.1 Prices in the Order Processing Model (OPM)

The primitives in this view of the price process are two increasing processes that
represent cumulated market buy orders, U(t), and cumulated market sell orders
V (t): We have noted in our discussion of time changes that increasing random
processes with local uncertainty are necessarily purely discontinuous. By taking
as primitives such increasing random processes, the fundamental uncertainties
of the economy are discontinuous and prices modeled as market responses to
such inherit this property. De¯ning the jumps in the processes U(t) at time t by
¢U(t) = U(t)¡U(t ) where we note that the processes are by construction right
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continuous with left limits and U(t) = lims#t U(s) while U(t ) = lims"t U(s) and
like wise for V (t); V (t ) and ¢V (t): The property of being increasing and purely
discontinuous implies that

U(t) =
X
s·t

¢U(s)

V (t) =
X
s·t

¢V (s)

so that the current value of each process is just the sum of all the jumps that
have occurred to date.
Price changes are modeled in Geman, Madan and Yor [18] by market re-

sponses to these market buy orders. Here we describe the process of price in-
creases. The magnitude ¢U(t) is viewed as a buy order at the prevailing price
of p(t ) which by construction cannot be accessed. There is a downward sloping
demand curve qdu(p(t)=p(t );¢U(t); t) that is ¢U(t) at p(t) = p(t ) and an up-
ward sloping supply curve qsu(p(t)=p(t );¢U(t); t) that is zero at p(t) = p(t )
that must be equated to determine both the quantity transacted qu = qdu = qsu

and the price response p(t): The solution gives the price response in log form by

ln

µ
p(t)

p(t )

¶
= ©u(¢U(t); t):

A similar analysis yields the price response to a market sell order

ln

µ
p(t)

p(t )

¶
= ©v(¢V (t); t):

The price process is obtained as an aggregation of the price responses to
market buy and sell orders

ln(p(t)) = ln(p(0)) +
X
s·t

©u(¢U(s); s)¡
X
s·t

©v(¢V (s); s)

and is by construction the di®erence of two increasing processes, and therefore a

¯nite variation process. It is also purely discontinuous in that it is precisely the
sum of all its jumps. Geman, Madan and Yor [18] rewrite such processes in many
cases as time changed Brownian motion and study the relationship between the
time change and the market primitives, showing that the time change is generally
a size weighted sum of the market buy and sell order processes. Hence their
interpretation as measures of the level of economic activity.

4.2 The Dynamic Adjustment Model (DPA)

This formulation of the price process begins with a traditional price adjustment
model of the form

d ln(p)

dt
= f(z(t))
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where z(t) is a measure of excess demand and f represents the force by which
prices respond to excess demand in the economy. This function we term the
force function of the economy. By construction f(x) ¸ 0 for x > 0 and f(x) · 0
for x < 0:
Excess demand is exogeneously modeled as dominated by new information

and is given by a Brownian motion W (t). It follows that

ln(p(t)) = ln(p(0)) +

Z t

0

f(W (s))ds:

Equilibrium times are of course given by the zero set of Brownian motion
and there are arbitrage opportunities to be made during upward or downward
rallies by buying or selling and then reversing the trade before the end of the
rally. Such intra rally trades are not available to general market participants
whose price access is only at equilibrium times. The restriction to equilibrium
times, the zero set of Brownian motion, is accomplished by evaluating the above
process at the inverse local time of Brownian motion at zero, ¾(t):We therefore
de¯ne

ln(p(t)) = ln(p(0)) +

Z ¾(t)

0

f(W (s))ds (2)

This process is once again a purely discontinuous process, inheriting this
property from that of inverse local time. It may be decomposed as the di®erence
of two increasing processes

ln(p(t)=p(0)) =

Z ¾(t)

0

f+(W (s))ds¡
Z ¾(t)

0

f¡(W (s))ds

where f+(x) = f(x)1(x¸0); f¡(x) = f(x)1(x·0);and is a process of ¯nite varia-
tion under the conditionRK

¡K jf(x)j dx <1 for all K:

It is interesting to enquire into the nature of the force function in the econ-
omy. For example, if f(x) > 0 for all x > 0 and f(x) < 0 for x < 0 then the
price process is one with an in¯nite arrival rate of jumps. On the other hand
there are ¯nitely many jumps in any interval if f(x) = 0 in a neighborhood of
zero. Another interesting question is whether the force is immediately in¯nite
and decreasing for larger excess demands or whether it rises with the level of ex-
cess demand. Geman, Madan and Yor [18] present many explicit solutions that
may be employed to answer such questions. They also show that such a process
may be written as Brownian motion evaluated at a time change that aggregates
the squared price responses and is thereby a measure of realized variance.

5 PRICES AS L¶EVY PROCESSES

Finite Variation asset price processes are by construction the di®erence of two
increasing processes and section 4 has described two classes of economic models
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that give rise to such processes. We now wish to construct speci¯c examples of
such processes that may be evaluated empirically in their adequacy as models
for the statistical dynamics of the price process, and as models for the pricing
densities re°ected in option prices. This statistical evaluation is enhanced if one
has e®ective descriptions of the transition densities for use in maximum likeli-
hood estimation and closed form or otherwise fast and accurate computation
methods for the prices of European options when the underlying process is in
the described class.
Both these objectives are simultaneously met by an analytic closed form for

the characteristic function of the log of the stock price at a future date. The
density is then easily evaluated by Fourier Inversion and maximum likelihood
estimation is feasible, alternatively one may also follow the methods outlined
in Madan and Seneta [31] and estimate parameters by maximum likelihood on
transformed variates. Option prices are easily obtained from the characteristic
function and this is described in Bakshi and Madan [5] and a faster algorithm
is provided in Carr and Madan [9]. Carr and Madan show how to analytically
write the Fourier transform in log strike, of an exponentially damped call price,
in terms of the characteristic function of the log stock price. The damped call
price, and call price are then obtained by a single Fourier Inversion that may
even invoke the Fast Fourier Transform. The characteristic function of the log
stock price is therefore seen as the key to e±cient model validation from both
a statistical and risk neutral perspective.

5.1 The Characteristic Function of Log Price Relatives

In constructing alternatives to Brownian motion as models of the fundamental
uncertainty driving the stock price, that may meet our requirements of being a
purely discontinuous process of ¯nite variation with a possibly in¯nite arrival
rate of shocks, we focus in the ¯rst instance on keeping all the properties of
Brownian motion except those that must be given up. We are well aware that
just as more complex models allowing for stochastic volatility and correlations
of various sorts can be constructed out of Brownian motions by combining them
in various ways the same can be done with any candidate process that replaces
Brownian motion.
The ¯rst property of Brownian motion that we seek to keep is the analyt-

ically rich property of being a process of independent increments, identically
distributed over non-overlapping intervals of equal lengths of time. This intro-
duces a homogeneity of the base uncertainty across time, that may be altered
through parametric shifts in later developments. In any case, for modeling
the local motion, homogeneity should be a reasonable hypothesis from at least
the perspective of a local approximation that employs some average density of
moves, even if the actual ones are state contingent and time varying.
The second property, which we may or may not keep is that of ¯nite moments

of all orders. We are modeling continuously compounded returns and this should
in principle be a bounded random variable, even if it is di±cult to organize this
within a modeling context, and hence the ¯niteness of moments is really a non-
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issue. Considerations of analytical tractability may on occasion require us to
consider processes with in¯nite moments, but my prior is to avoid them as far
as possible.
The theory of stochastic processes has a lot to teach us about processes

meeting these conditions. Such processes are called in¯nitely divisible and the
L¶evy-Khintchine theorem (See Feller [17] and Bertion [2]) provides us with a
complete characterization of the characteristic function. Speci¯cally, let X(t) =
log(S(t)) be the continuous time process for the log of the stock price with mean
¹t; and further suppose that X(t) is a ¯nite variation process of independent
identically distributed increments then there exists a unique measure ¦ de¯ned
on R¡ f0g such that

ÁX(t)(u)
def
= E [exp(iuX(t))] = exp

µ
iu¹t+ t

Z 1

¡1

¡
eiux ¡ 1¢¦(dx)¶ :

The measure ¦ is called the L¶evy measure of the process and X(t) is a L¶evy
process. When the measure has a density k(x), we may write

ÁX(t)(u) = exp

µ
iu¹t+ t

Z 1

¡1

¡
eiux ¡ 1¢ k(x)dx¶ (3)

and we refer to the function k(x) as the L¶evy density.
Heuristically the density k(x) speci¯es the arrival rate of jumps of size x and

the L¶evy process X(t) is a compound Poisson process with a ¯nite arrival rate if
the integral of the L¶evy density is ¯nite. We shall primarily be concerned with
L¶evy processes with an in¯nite arrival rate. The L¶evy process may always be
approximated by a compound Poisson process obtained by truncating the L¶evy
density in a neighborhood of zero, and using as an arrival rate

¸ =

Z
jxj>"

k(x)dx

and as a density for the jump magnitude conditional on the arrival, the density

g(x) =
k(x)1jxj>"

¸
:

The convergence occurs as we let " ! 0: Geman, Madan and Yor [18] present
many examples of candidate L¶evy processes that are associated with the two
economic models OPM and DPA of section 4.

5.2 Robustness of Finite Variation L¶evy Processes

Continuous time processes with continuous sample paths have a certain lack of
robustness best illustrated by considering geometric Brownian motion under two
di®erent but close volatilities. Two individuals could perhaps hold such di®erent
views on volatility but as a consequence their probability measures are no longer
equivalent but are in fact singular. The set of paths receiving probability 1 under
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one measure has probability 0 under the other measure. The measures are not
robust, in the sense of equivalence, to di®erent volatility beliefs. This lack of
robustness is really a consequence, not of continuity, but of in¯nite variation.
Hence, remaining in the class of ¯nite variation processes enhances robustness
of the models to heterogeneity of views on various parameters.
To appreciate this point we note (Jacod and Shiryaev [27] page 159) that

two L¶evy processes with L¶evy densities k(x) and k0(x) are equivalent just if
there exists a positive measurable function Y (x) such that

k0(x) = Y (x)k(x) (4)

and Z 1

¡1
j(jxj ^ 1) (Y (x)¡ 1)j k(x)dx <1: (5)

One may rewrite (5) on employing (4) asZ
k0<k

(jxj ^ 1) (k(x)¡ k0(x)) dx+
Z
k0>k

(jxj ^ 1) (k0(x)¡ k(x))dx <1 (6)

and observe that on the set jxj > 1 the required integrability holds by virtue of
the integrability of the L¶evy densities on this set. On the set jxj < 1 we have
the integrability conditionZ

k0<k
jxj (k(x)¡ k0(x))dx+

Z
k0>k

jxj (k0(x)¡ k(x))dx <1

and this condition essentially requires that the di®erence between the two L¶evy
measures be a ¯nite variation process and holds automatically if both L¶evy
processes are of ¯nite variation. Hence for ¯nite variation processes, equivalence
just requires absolutely continuity of the measures with respect to each other
or the condition (4) with no integrability conditions. Restrictions on the ability
to change parameters like volatility in geometric Brownian motion follow from
the integrability conditions for equivalence and apply to processes with in¯nite
variation.
In this regard one may consider the L¶evy measure studied in Geman, Madan

and Yor [18] of the form

k(x) =
e¡x

x2+®
for x > 0:

For ® > 0 this process has in¯nite variation and the parameter generating the
in¯nite variation is ®: This parameter cannot be changed if equivalence is to be
preserved. Speci¯cally, if

k0(x) =
e¡x

x2+¯

for ® 6= ¯ and ®; ¯ > 0 the two measures are no longer equivalent and it is the
integrability condition (5) that fails.
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5.3 Complete Monotonicity (CM)

There are of course many L¶evy densities that one may employ in modeling the
price process. It is therefore useful if the collection of possible choices can be
reduced by invoking some structural properties. One such property is that of
complete monotonicity. The idea is to require the arrival rates of large jumps
to be less than the arrival rates of small jumps. This suggests that k(x) be
decreasing in jxj or that k0(x) · 0 for x > 0 and k0(x) ¸ 0 for x < 0: The ¯rst
derivative of the L¶evy density is therefore of one sign on each side of zero. The
property of complete monotonicity requires that all the derivatives, and not just
the ¯rst, have this property of having the same sign on each side of zero. By
a result of Bernstein this property is equivalent to requiring k(x) for x > 0 to
be the Laplace transform of a positive measure on the positive half line and
similarly for k(x) for x < 0: Speci¯cally we require that there exist measures
Gp and Gn

k(x) =

Z 1

0

e¡axGp(da) for x > 0

k(x) =

Z 1

0

eaxGn(da) for x < 0:

The L¶evy density is then a mixture of exponential densities. An important
result that follows for such L¶evy densities is that the two classes of economic
models OPM and DPA are equivalent under the CM property.

5.3.1 Equivalence of OPM and DPA under CM

In particular, for every force function de¯ning the price response under DPA,
the resulting price process of equation 2 is a L¶evy process with a completely
monotone L¶evy density. Geman, Madan and Yor [18] give numerous examples
of force functions and their associated L¶evy densities. For example, if the force
function is xm for some integer m > 0 then the process is one of independent
stable increments with index ® = (1=2 +m)¡1 :
Conversely, every L¶evy process with such a completely monotone L¶evy den-

sity can be written as the integral of a functional of Brownian motion up to
the inverse local time of the Brownian motion. This equivalence result is an
application of analytical results from number theory called Krein's theory and
the speci¯cation construction of the force function from the L¶evy density and
vice versa remains a di±cult, if not impossible task. Speci¯cally, for the Vari-
ance Gamma model that we introduce next, we know the L¶evy density quite
explicitly but are not aware of what the force function is in this case.

6 THE VARIANCE GAMMA MODEL

Purely discontinuous processes of ¯nite variation with in¯nite arrival rates con-
tain a particularly tractable and parametrically parsimonious subclass of pro-
cesses that is constructed from two very well known processes, Brownian motion
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and the gamma process. This is the \so-called" variance gamma process ¯rst
studied by Madan and Seneta [32]. The process studied in Madan and Seneta
[32], was the symmetric variance gamma process that is obtained on evaluat-
ing Brownian motion at gamma time. An asymmetric risk neutral process was
developed by Madan and Milne [30] by assuming that a Lucas representative
agent with power utility had to hold the risk exposure in a symmetric variance
gamma process. It was shown in Madan, Carr and Chang [29] that the resulting
risk neutral process was equivalent to evaluating Brownian motion with drift at
gamma time. Given the importance of asymmetry or skewness in option pricing,
we focus directly on this asymmetric variance gamma process but will refer to
it as the variance gamma process. The process is parametrically parsimonious
in that only two additional parameters are involved beyond the volatility in-
troduced by Black and Scholes, and these two parameters give us control over
skewness and kurtosis, that are precisely the primary concern in modeling and
assessing derivative risks.

6.1 The Variance Gamma Process

Let Y (t;¾; µ) be a Brownian motion with drift µ and variance rate ¾2: If W(t)
is a standard Brownian motion, we may write the process Y (t;¾; µ) in terms of
W (t) as

Y (t;¾; µ) = µt+ ¾W (t):

The variance gamma process is obtained on evaluating the process Y at an inde-
pendent random time given by a gamma process. For this we de¯ne the process
G(t; º) with independent increments, identically distributed over nonoverlap-
ping intervals of length h; with the increments, G(t+h; º)¡G(t; º) = g; having
the gamma density

p(g; h) =
gh=º¡1 exp(¡g=º)
ºh=º¡(h=º)

:

The mean of the gamma density is h and the variance is ºh: Hence the average
random time change in h units of calendar time is h and its variance is propor-
tional to the length of the interval. The gamma density is in¯nitely divisible
with characteristic function

E [exp(iug)] =

µ
1

1¡ iuº
¶h=º

and the gamma process is an increasing L¶evy process with a one sided L¶evy
density

k(x) =
exp

¡¡x
º

¢
ºx

; for x > 0:
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Both the gamma process and Brownian motion are highly tractable pro-
cesses about which a lot is known and each process has seen many domains of
application. The variance gamma process is the process X(t;¾; º; µ) de¯ned by

X(t;¾; º; µ) = Y (G(t; º);¾; µ)

= µG(t; º) + ¾W (G(t; º)) (7)

or Brownian motion with drift µ and variance rate ¾2 evaluated at the gamma
time G(t; º): Apart from the variance rate of the Brownian motion ¾2; the
two other parameters are µ and º: We shall observe that it is µ that generates
skewness while kurtosis is primarily controlled by º:

6.1.1 Characteristic Function of the Variance Gamma Process

The characteristic function of the variance gamma process is easily evaluated by
conditioning on the gamma process ¯rst and then employing the characteristic
function of the gamma process itself. It has a simple analytic form of a quadratic
raised to a negative power. Speci¯cally,

ÁX(t)(u)
def
= E [exp (iuX(t))] =

Ã
1

1¡ iuµº + ¾2º
2 u

2

! t
º

(8)

The Black-Scholes and Merton model employing Brownian motion is a lim-
iting case of this model since the process converges to Brownian motion with
drift as one lets the volatility of the time change º tend to zero. This may also
be observed from the characteristic function on letting t=º tend to in¯nity as
º tends to zero and noting that the limit is precisely exp(iuµt ¡ ¾2u2t=2)t the
characteristic function of Brownian motion with drift.
We also note that if µ is zero, the characteristic function is real valued and

the process is therefore symmetric and there is no skewness, hence validating
the claim that skewness is generated by µ 6= 0: This observation is even clearer
once we have constructed the L¶evy measure for the V G process.

6.1.2 Moments of the Variance Gamma Process

The moments of the V G process are easily obtained by exploiting the structure
of the process or by di®erentiating the characteristic function. It is shown in
Madan, Carr and Chang [29] that

E [X(t)] = µt

E
£
(X(t)¡E [X(t)])2¤ = ¡µ2º + ¾2¢ t

E
£
(X(t)¡E [X(t)])3¤ = ¡2µ3º2 + 3¾2µº¢ t

E
£
(X(t)¡E [X(t)])4¤ = ¡3¾4º + 12¾2µ2º2 + 6µ4º3¢ t

+
¡
3¾4 + 6¾2µ2º + 3µ4º2

¢
t2
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We observe again that skewness is zero if µ = 0: Furthermore, in the case
of µ = 0 we have that the fourth central moment divided by the square of the
second central moment or the kurtosis is 3(1+º): This leads to the interpretation
that the parameter º controls kurtosis and is in fact (for µ = 0) the percentage
excess kurtosis over the kurtosis of the normal distribution, which is 3:

6.1.3 The Variance Gamma Process as a Process of Finite Variation

The Variance Gamma process is a ¯nite variation process and the two increas-
ing processes whose di®erence is the variance gamma process are both gamma
processes. This is observed by considering two independent gamma processes
°p(t) and °n(t) with mean rates of ¹p; ¹n and variance rates ºp; ºn respectively
for the positive and negative components. The characteristic functions of the
two gamma processes are

E [exp(iu°k(t)] =

µ
1

1¡ iuºk=¹k

¶¹2kt=ºk
for k = p; n:

Supposing that the two gamma processes have the same coe±cients of vari-
ation and ºk=¹

2
k = º for k = p; n we may write the characteristic function of

the di®erence of the two gamma processes as

E [exp (iu(°p(t)¡ °n(t)))] =
0@ 1

1¡ iu
³
ºp
¹p
¡ ºn

¹n

´
+ u2 ºp¹p

ºn
¹n

1At=º

The result follows on comparing this characteristic function with that of the
variance gamma process and de¯ning the mean and variance rates of the two
gamma processes to be di®erenced accordingly. Speci¯cally

¹p =
1

2

r
µ2 +

2¾2

º
+
µ

2
;

¹n =
1

2

r
µ2 +

2¾2

º
¡ µ
2
;

ºp = ¹
2
pº;

ºn = ¹
2
nº:

6.1.4 The L¶evy density for the Variance Gamma Process

The L¶evy density for the Variance Gamma process is easily constructed from its
representation as the di®erence of two gamma processes using the well known
form for the L¶evy density of the gamma process. It follows that the L¶evy density
of the variance gamma process is

kX(x) =

8<: 1
º

exp(¡¹n
ºn
jxj)

jxj for x < 0

1
º

exp(¡¹p
ºp
x)

x for x > 0
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The basic form on the L¶evy density is that of a negative exponential scaled by
the reciprocal of the jump size. Just as in the gamma process, the integral of
the L¶evy density is in¯nite and the process is therefore a ¯nite variation process
with in¯nite arrival rates of jumps. It is helpful to write the L¶evy density in
terms of the original parameters of the process and this leads to the expression

kX(x) =
exp

¡
µx
¾2

¢
º jxj exp

0@¡
q

2
º +

µ2

¾2

¾
jxj
1A (9)

The special case of µ = 0 is a symmetric L¶evy measure and hence the absence
of skew. Negative values of µ give a fatter left tail and induce negative skewness.
We also observe that as º is increased the rate of exponential decay in the L¶evy
measure is reduced thus raising the arrival rate of jumps of the larger size.
This induces the higher kurtosis related to this parameter. The two additional
parameters therefore give direct control of the two moments that data analysis
indicates we need to be able to control.

6.1.5 The Return Density for the Variance Gamma Process

The density of X(t;¾; º; µ) is available in closed form and is derived in Madan,
Carr and Chang [29]. This is a closed form, in that it is expressible in terms of
the special functions of mathematics, in particular the modi¯ed Bessel function
of the second kind. Speci¯cally we have that the density of X(t) = x given
X(0) = 0; h(x; t;¾; º; µ) = h(x) is

h(x) =
2 exp

¡
µx
¾2

¢
ºt=º

p
2¼¾¡( tº )

Ã
x2

2¾2

º + µ2

! t
2º¡ 1

4

K t
º¡ 1

2

Ã
1

¾2

s
x2
µ
2¾2

º
+ µ2

¶!
:

(10)

There are three terms in the density, an exponential, a real power and the
modi¯ed Bessel function. This is useful for maximum likelihood estimation of
parameters from time series and it is also useful in providing density plots of
results. Later we report on closed forms for option prices and this incorporates
a closed form for the cumulative distribution function as well, that may be used
to determine critical values for extreme points in value at risk calculations.

6.2 The Stock Price Process driven by a VG Process

We replace Brownian motion in the classical formulation of the geometric Brow-
nian motion model by the V G process and de¯ne the risk neutral process for
the stock price S(t) by

S(t) = S(0) exp

µ
rt+X(t;¾; º; µ) +

t

º
ln

µ
1¡ µº ¡ ¾

2º

2

¶¶
(11)
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where r is the constant continuously compounded interest rate. Observe from
the characteristic function of the V G process that

E [exp(X(t))] = ÁX(¡i)

=

µ
1

1¡ µº ¡ ¾2º=2
¶ t

º

= exp

µ
¡ t
º
ln(1¡ µº ¡ ¾

2º

2
)

¶
and hence the mean rate of return on the Stock, under the risk neutral process,
is the interest rate by construction.

We note further that the limit as º tends to zero of 1º ln(1¡ µº ¡ ¾2º
2 ) is by

L'Hopitals rule ¡µ ¡ ¾2=2 and so for small º this term is ¡µt ¡ ¾2t=2: Noting
that X(t) = µG(t)+¾W (G(t)) but for small º; G(t) is essentially t; we get that

lnS(t) = lnS(0) + (r ¡ ¾
2

2
)t+W (t)

or the familiar geometric Brownian motion model for the log of the stock price.
Hence we have a generalization of the Black-Scholes and Merton models for the
stock price. The generalization has introduced two new parameters º; µ that we
have observed give us control over skewness and kurtosis in the process.

6.2.1 Characteristic function of the log of the stock price

The characteristic function of the ln(S(t)) is easily derived from that of X(t);
and is useful in deriving option prices by Fourier methods. Speci¯cally we have
that

Áln(S(t))(u)
def
= E [exp (iu ln(S(t))]

= exp

µ
iu (ln(S(0)) + rt+

t

º
ln(1¡ µº ¡ ¾

2º

2
))

¶
ÁX(t)(u) (12)

where ÁX(t)(u) is the characteristic function of the V G process given in (8).

6.3 Variance Gamma Option Pricing

When the risk neutral process for the stock is described by the variance gamma
process for the log of stock price as in equation (11), European call options on
stock of strike K and maturity t have a price, c(S(0);K; t) that is given by
evaluating the expected discounted cash °ow

c(S(0);K; t) = E
£
e¡rtmax (S(t)¡K; 0)¤ : (13)

This valuation result is an application of the de¯ning property of a risk neutral
probability, that traded asset prices, when discounted by the value of the money
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market account, are martingales under this probability. The valuation result
follows on noting that option prices at maturity equal the promised payo®.
The computation of the call price in equation (13) is accomplished in closed

form in Madan, Carr and Chang [29]. Other approaches at e±cient computation
employ Fourier inversion as described in Bakshi and Madan [5] or improvements
thereof as explained in Carr and Madan [9]. We present here a brief summary of
these results. The reader is referred to the original papers for further details.4

6.3.1 The Madan Carr and Chang Closed Form

The method employed by Madan, Carr and Chang [29] to develop a closed form
for the V G option price relies on integrating the Black-Scholes formula applied
to a random gamma time, with respect to the gamma density for this time.
This approach requires the explicit computation of expressions of the form

ª(a; b; °) =

Z 1

0

N

µ
ap
u
+ b
p
u

¶
u°¡1 exp(¡u)

¡(°)
du; (14)

where N(x) is the cumulative distribution function of the standard normal vari-
ate. The call option price can be explicitly computed in terms of this ª function.
Speci¯cally we have that

c(S(0);K; t) = S(0)ª

Ã
d

r
1¡ c1
º

; (®+ s)

r
º

1¡ c1 ; °
!
¡

K exp(¡rt)ª
Ã
d

r
1¡ c2
º

; ®

r
º

1¡ c2 ; °
!

where

s =
¾q

1 +
¡
µ
¾

¢2 º
2

® = ¡ µ

¾

q
1 +

¡
µ
¾

¢2 º
2

° =
t

º

c1 =
º(®+ s)2

2

c2 =
º®2

2

d =
ln
³
S(0)
K

´
+ rt

s
+
°

s
ln

µ
1¡ c1
1¡ c2

¶
4Matlab programs are available for performing these computations in all the three ways

described here.
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A reduction of the ª function (14) to the special functions of mathematics is
accomplished in terms of the modi¯ed Bessel function of the second kind and the
degenerate hypergeometric function of two variables with integral representation
(Humbert [24])

©(®; ¯; °;x; y) =
¡(°)

¡(®)¡(° ¡ ®)
Z 1

0

u®¡1(1¡ u)°¡®¡1(1¡ ux)¡¯euydu:

Explicitly we have that

ª(a; b; °) =
c°+

1
2 exp (sign(a)c) (1 + u)°p

2¼¡(°)°

K°+ 1
2
(c)©(°; 1¡ °; 1 + °; 1 + u

2
;¡sign(a)c(1 + u))

¡ sign(a)c
°+ 1

2 exp(sign(a)c)(1 + u)1+°p
2¼¡(°)(1 + °)

K°¡ 1
2
(c)©(1 + °; 1¡ °; 2 + °; 1 + u

2
;¡sign(a)c(1 + u))

+ sign(a)
c°+

1
2 exp (sign(a)c) (1 + u)°p

2¼¡(°)°

K°¡ 1
2
(c)©(°; 1¡ °; 1 + °; 1 + u

2
;¡sign(a)c(1 + u))

where

c = jaj
p
2 + b2

u =
bp
2 + b2

:

Madan, Carr and Chang [29] go on to employ this closed form in a detailed
study of the empirical properties of VG option pricing, noting in particular the
importance of skewness from the risk neutral viewpoint, and the ability of the
V G model to °atten the implied volatility smile in option pricing.

6.3.2 Inversion of Distribution Function Transforms (Bakshi and
Madan)

Bakshi and Madan [5] show that very generally one may write a call option
price in the form

c(S(0);K; t) = S(0)¦1 ¡K exp(¡rt)¦2
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where ¦1 and ¦2 are complementary distribution functions obtained on com-
puting the integrals

¦1 =
1

2
+
1

¼

Z 1

0

Re

"
e¡iukÁln(S(t))(u¡ i)
iuÁln(S(t))(¡i)

#
du

¦2 =
1

2
+
1

¼

Z 1

0

Re

"
e¡iukÁln(S(t))(u)

iu

#
du

where k = ln(K) and Áln(S(t))(u) is the characteristic function of the log of the
stock price given in this case by (12).
Bakshi and Madan [5] study the general spanning properties of the character-

istic functions and their relationship to the spanning properties of options. They
also express the general relationships between the two probability elements in
option pricing providing a discussion of cases where they are analytically linked
in their transforms.

6.3.3 Inversion of the Modi¯ed Call Price (Carr and Madan)

Carr and Madan [9] de¯ne the Fourier transform of the modi¯ed call price by

Ã(v) =

Z 1

¡1
eivk+®kc(S(0); ek; t)dk

where k = ln(K), and the multiplication by exp(®k) for ® > 0 and dampens
the call price for negative values of log strike. They show generally that

Ã(v) =
e¡rtÁln(S(t))(v ¡ (®+ 1)i)
®2 + ®¡ v2 + i(2®+ 1)v :

The call option price may then be obtained on a single Fourier inversion of
Ã that may also employ the fast Fourier transform to evaluate

c(S(0);K; t) =
exp(¡®k)

¼

Z 1

0

e¡ivkÃ(v)dv:

Carr and Madan [9] also consider other strategies for speeding up the pricing
of options using the characteristic function of the log of the stock price and the
methods should be useful for a variety of L¶evy processes.

6.4 Results on Option Pricing Performance

The variance gamma option pricing model was tested in Madan, Carr and Chang
[29] on data for S&P 500 options for the period January 1992 to September 1994.
It was noted there that the skew is signi¯cant and the three parameter process
e®ectively eliminates the smile in option prices in the direction of moneyness.
The pricing errors are generally between 1 and 3 percent for options on the
relatively liquid stocks and indices. The maturities we work with get fairly
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Figure 1: Out-of-the-money option prices on the SPX index and the price curve
as ¯t by the VG model.

small and are as low as a couple of days at times, while the range of strikes are
quite wide and may be up to 20 to 30 % out-of-the-money. Yet on this wide
range of strikes and low maturities the model provides adequate ¯ts.
Here we provide some illustrations of the results for options on the SPX and

Nikkei indices. Figures 1 and 2 provide graphs of the prices of out-of-the-money
options on these two indices along with the theoretical price curve as ¯t by
the V G model. For strikes above at-the-money the options are calls while puts
are used for the strikes below the spot. The typical V shaped price structure
observed in markets is basically consistent with that of the negative exponential
in the absolute value of the size of the move, that is the local structure of the
V G model. The di±culty for Gaussian based models is precisely the fact that
for these models option prices of out-of-the-money options fall of too rapidly,
being a negative exponential in the square of the move, compared to market.
We observe here that the essential structure of price decay is consistent with
the building block of completely monotone L¶evy densities, the double negative
exponential.
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Figure 2: Out-of-the-money option prices on the Nikkei Index and the price
curve ¯t by the VG model.
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7 ASSET ALLOCATION IN L¶EVY SYSTEMS

Apart from the successes of L¶evy processes in option pricing, and the V G model
in particular, these processes are associated with ¯nancial markets that are
incomplete with respect to dynamic trading in the stock and the money market
account. In such economies, with stock prices driven by an in¯nite arrival ¯nite
variation L¶evy process, European options are market completing assets and one
may study the question of the optimal demand for these assets by investors. In
contrast, for the traditional economy, where options are redundant assets there
is no demand for these assets.
With these observations in mind, Carr and Madan [8] proceed to reformulate

the Merton problem for optimal consumption and investment, except now the
asset space is genuinely expanded to include all the European options on the
stock of all strikes and maturities as well. They study the problem of optimal
derivative investment and solve it in closed form for HARA utility when the
statistical and risk neutral price processes are in the V G class of processes.
They also show that the shape of the optimal ¯nancial derivative product is
independent of preferences, time horizons and the mean rate of return on the
stock, factors that in°uence the level of investor demand but not the shape. The
latter depends primarily on the comparison between the prices of market moves
and the relative frequency of their occurrence. Their analysis also suggests
that demand would be highest for at-the-money low maturity options in such
economies, a fact that is in accord with casual market observations.

7.1 Optimal Derivative Investment

Consider an economy trading a stock with price process S(t) that is a homo-
geneous L¶evy process in the interval [0;¨] with a L¶evy density kP (x) de¯ned
over the real line where x represents the jumps in the log of the stock price. An
example is provided by the V G process of equation (11). Also trading in the
economy are options on this stock with strikes K > 0 and maturities T < ¨:
The prices of these options are given by the processes c(S(t);K;T ) for t < T
where these prices are consistent with the absence of arbitrage and are derived
in line with martingale pricing methods using the risk neutral measure that
is also a homogeneous L¶evy process with L¶evy density kQ(x): The subscripts
P and Q make the important distinction between the statistical price process
and the risk neutral process, with the former assessing the relative frequency of
events while the latter assesses their prices.
In such an economy we wish to study the question of optimal derivative

investment. At ¯rst glance, and in analogy with the solution methods adopted
in Merton [35] this is a particularly di±cult problem that is not going to be
tractable from an analytical perspective. This is because we ask for the optimal
positions in a doubly indexed continuum of assets viz. the options of all strikes
K > 0 and maturities T > t in a context in which many of these options (i.e.
those with maturities below t) are expiring on us. Furthermore, the analyt-
ical pricing of these options is generally a complex exercise re°ecting all the
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di±culties associated with the kinked option payo®.
For reasons of tractability, we reformulate the problem with the focus on

the real uncertainty which is the jump in log price of the stock, x. We view
investment, not as a decision on what assets to hold, but in the ¯rst instance as
a design problem where the investor wishes to design the optimal response of
his or her wealth to market moves represented by x: Hence we seek to determine
the optimal wealth response function w(x; u) which is the jump in the investor's
log wealth if the market were to jump at time u by the amount x in the log
price of the stock. The actual investment in options that delivers this optimal
wealth response is a secondary problem that may be solved numerically using
the spanning properties of options. The structure and solution of this secondary
problem is described in further detail in Carr and Madan [29].
From the perspective of the optimal design of wealth responses, the optimal

derivative investment problem may be formulated as a Markov control prob-
lem. Carr and Madan [8] consider both the in¯nite time horizon problem with
intermediate consumption and the ¯nite horizon problem with no intermediate
consumption. Here we present just the former. We denote by c(t) the path
of the °ow rate of consumption per unit time and suppose the investor has
a preference ordering over consumption paths represented by expected utility
evaluated as

u = EP
·Z 1

0

exp(¡¯s)U(c(s))ds
¸

(15)

where P is the statistical probability measure, ¯ is the pure rate of time pref-
erence, and U(c) is the instantaneous utility function. The investor wishes to
choose the consumption path c(¢) and the wealth response design w(¢) with a
view to maximizing u:
The investor is constrained by his budget constraint that describes the evolu-

tion of his wealth. The wealth,W (t); transition equation is the integral equation

W (t) =W (0) +

Z t

0

rW (s )ds¡
Z t

0

c(s)ds (16)

+

Z t

0

Z 1

¡1
W (s )

³
ew(x;u) ¡ 1

´
(m(!; dx; ds)¡ kQ(x)dxds) :

and the budget constraint requires that the wealth process be non-negative,
W (t) ¸ 0 almost surely. The ¯rst two terms of the wealth transition are stan-
dard and require no explanation, accounting for interest earnings and the ¯nanc-
ing of the consumption stream. The ¯nal term involves integration with respect
to two measures, the ¯rst is the integer valued random measure m(!; dx; ds)
that is a Dirac delta measure counting the jumps that occur at various times of
various sizes. The second is the pricing L¶evy measure kQ(x)dxds: The integra-
tion with respect to m accounts for the wealth changes actually experienced by
the response design w(x; u): The integration with respect to kQ(x)dxds accounts
for the cost of this wealth response access that must be paid for through time.
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The wealth transition equation (16) may be rewritten in a form more directly
comparable to Merton's original equation by writing

W (t) =W (0) +

Z t

0

rW (s )ds¡
Z t

0

c(s)ds (17)

+

Z t

0

Z 1

¡1
W (s )

³
ew(x;u) ¡ 1

´
(kP (x)dxds¡ kQ(x)dxds)

+

Z t

0

Z 1

¡1
W (s )

³
ew(x;u) ¡ 1

´
(m(!; dx; ds)¡ kP (x)dxds)

where we have just added and subtracted the integral of the wealth change
with respect to the measure kP (x)dxds: In this formulation the ¯nal integral in
equation (17) is a martingale under the statistical measure P and matches the
term representing the martingale component of stock investment in Merton [35].
The ¯rst two terms are the same as in Merton [35]. The third term matches
the term that evaluates excess returns from stock investment in Merton [35].
Here excess returns are the expected wealth change less the cost or price of this
change whereas in Merton we have ¹¡ r:
The investor's optimal derivative investment problem is to choose c(¢); w(¢);

with a view to maximizing the utility u of equation (15) subject to the budget
constraint of equation (16).

7.2 Optimal Design of Wealth Responses

Let J(W) be the optimized expected utility when the initial wealth W (0) =W:
It is shown in Carr and Madan [8] that the optimal wealth response function
for the in¯nite time horizon problem is homogeneous in time and satis¯es the
equation

JW (We
w(x))

JW (W )
=
kQ(x)

kP (x)
: (18)

This condition has an intuitive interpretation when it is rewritten as

JW (We
w(x))kP (x)

kQ(x)
= JW (W )

which is that the expected marginal utility per initial dollar spent on cash in
each state, x; is equalized across states. If this is not the case then w(x) should
be altered to move funds from states with a lower marginal utility to states with
a higher marginal utility. Alternatively, the marginal rate of transformation in
utility between two states must equal the marginal rate of transformation in
markets between the same two states.
The optimal wealth response w(x); is then determined from equation (18),

if we know the function J(W ) as

w(x) = J¡1W

µ
JW (W )

kQ(x)

kP (x)

¶
:
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We learn from this representation that the optimal wealth response design is a
possibly smooth function J¡1W applied to the ratio of two ¯nite variation, in¯nite
arrival rate L¶evy measures. Such L¶evy measures are kinked by construction at
zero where the arrival rate goes to in¯nity. It follows that one would expect to
see this property inherited by w(x): This has the implication that at a minimum,
optimal wealth response design positions investors with di®erent slopes of their
desired wealths with respect to up and down market movements, from at-the-
money. Equivalently, there is a demand for short maturity at-the-money options.

7.2.1 HARA VG FINANCIAL PRODUCTS

In the special case when the statistical and risk neutral processes are in the V G
class and the utility function U(c) is in the HARA (hyperbolic absolute risk
aversion) class of utility functions, the optimal derivative investment problem
of section 7.1 is shown in Carr and Madan [8] to have a closed form solution
where J(W ) is also in theHARA class of utility functions. The kinks in optimal
designs discussed generally in section 7.2 can now be explicitly computed for
this case.
Speci¯cally, suppose the statistical L¶evy measure is symmetric and given by

kP (x) =
1

· jxj exp
Ã
¡
r
2

·

jxj
s

!
(19)

where · is the volatility of the statistical gamma time change for a symmetric
Brownian motion with volatility s: Further suppose that the risk neutral L¶evy
measure is as given by (9) and parameters ¾; º; and µ: Let the utility function
be

U(c) =
°

1¡ °
µ
®

°
c¡A

¶1¡°
:

In this case, de¯ning

³ =
µ

¾2

¸ =
1

s

r
2

·
¡ 1

¾

r
2

º
+
µ2

¾2

and letting R denote the price relative of asset price post jump to its pre jump
value then the optimal product takes the form

f(R) =

(
R¡

³+¸
° R > 1

R¡
³¡¸
° R < 1:

(20)

and the kink at-the-money is present unless ¸ = 0: The shape of this product
is independent of the °oor of the utility function and depends primarily on the
statistical and risk neutral L¶evy measures and risk aversion as represented by
°:
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Figure 3: Optimal Spot Slides in the presence of excess risk neutral kurtosis
and skew.

We also observe the clear impact of risk aversion on optimal product design.
As we raise °; the e®ect on this on the optimal wealth response f(R) is to °atten
out the movement in the optimal wealth response and to let the payo® approach
that of a bond, thereby re°ecting a lack of tolerance for movements in wealth.
A variety of possible shapes can arise for the optimal product and these are

illustrated in Figures 3 to 6 for a variety of settings on the statistical and risk
neutral parameters. Each ¯gure reports three curves, for varying levels of risk
aversion (RRA) and the °attening out of the response as we raise risk aversion is
apparent in each case. Since these graphs draw optimal portfolio values against
the level of the spot asset they are referred to as spot slides.
In Figure 3 the excess risk neutral kurtosis and skew leads to large moves

being priced high relative to their likelihood and hence the optimal spot slide
shorts these events and we have inverted V shape for the spot slide.
For Figure 4 the skew is strong and the kurtosis is mild. This leads to falls

being overpriced while rises are under priced. The optimal slide is basically long
the asset, but the positioning with respect to rises, the up delta, and falls, the
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Figure 4: Optimal Spot Slide for a strong Skew and a mild excess kurtosis
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Figure 5: Optimal Spot Slide when statistical volatility dominates risk neutral
volatility

down delta, di®er.
For Figure 5 we have an excess statistical volatility making large moves

relatively cheap securities. This gives rise to the V shaped optimal position.
Figure 6 is a reverse of the situation of Figure 4: The direction of the skew

has been reversed and leads to a basically short position, with the kink induced
by the behavior of the L¶evy densities at the origin.

8 SPOT SLIDE CALIBRATION AND POSI-
TION MEASURES

The inputs for constructing an optimal spot slide are fairly simple and require
just the speci¯cation of the statistical or time series moments of the return
distribution from which one may infer · and s the statistical L¶evy measure
parameters. The next step is to obtain data on market option prices, preferably
for short maturity options and then to estimate the risk neutral L¶evy measure
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and the three parameters ¾; º and µ: Finally, making some assumption on the
coe±cient of relative risk aversion in a power utility function gives us ° and we
are ready to graph the optimal spot slide describing how one should currently
be positioned in the derivatives markets.
For a contrast, one may compare with the actual spot slide that aggregates

a traders derivatives book and draws the response curve of his book value to
market moves. We present here the results of calibrating optimal spot slides to
data on actual spot slides. In the calibration we allowed for a reverse engineering
of the coe±cient of risk aversion ° as there is no other way to estimate this
quantity. However, we also observed that the risk neutral excess kurtosis º
is typically an order of magnitude above its statistical counterpart · and so
we allowed this entity to be reverse engineered as well. Such an approach is
defensible on noting that the variance of kurtosis estimates are of the order of
the eighth moment and as the time series involved are not very long, generally
2 to 4 years, there is some leeway in an appropriate choice of this magnitude.
The other parameters, ¾; º; µ; and s are taken at their estimated values.
For a variety of underlying assets and on a number of days, we reverse

engineered the values of ° and · so as to match the optimal spot slide with
the actual spot slide observed for that day. Remarkably, we were able in many
cases to come close to actual spot slides by just a simple choice on these two
parameters (°; ·): Figure 7 presents an example of an optimal spot slide as
calibrated to an actual spot slide on a book of derivatives on a index. The
ratio of · to º is referred to as ¯ in the graph and describes the relative excess
kurtosis of the subjective and risk neutral densities. Though it is often fairly
small when calibrated, it is often an order of magnitude above the ratio of the
statistical excess kurtosis to the risk neutral excess kurtosis.

Once all these parameters have been estimated and importantly ° and · have
been infered from data on the actual spot slide, one may infer a personalized
risk neutral density given by the subjective L¶evy measure determined by the
parameters s and · as described by equation (19) that is transformed by the
marginal utility process as described in Madan and Milne [30] to obtain the
personalized risk neutral L¶evy measure, kI(x) (the subscript I being indicative
of an individualized measure)

kI(x) = exp (¡°x) 1

· jxj exp
Ã
¡
r
2

·

jxj
s

!
: (21)

The L¶evy measure (21) is that of a V G process with personalized values for
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Figure 7: Optimal Spot Slide as calibrated to a book of derivatives on an index.

¾I ; ºI ; µI given by

¾I =
s
p

·
ºq

1¡ °2s2·
2

(22)

µI = ¡° ·
º

s2

1¡ °2s2·
2

ºI = ·

We thus infer a personalized risk neutral process and this may be employed
to construct a personalized return density that we term a position measure
as it is reverse engineered from derivative positions being viewed as optimal
and therefore re°ects preferences and beliefs that are obtained by a revealed
preference exercise. All three densities are in the V G class of processes.
On completing this reverse engineering task we have available a statistical

return density estimated from the times series of the return data, a risk neutral
density as infered from options data, and a position density as reverse engineered
from the actual spot slide of the derivatives book. Figures 9 ,10; 11 and 12
present a range of samples of graphs of these densities on a variety of underlying
assets.
We observe a fairly diverse set of shapes of the densities, with varying degrees

of skewness and kurtosis as re°ected in the size of tails on the left and the right
of the distribution. Furthermore, generally the position density is closer to
the statistical density than the risk neutral density, re°ecting the view that
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traders respect probability calculation as inferred from time series and position
themselves accordingly given the market prices of market moves as re°ected in
the risk neutral distribution. Occasionally, however, as in the case of Figure 10
the position density may be skewed further to the left than even the risk neutral
density and is re°ective of greater risk aversion on the part of the trader than
is prevalent in the market.

9 CONCLUSION

We argue here that empirical evidence on the statistical and risk neutral price
processes for ¯nancial assets belong to the class of purely discontinuous processes
of ¯nite variation, albeit ones of high activity, as re°ected by an in¯nite arrival
rate of jumps. Structurally, the pattern of jump arrival rates is consistent with
the hypothesis of complete monotonicity whereby arrival rates at smaller size
levels are higher.
Economic considerations of the absence of arbitrage point in the same direc-

tion by demonstrating that semimartingales, the candidate no arbitrage price
process, is a time changed Brownian motion and the increasing random process
of the time change is of necessity purely discontinuous, if it is not locally deter-
ministic. The attribute of ¯nite variation is attractive from two perspectives,
one that allows a separation of the up and down tick modeling of the market
and we o®er two representations of such price processes that are related un-
der complete monotonicity of the L¶evy density. The second attractive feature
of ¯nite variation is its robustness as re°ected in its tolerance of parametric
heterogeneity without the resulting measures being singular or disjoint in their
sets of almost sure outcomes. This lack of robustness is an inherent property
of in¯nite variation processes and we strongly advocate against the use of these
processes as models for the price process unless there is overwhelming evidence
in support of such a choice.
The class of stationary processes of independent and identically distributed

increments meeting our requirements are characterized as a subclass of L¶evy
processes. Within this class, an important and analytically rich example is pro-
vided by Brownian motion time changed by a gamma process that combines in
an interesting way two well studied processes in their own right. We summarize
the properties of the resulting process termed the variance gamma process. The
process has two additional parameters that enable it combat skew and kurtosis.
Option pricing under the variance gamma process is tractable using a vari-

ety of methods and we outline three such methods. The ¯rst is a closed form
in terms of the modi¯ed Bessel function of the second kind and the degener-
ate hypergeometric function of two variables. The second involves two Fourier
inversions for the complementary distribution function and the third employs
direct Fourier inversion for the call price using the fast Fourier transform. The
results of estimations are illustrated for data on SPX and Nikkei Index options.
It is observed that the model eliminates the smile in the strike direction, using
e®ectively for this purpose its two additional parameters.
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In¯nite arrival rate, ¯nite variation, L¶evy processes with completely mono-
tone L¶evy densities are processes for the stock price for which options are mar-
ket completing assets that are part of the primary assets of the economy with a
genuine demand for these assets by investors. We study the Merton problem of
optimal consumption and investment with the asset space expanded to include
out-of-the-money European options as investment vehicles. For HARA utility
and VG statistical and risk neutral processes this problem is solved in closed
form with optimal portfolios that are kinked at-the-money and display a di®er-
ent slope with respect to upward and downward movements of the market. The
positions re°ect a role for at-the-money short maturity options, the most liquid
end of the options market in practice.
Using our theory of optimal derivative positioning we illustrate how one

may reverse engineer the preferences and beliefs of traders from observed spot
slides of the derivatives book. This allows us to infer personalized risk neutral
densities from observations on positions and we term this density the position
density. Illustrations are provided, for comparative purposes of the statistical,
risk neutral and position densities. It is observed that position densities are
generally closer to the statistical density and lie between the statistical and risk
neutral densities. At times however, they may be more skewed than the risk
neutral density re°ecting risk aversion that dominates market risk aversion.
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