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1 Introduction

The problem of finding the nearest low-rank correlation matrix occurs in
areas such as finance, chemistry, physics and image processing. The mathe-
matical formulation of this problem is:

(1)

Find X ∈ Sn

to minimize 1
2
‖C −X‖2

subject to rank(X) ≤ d
Xii = 1, i = 1 : n
X º 0

Or in other words: Find the low-rank correlation matrix X nearest to the
given n×n matrix C. The choice of the norm will reflect what is meant
by nearness of the two matrices. In our setting C has the interpretation of
measured correlation. Due to the measurement error C will in general not
satisfy the constraints. It can however be the case that some specific entries
of the matrix C are better measured than others4. This dictates that we have
to put weights on individual entries of matrices. This consideration provides
the natural norm to our problem. In the literature this is a well known norm
called the Hadamard norm and it is denoted by ‖ · ‖H .

The importance of this problem in finance has been recognized by several
researchers such as [Reb99], [Hig02] and [ZhW03]. One of the first articles
to address this problem in finance is [Reb99], in which the set of rank d
correlation matrices is parameterized. The minimization technique was how-
ever not addressed. Instead only the principal components analysis (PCA)
method was proposed to obtain a feasible point. This simple method is
due to Flury [Flu88] and is the main technique used by practitioners today.
Zhang and Wu recognized the shortcomings of PCA and in their recent work
[ZhW03] they established the most significant result up to now in this area.
They extended the PCA technique (call it the ZW algorithm) such that if C
obeys some additional conditions and if ZW converges then it produces the
globally nearest point. This method is however still often plagued by non-
convergence as shown numerically in this paper. Moreover the Zhang-Wu
algorithm is only applicable for the weighted Frobenius norm.

The other important contribution is due to Higham [Hig02]. In this paper
Higham develops an algorithm that solves the problem globally if d = n

4Typically this happens in a finance setting.
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without any additional conditions on C. This method is also applicable only
for the weighted Frobenius norm.

We propose a novel technique that can solve the problem locally without
any additional assumptions and which incorporates the Hadamard norm. It
will be shown that our method numerically outperforms the work of Zhang
& Wu and Higham. Due to its generality our method finds locally optimal
points for a variety of other objective functions subject to the same con-
straints. One of the most famous problems comes from physics and is called
Thomson’s problem.

In our paper we formulate the problem in terms of Riemannian geometry.
This approach allows us to use gradient methods which are numerically stable
and efficient, in particular the Riemann-Newton method is applied.

The paper is organized as follows. In section 2, the constraints of the
problem are formulated in terms of differential geometry. We identify the set
of correlation matrices of rank at most d with a set of equivalence classes of n
products of the d−1-sphere. This is the canonical space for the optimization
of the arbitrary smooth function subject to the same constraints. Section 3
describes the Riemannian structure on n products of the d−1-sphere and the
quotient space. Formulas are given for parallel transport, geodesics and the
horizontal space. The minimization algorithms are made explicit. In section
4 we study theoretically the convergence of the algorithms. We establish
global convergence and the local convergence rates. The application of the
algorithms to the problem of finding the nearest low-rank correlation matrix
is worked out in detail in section 5. In section 6 we present numerical results
with randomly generated correlation matrices. These are compared with the
algorithm of Zhang and Wu. The application to Thomson’s problem is given
in section 7. Finally in section 8 we conclude the paper.

2 Solution methodology

The problem with general F . Note that problem (1) is a special case
of the following more general problem:

(2)

Find X ∈ Sn

to minimize F (X)
subject to rank(X) ≤ d

Xii = 1, i = 1 : n
X º 0

Here we have used the following notation:
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- Sn is the set of n by n real symmetric matrices.

- F : Sn → R is the objective function.

- º denotes positive semidefiniteness.

In this paper methods will be developed to solve problem (2) for the case
when F is smooth. Note that such methods will thus also solve problem (1),
which is the primary goal of this paper.

Basic idea. The idea for solving problem (2) is to equip the constraint set
with a differentiable structure and subsequently utilize the recent advances
of geometric optimization over manifolds. These advances include [EAS99],
[Smi93] and [DPM03]. The advantage of these methods is that the coordi-
nates are chosen judiciously, generally with a higher number of parameters
than necessary, however it is this choice that leads to the simplest form for
the gradient and geodesics, which in turn leads to an efficient implementa-
tion. We identify the constraint set with the quotient space of n products
of the d − 1 sphere over the group of orthogonal transformations of Rd. In-
tuitively the correspondence is as follows: We can associate with an n×n
correlation matrix of rank d a configuration of n points of unit length in Rd

with the corresponding inner products. This representation is independent
of the choice of basis of Rd. In other words, any orthogonal rotation of the
configuration does not alter the associated correlation matrix. This idea is
developed more rigorously below.

A homeomorphism. In this section the set of n×n correlation matrices
of rank d is equipped with a topology. We subsequently establish a homeo-
morphism between the latter topological space with the quotient space of n
products of the d− 1 sphere over the group of orthogonal transformations of
Rd.

Definition 1 The set of rank d symmetric n × n correlation matrices is
defined by

Cn,d =
{

X ∈ Sn ; diag(X) = In, rank(X) = d, X º 0
}
.

Here In denotes the n×n identity matrix and diag denotes the map Rn×n →
Rn×n

diag(X) =




X11 0
. . .

0 Xnn


 for X ∈ Rn×n.
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The set Cn,d is a subset of Sn. The latter space is equipped with the Frobenius
norm ‖·‖F , which in turn defines a topology. We equip Cn,d with the subspace
topology.

In the following, elements of n products of the d − 1 sphere are denoted
as a matrix Y ∈ Rn×d, with each row vector Yi of unit length. Elements of
the orthogonal group acting on Rd are denoted by a d×d orthogonal matrix
Q.

Definition 2 The product of n spheres Sd−1 is denoted by Tn,d. Denote by
Od the group of orthogonal transformation of d-space. We define the following
right Od-action

5 on Tn,d:

(3)
Tn,d ×Od → Tn,d

(Y,Q) 7→ Y Q.

An equivalence class {Y Q : Q ∈ Od} associated with Y ∈ Tn,d is denoted
by [Y ] and it is called the orbit of Y . The quotient space or space of orbits
Tn,d/Od is denoted by Mn,d. The canonical projection Tn,d → Tn,d/Od = Mn,d

is denoted by π. Define the map6

Mn,d
Ψ−→ Cn,d,

Ψ
(

[Y ]
)

= Y Y T .

Consider a map7 in the inverse direction of Ψ,

Cn,d
Φ−→ Mn,d,

defined as follows: For X ∈ Cn,d take Y ∈ Tn,d such that Y Y T = X. Such Y
can always be found as shown in theorem 3. Then set

Φ(X) = [Y ].

Finally, define the map s : Tn,d → Cn,d,

s(Y ) = Y Y T .

The following theorem relates the spaces Cn,d and Mn,d; the proof has been
deferred to appendix 1.

5It is trivially verified that the map thus defined is indeed an Od smooth action: Y Id =
Y and Y (Q1Q2)−1 = (Y Q1

2)Q1
−1.

6It will be shown in theorem 3 that this map is well defined.
7It will be shown in theorem 3 that this map is well defined.
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Theorem 3 Consider the following diagram

(4)

Tn,d Cn,d

Mn,d = Tn,d/Od

-s

?

π

¡
¡

¡
¡

¡¡µ
Ψ

¡
¡

¡
¡

¡¡ª

Φ

with the objects and maps as in definitions 1 and 2. We have the following:

(i) The maps Ψ and Φ are well defined.

(ii) The diagram is commutative.

(iii) The map Ψ is a homeomorphism with inverse Φ.

The space Mn,d equipped with a differentiable structure. To be able
to apply techniques from geometric optimization, the topological space Mn,d

requires a differentiable structure, preferably as a manifold. It turns out that
Mn,d is not a manifold, but a so-called stratified space. This follows from the
fact that Tn,d with the smooth action of the compact Lie group Od forms
(by definition) an Od-manifold. For details the reader is referred to [DuK].
However there is a subspace of Mn,d that is a manifold. This turns out to be
sufficient for establishing convergence results for the geometric optimization
techniques, see section 4.

Proposition 4 Let T ∗
n,d ⊂ Tn,d be the subspace defined by

T ∗
n,d =:

{
Y ∈ Tn,d : rank(Y ) = d

}
.

Then we have the following:

1. T ∗
n,d is a submanifold of T ∗

n,d

2. Denote by M∗
n,d the quotient space T ∗

n,d/Od. Then M∗
n,d is manifold.

3. T ∗
n,d is dense in Tn,d and Mnd∗ is dense in Mn,d. is a manifold.

Proof:
1. It is enough to show that T ∗

n,d is open in Tn,d. Let Y ∈ T ∗
n,d and (U, Σ, V ) be
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the SVD of Y . Let X = UΣdU
T where Σd = diag(Σ11, · · · , Σd−1,d−1, 0, · · · , 0).

Then, by Eckart-Young theorem we have

min
Z∈Tn,d;rank(Z)<d

‖Y − Z‖2 ≥ min
Z∈Rn×d;rank(Z)<d

‖Y − Z‖2 = ‖Y −X‖2 = Σ2
d,d.

Choose ε ∈ (0, Σ2
d,d). Then

U := {Z ∈ Tn,d | ‖Y − Z‖2 < ε}

is open in Tn,d and U ⊆ T ∗
n,d and because Y was arbitrarily we have that T ∗

n,d

is open in Tn,d.

2. This part is a corollary of theorem (17) by taking M = T ∗
n,d and G = Od.

Thus it is enough to show that conditions of the theorem are satisfied. We
first show that action of Od on T ∗

n,d is proper8. Let

Φ : T ∗
n,d ×Od → T ∗

n,d × T ∗
n,d

(m, g) 7→ (mg−1, m)

and K a compact subset of T ∗
n,d × T ∗

n,d. Then, by continuity Φ, Φ−1(K) is
closed in T ∗

n,d × Od. Because T ∗
n,d × Od is relatively compact it follows that

Φ−1(K) is compact.
Finally, we show that Od acts free on T ∗

n,d. Let Y ∈ T ∗
n,d and Q ∈ Od such

that Y QT = Y . If we denote the rows of Y with yi, we can rewrite this as
follows

Qyi = yi, i = 1 : n.

This means that yi are eigenvectors with eigenvalue 1. Because the rank(Y ) =
d we can find the sequence {y1, .., yd} of d-independent rows of Y . These are
independent eigenvectors of Q. Only square matrix with all eigenvalues equal
to 1 is the identity matrix.
3. Suppose Y ∈ Tn,d with rank(Y Y T ) = k where 1 < k < d. Then we can
choose a set of k rows vectors y1, .., yk of Y such that they span k-dimensional
linear subspace of Rd. We denote this subspace with Hk.

For i = k : d− 1 we have the following:
Choose a linear subspace Hi+1 of Rd such that Hi ⊂ Hi+1 and dim Hi+1 =

i + 1. Then there exists a sequence {xn
i+1}n ∈ Hi+1\Hi such that ‖yi+1 −

xn
i+1‖ → 0 as n →∞. Define new sequence {yn

i+1}n = {xn
i+1/‖xn

i+1‖}n. Then
we have the following:

8for definition see (16)
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1. span{y1, · · · , yi, y
n
i+1} = Hi+1 for all n,

2. {yn
i+1}n ∈ Sd−1,

3. ‖yi+1 − yn
i+1‖ → 0 as n →∞.

Define {Yn}n ∈ Rn×d as follows:

Yn :=




y1
...
yk

yn
k+1
...

yn
d

yd+1
...

yn




.

Then by construction {Yn} ∈ T ∗
n,d and ‖Y − Yn‖ → 0 as n →∞.

Finally we show that M∗
n,d is dense in Mn,d. Let [Y ] ∈ Mn,d and take

a representant Y ∈ [Y ]. Then Y ∈ Tn,d and by previous result there is a
sequence {Yn}n ∈ T ∗

n,d such that ‖Y − Yn‖ → 0 as n →∞. From continuity
of the canonical projection π we have that limn→∞ π(Yn) = π(Y ). Thus M∗

n,d

is dense in Mn,d. 2

Choice of representation. In principle we could elect another mani-
fold M and another Lie group G with M/G homeomorphic to the constraint
set. We insist however on explicit knowledge of the geodesics and parallel
transport, for this is essential to obtaining an efficient algorithm. We found
that if we choose M = Tn,d and G = Od then convenient expressions for
geodesics etc. are obtained.

In the next section the geometric optimization tools are developed for M∗
n,d.

3 Optimization over manifolds

For the development of minimization algorithms on a manifold, certain ob-
jects of the manifold need to calculated explicitly, such as geodesics, parallel
transport etc. In this section these objects are introduced and made explicit
for Tn,d and M∗

n,d.
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From a theoretical view point it does not matter which coordinates we
choose to derive the geometrical properties of a manifold. For the numer-
ical computations however this choice is essential because the simplicity of
formulas for the geodesics and parallel transport depends on the chosen coor-
dinates. We found that simple expressions are obtained when Tn,d is viewed
as subset of Rn×d. A point Y ∈ Tn,d will be represented as a n×d matrix. If
we think of Tn,d as n products of Sd−1 then it is convenient to represent Y as

Y =
{




Y1
...

Yn


 : Yi ∈ Sd−1,

}
.

This representation reveals that to calculate geodesics and parallel trans-
port on Tn,d it is sufficient to calculate these on a single sphere.

The tangent space of the manifold Tn,d at a point Y ∈ Tn,d is denoted by
TY Tn,d. A tangent vector at a point Y is an element of TY Tn,d and is denoted
by ∆.

Normal Space. The normal space is defined to be the orthogonal comple-
ment of the tangent space. Orthogonality depends on the metric chosen. We
choose to embed the manifold in Euclidean space and then the inner product
for two tangents ∆1, ∆2 is defined as

〈∆1, ∆2〉 = tr∆1∆
T
2 ,

which is the Frobenius inner product for n× d matrices. It is then straight-
forward to verify that the normal space NY Tn,d at Y ∈ Tn,d is given by

NY Tn,d =
{

DY ; D ∈ Rn×n diagonal
}
.

It follows that the normal space is n dimensional. The projections πN and
πT onto the normal and tangent space are given by

πN(∆) = diag(∆Y T )Y and πT (∆) = Y − diag(∆Y T )Y,

respectively.

Geodesics. Geodesics are also well known for the sphere. The geodesics
on Tn,d are then the products of geodesics on the sphere. The geodesic at
Yi(0) in the direction ∆i is given by

(5) Yi(t) = cos( ‖∆i‖t
)

Yi(0) +
1

‖∆i‖ sin
( ‖∆i‖t

)
∆i.
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By differentiating, we obtain an expression for the evolution of the tangent
along the geodesic:

(6) Ẏi(t) = −‖∆i‖ sin
( ‖∆i‖t

)
Yi(0) + cos

( ‖∆i‖t
)

∆i.

Parallel transport. Again, we consider this problem per component on
the sphere. If ∆2 is parallel transported along a geodesic starting from Y in
the direction of ∆1, then decompose ∆2 in terms of ∆1,

∆2 = 〈∆1, ∆2〉∆1 + R, R⊥∆1.

Then ∆1 changes according to equation (6) and R remains unchanged. Par-
allel transport from Y1 to Y2 defines a map τ(Y1, Y2) : TY1Tn,d → TY2Tn,d.
When it is clear in between which two points is transported, then parallel
transport is denoted simply by τ .

Geometry of the quotient space. We now study the regular part of the
quotient space Mn,d. The regular part consists of all correlation matrices of
rank d and is denoted by M∗

n,d. From the theory of G-manifolds it follows
that M∗

n,d is an open submanifold of Mn,d. As the geometry of the sphere
is well known, we try to extend the results obtained on the sphere to M∗

n,d.
The key techniques here are the horizontal and vertical spaces. At a point
Y in some manifold M the vertical space consists of those tangents in TY M
that are tangent to the set [Y ] ⊂ M . The vertical space at Y ∈ M will be
denoted by VY M , as long as it is clear what the equivalence relation is. The
horizontal space is the orthogonal complement of the vertical space. The
geometric idea is that when a point is moved along a tangent in the vertical
set, then we remain in the equivalence class of the point. If a point is moved
along a tangent in the horizontal set, then we actually move over equivalence
classes in the quotient space.

In the developments below, it will be shown that a geodesic along a tan-
gent in the horizontal space will always remain in the horizontal space, for
the case of the quotient of Tn,d with the orthogonal group. Thus from a rep-
resentative of an equivalence class and a tangent in the horizontal space a
geodesic on M∗

n,d may be constructed. First we proceed by characterizing the
vertical space.

Vertical space. The vertical space associated with Tn,d and the orthogonal
group is characterized by the following lemma.
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Lemma 5 The vertical space at a point Y ∈ Tn,d and associated with the
equivalence classes generated by the orthogonal group Od is given by

V =
{

∆ ∈ TY T (n, d) ; ∆ = Y Z, Z ∈ Rd×d, ZT = −Z
}
.

Proof:

• V ⊂ vertical space. If ∆ ∈ V then infinitesimally

Y + ε∆ = Y
(

Id + εZ
)

︸ ︷︷ ︸
=:Q(ε)

Because the tangent space of the orthogonal group is given by the
skew-symmetric matrices, it follows that Q(ε) remains infinitesimally
in the orthogonal group; thus Y + ε∆ remains infinitesimally in the
equivalence class of Y , which was to be shown.

• Vertical space ⊂ V . If v is an element of the vertical space then
infinitesimally

Y + εv ∈ [Y ],

thus there exists Q(ε) ∈ Od such that

Y + εv = Y Q(ε).

Applying a Taylor expansion to Q yields Q(ε) = Id + εZ, with Z skew-
symmetric (because Q(ε) remains in Od). It follows that v = Y Z,
which was to be shown. 2

The next lemma shows that there is a more simple way to represent the
vertical space.

Lemma 6 The vertical space is given by

VY Tn,d =
{

∆ = Y Z ; Z ∈ Rd×d, ZT = −Z
} ⊂ TY Tn,d.

In other words, all matrices of the form Y Z with Z skew-symmetric are in
the tangent space at Y .

Proof:

〈Y, Y Z〉 = tr
(

Y (Y Z)T
)

= tr
(

Y ZT Y T
)

= −tr
(

Y ZY T
)

= −tr
(

(Y Z)Y T
)

= −〈Y Z, Y 〉 = −〈Y, Y Z〉.
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Thus 〈Y, Y Z〉 = 0 and Y Z is tangent at Y . 2

Geodesics on M∗
n,d. In this section we show: If a point is moved along a

geodesic in the direction of a tangent in the horizontal space, then the tangent
along the geodesic remains in the horizontal space. Geodesics in M∗

n,d may
thus be represented as a select set of restricted geodesics on Tn,d. We proceed
by characterizing the horizontal space in an alternative fashion. The proofs of
the following lemma and subsequent theorem have been deferred to appendix
2.

Lemma 7 The tangent ∆ is in the horizontal space if and only if

n∑
i=1

〈∆T
i︸︷︷︸

d×1

Yi︸︷︷︸
1×d

, Z〉 = 0, ∀Z ∈ Rd×d, Z skew-symmetric.

Theorem 8 Consider the manifold Tn,d and the horizontal and vertical spaces
associated with the action given in equation (3). If a point is moved along a
geodesic in the direction of a tangent in the horizontal space, then the tangent
along the geodesic remains in the horizontal space.

It follows that if Y (·) is a geodesic in T ∗
n,d with initial tangent in the horizontal

space, then [Y (t)] is a geodesic in M∗
n,d.

Now we return to the geometry of the quotient space Mn,d. Note that M∗
n,d

is an open manifold of dimension n(d− 1)− d(d− 1)/2. We can decompose
the quotient as follows:

M∗
n,d ∪ ∂n,d, with ∂n,d = Mn,d\M∗

n,d.

Because Mn,d is not a manifold we can not define geodesics on the whole
space. However on M∗

n,d we can. The geodesics on Tn,d define a curve in
Mn,d. This curve is defined for all t and for all [Y1] and [Y2] in Mn,d there is
such a curve that joins them. Any such curve restricted to M∗

n,d is a geodesic.

Remark 9 (Dimension counting argument) If n > d then the dimension of
the irregular part of Mn,d corresponding to the matrices of rank d − 1 is at
least 2 lower than the dimension of the regular part M∗

n,d.

Proof: Note that dim(M∗
n,d) = n(d− 1)− 1

2
d(d− 1). Then a straightforward

calculation yields

dim(M∗
n,d)− dim(M∗

n,d−1) = n− d + 1 ≥ 2.
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Here the inequality follows from the assumption n > d. 2

The gradient. The differential FY of a function F is defined by

(7) 〈FY , ∆〉 =
d

dt
F (Y (t))

∣∣
t=0

, ∀∆,

with Y (·) any curve starting from Y in the direction of ∆, i.e., Ẏ (0) = ∆. The
gradient ∇F of a function F is defined as the projection of the differential
onto the tangent space. In our case,

∇F = πT (FY ) = FY − diag(FY Y T )Y.

The notation FY Y (∆) means the tangent vector satisfying

FY Y (∆) =
d

dt
FY (Y (t))

∣∣
t=0

.

Algorithms. We are now in a position to state algorithms 1 and 2 for the
optimization over Mn,d. These are modified versions of those presented by
[EAS99].

4 Convergence analysis

In this section we show that the geometric optimization algorithms of the
previous section converge globally to a local minimum and we establish their
rate of convergence.

Global convergence. Zangwill [Zan69] derived generic sufficient condi-
tions when an iterative algorithm converges. The result is repeated in the
developments below in a form adapted to the case of minimizing F over Mn,d.

Let M be a compact set. We specify a subset Ω ⊂ M called the solution
set. Any point Y ∈ Ω is called a solution. An (autonomous) iterative algo-
rithm is a map A : M → M ∪ {stop} with A−1({stop}) = Ω. The proof of
the following theorem is adapted from the proof of theorem 1 in [Zan69].

Theorem 10 (Global convergence) Consider the problem of minimizing the
function F of problem (2) over Mn,d by use of algorithms 1 and 2. Suppose
given a fixed tolerance level ε. A point Y is called a solution if ‖∇F (Y )‖ < ε.
The algorithms 1 and 2 are extended with the following:

• Stop whenever ‖∇F (Y (i))‖ < ε.
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Algorithm 1 Newton’s Method for Minimizing F (Y ) on Mn,d

Input: Y (0), F (·).
Require: Y (0) such that diag(Y (0)(Y (0))T ) = Id.
1: for k = 0, 1, 2, ... do
2: Compute G(k) = ∇F (Y (k)) = FY − diag(FY Y T )Y .
3: Compute ∆(k) = −Hess−1G(k) such that diag(∆(k)(Y (k))T ) = 0 and

FY Y (∆(k))− diag
(

FY Y (∆(k))(Y (k))T
)
Y (k) = −G(k).

4: Move from Y (k) in direction ∆(k) to Y (k)(1) along the geodesic.
5: Set Y (k+1) = Y (k)(1).
6: end for

Algorithm 2 Conjugate Gradient for Minimizing F (Y ) on Tn,d

Input: Y (0), F (·).
Require: Y (0) such that Y (0)(Y (0))T = Id.

1: Compute G(0) = ∇F (Y (0)) and set H(0) = −G(0).
2: for k = 0, 1, 2, ... do
3: Minimize F

(
Y (k)(t)

)
over t where Y (k)(t) is a geodesic on Tn,d starting

from Y (k) in the direction of H(k).
4: Set tk = tmin and Y (k+1) = Y (k)(tk).
5: Compute G(k+1) = ∇F (Y (k+1)).
6: Parallel transport tangent vectors H(k) and G(k) to the point Y (k+1).
7: Compute the new search direction

H(k+1) = −G(k+1) + γkτH(k) where γk =
〈G(k+1) − τG(k), G(k+1)〉

〈G(k), G(k)〉

8: Reset H(k+1) = −G(k+1) if k + 1 ≡ 0 mod n(d− 1)− 1
2
d(d− 1).

9: end for
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• If we end up in the irregular part or if the Newton step fails, perform a
steepest descent step as if we were minimizing the function F over the
manifold Tn,d.

• Given a search direction in Mn,d, continue along a geodesic until there
is no further decrease in the gradient ∇F .

If the function F is twice continuously differentiable then for the augmented
algorithms we have: From any starting point Y (0) ∈ Mn,d the algorithm either
stops at a solution or produces an infinite sequence of points none of which
are solutions, for which the limit of any convergent subsequence is a solution
point.

Proof: Without loss of generality we may assume that the procedure gener-
ates an infinite sequence of points {Y (i)} none of which are solutions. Since
Mn,d is compact any subsequence must contain a convergent subsequence.
It remains to prove that the limit of any convergent subsequence must be a
solution.

First, note that the algorithm A(·) is continuous in virtue of the twice
continuous differentiability of F (·). Namely the next point A(Y ) is entirely
defined in terms of components up to the second derivative – all continuous
by assumption. Second, note that if Y (i) is not a solution then

(8) ‖∇F (Y (i+1))‖ = ‖∇F (A(Y (i)))‖ < ‖∇F (Y (i))‖.

Namely if Y (i) is not a solution then its gradient is non-negligible, thus at least
by steepest descent on Tn,d we will find a point Y (i+1) := A(Y (i)) with strictly
smaller gradient norm. Third, note that the sequence {‖∇F (Y (i))‖}∞i=1 has
a limit since it is monotonically decreasing and bounded from below by 0.

Let {Y (ij)}∞j=1 be a subsequence that converges to Y ∗, say. It must be
proven that Y ∗ is a solution. Assume Y ∗ is not a solution. By continuity
of the iterative procedure A(Y (ij)) → A(Y ∗). Thus by the continuity of
‖∇F (·)‖, we have

‖∇F (A(Y (ij)))‖
y ‖∇F (A(Y ∗))‖ < ‖∇F (Y ∗)‖,

which is in contradiction with ‖∇F (A(Y (ij)))‖ → ‖∇F (Y ∗)‖. 2

Local rate of convergence. The proof of the following proposition may
be found in for example (in whole or in part) [Smi93], [EAS99], [DPM03] or
[AMS02].
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Proposition 11 (Local rate of convergence) For the conjugate gradient al-
gorithms we have locally in the regular part M∗

n,d a quadratic rate of conver-
gence. For the Riemannian-Newton algorithm we have locally in the regular
part M∗

n,d a quadratic rate of convergence if the function F is non-degenerate
at the local minimum.

We conclude this section by remarking that the algorithms are stable nu-
merically due to explicit and analytical knowledge of the geodesics, see also
[Yan99], page 890.

5 Case distance minimization

In this section the primary concern of this paper to minimize F (X) =
1
2
‖X − C‖2

F is studied. The outline of this section is as follows. First, some
particular choices for n and d are examined. Second, the differential of F is
calculated. Third, the connection with the Zhang-Wu algorithm is stated;
in particular this will lead to (i) an identification method of wether a local
minimum is a global minimum, and (ii) an appropriate choice for the starting
point of the algorithm. Fourth, an objective function F with weights on the
individual elements of the matrix is studied (Hadamard norm).

Some particular choices for n and d.

Case d = n. The case that C is a (not necessary positive definite) symmet-
ric matrix and the closest positive definite matrix X is to be found allows a
successive projection solution. This was shown by [Hig02].

Case d=2, N=3. A 3 × 3 symmetric matrix with ones on the diagonals
is denoted by 


1 x y
x 1 z
y z 1


 .

Its determinant is given by

det = −{
x2 + y2 + z2

}
+ 2xyz + 1.

By straightforward calculations it can be shown that det = 0 implies that
the other eigenvalues are nonnegative. The set of 3 by 3 correlation matrices
of rank 2 may thus be represented by the set {det = 0}. To get an intuitive
understanding of the complexity of the problem, the feasible region has been
displayed in figure 1.
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Figure 1: The shell represents the set of 3× 3 correlation matrices of rank 2
or less.
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Formula for the differential of F . Consider the specific case

F (Y ) =
1

2
‖Y Y T − C‖2 =

1

2
〈ψ, ψ〉,

with ψ := Y Y T − C. Then

d

dt
F (Y (t)) = 〈ψ̇, ψ〉

= 〈∆Y T + Y ∆T , ψ〉
= 〈∆Y T , ψ〉+ 〈Y ∆T , ψ〉
= 〈∆, 2ψY 〉 = 〈∆, FY 〉, ∀∆.

Thus from equation (7) we have

(9) FY = 2ψY.

Connection normal with Lagrange multipliers. The following lemma
provides the basis for the connection of the normal vector at Y versus the
Lagrange multipliers of the Zhang-Wu algorithm.

Lemma 12 Let Y ∈ Tn,d be such that ∇F (Y ) = 0. Here F is associated
with the symmetric matrix C. Define

λ :=
1

2
diag

(
FY Y T

)

and define C(λ) := C + λ. Then there exist a joint eigenvalue decomposition

C(λ) = QDQT , Y Y T = QD∗QT

where D∗ can be obtained by selecting at most d nonnegative entries from
D (here if an entry is selected it retains the corresponding position in the
matrix).

Proof: It is recalled from matrix analysis that X1 and X2 admit a joint
eigenvalue decomposition if and only if their Lie bracket [X1, X2] = X1X2 −
X2X1 equals zero. Define C̄(λ) := −ψ + λ. Note that 2λY is the projection
πN(FY ) of FY onto the normal space at Y . Note also that

(10) Y Y T + C̄(λ) = C(λ).
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We calculate

(11) C̄(λ)Y =
{ − ψ + λ

}
Y = −1

2
FY +

1

2
πN

(
FY

)
= 0.

The last equality follows from the assumption that the gradient of F at Y
is zero ∇F (Y ) = 0, i.e., the differential FY is normal at Y . It follows from
equation (11) and from the symmetry of C̄(λ) that

(i) Y Y T C̄(λ) = 0 and also,

(ii) [Y Y T , C̄(λ)] = 0.

From (ii), Y Y T and C̄(λ) admit a joint eigenvalue decomposition, but then
also jointly with C(λ) because of equation (10). Suppose C̄(λ) = QD̄QT .
From (i) we then have that D∗

ii = 0 if and only if D̄ii 6= 0. The result now fol-
lows since Y Y T is positive semidefinite and has rank less than or equal to d.2

Lemma 12 will allow us to identify whether a local minimum is also a global
minimum. The characterization of the global minimum for problem (1) was
first achieved in [ZhW03] and [Wu03], which we repeat here: Denote by
{X}d a matrix obtained by eigenvalue decomposition of X together with
leaving in only the d largest eigenvalues (in norm). Denote for λ ∈ Rn:
C(λ) = C + diag(λ).

Theorem 13 (Characterization of the global minimum of problem (1), see
[ZhW03] and [Wu03]) Let C be a symmetric matrix. Let λ∗ be such that there
exists {C + diag(λ∗)}d ∈ Cn,d with

(12) diag
( {C + diag(λ∗)}d

)
= diag(C).

Then {C + diag(λ∗)}d is a global minimizer of problem (1).

Proof (Repeated here for clarity): Define the Lagrangian

L(X,λ) := −‖C −X‖2
F − 2λT diag(C −X), and

(13) V (λ) := min
{ L(X,λ) : rank(X) = d

}
.

Note that the minimization problem in equation (13) is attained by any
{C(λ)}d (see e.g., equation (30) of [Wu03]). For any X ∈ Cn,d,

‖C −X‖2
F

(a)
= −L(X, λ∗)

(b)

≥ −V (λ∗)
(c)
= ‖C − {C(λ)}d‖2

F .

(This is the equation at the end of the proof of theorem 4.4 of [ZhW03].)
Here equation
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(a) is obtained from the property that X ∈ Cn,d,

(b) is by definition of V , and

(c) is by assumption of equation (12). 2

This brings us in a position to identify wether a local minimum is a global
minimum:

Theorem 14 Let Y ∈ Tn,d be such that ∇F (Y ) = 0. Let λ and C(λ) be
defined as in lemma 12. If Y Y T has the d largest eigenvalues from C(λ) (in
the norm) then Y Y T is a global minimizer to the problem (1).

Proof: Apply lemma 12 and theorem 13. 2

Initial feasible point [Flu88]. To obtain an initial feasible point [Y ] ∈
Mn,d close to the global minimum, we first perform an eigenvalue decompo-
sition

(14) C = QΛQT , |Λ11| ≥ · · · ≥ |Λnn|.
Then we define Y by assigning to each row

Yi =
1

‖{ QdΛd }i‖{ QdΛd }i

where Qd consists of the first d columns of Q and where Λd is the principal
sub-matrix of Λ of degree d. The scaling is to ensure that each row of Y is
of unit length. If row i is a priori of zero length, then we choose Yi to be an
arbitrary vector in Rd.

Note that the condition of decreasing norm in equation (14) is thus key
to ensure that the initial point is close to the global minimum, c.f. the result
of theorem 14.

Weighted norms. The Frobenius norm in the objective function F can
be replaced by (i) a weighted Frobenius norm or (ii) a norm with arbitrary
weights per element of the matrix (this is a so-called Hadamard norm). The
developed optimization theory can be applied to both cases. For the case
(i) of the weighted Frobenius norm we obtain an analytical expression for
the differential in the same way as we did in equation (9). For the case (ii)
of the Hadamard norm however such an analytical expression is not known
to us. Nevertheless, the differential can be approximated by means of finite
differences.

20



6 Numerical results case distance minimization

The outline of this section is as follows. First, the numerical performance
is compared of geometric optimization, Zhang and Wu’s algorithm and pa-
rameterized optimization. Second, various comparative features between the
algorithms (including also Dykstra’s algorithm) are discussed.

Acknowledgement. Our implementation of geometric optimization over
low-rank correlation matrices is an adoption of the ‘SG min’ template of
[EdL00] (written in MATLAB) for optimization over the Stiefel and Grass-
mann manifolds. This template contains four distinct algorithms for geomet-
ric optimization: Newton, dog-leg step algorithm, Polak-Ribière conjugate
gradient and Fletcher-Reeves conjugate gradient. For a description see sec-
tion 8.3.2 of [EdL00].

Numerical comparison. The performance of the following algorithms is
compared:

1. The geometric optimization algorithms developed in this paper.

2. The Zhang-Wu algorithm, see [ZhW03] and [Wu03].

3. The parametrization methods of [Reb99], [Bri02] and [BMR02]. Here
the set of low-rank correlation matrices is parameterized by trigono-
metric functions. In essence, this approach is the same as geometric
optimization, bar the key difference that our approach yields simple
expressions for the gradient, etc. This leads to an efficient implemen-
tation as shown by the numerical results in this section.

The two types of random correlation matrices are described as follows:

• Random Davies-Higham correlation matrices. The key reference here
is [DaH00]. This random correlation matrix generator is available in
the MATLAB gallery function ‘randcorr’.

• Random ‘financial’ or ‘DJDP’ correlation matrices. A parametric form
for (primarily financial) correlation matrices is posed in [DJDP02],
equation (8). We repeat here the parametric form for completeness.

ρ(Ti, Tj) = exp
{
− γ1|Ti − Tj| − γ2|Ti − Tj|

max(Ti, Tj)γ3
− γ4

∣∣√Ti −
√

Tj

∣∣
}

,

with γ1, γ2, γ4 > 0 and with Ti denoting the expiry time of rate i.
(Our particular choice is Ti = i, i = 1, 2, . . . ) This model was then
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Table 1: Excerpt of table 3 in [DJDP02].

γ1 γ2 γ3 γ4

estimate 0.000 0.480 1.511 0.186
standard error - 0.099 0.289 0.127

subsequently estimated with USD historical interest rate data. In table
3 of [DJDP02] the estimated γ parameters are listed, along with their
standard error. An excerpt of this table has been displayed in table 1.
The random DJDP matrix that we used is obtained by randomizing
the γ-parameters. We assumed the γ-parameters distributed normally
with mean and standard errors given by table 1, with γ1, γ2, γ4 capped
at zero.

Each of the Lagrange (Zhang-Wu), Newton, dog, Polak-Ribière conjugate
gradient (prcg), Fletcher-Reeves conjugate gradient (frcg), and parameter-
ized algorithms were applied to reduce the matrices to the desired rank, given
the available CPU time. For each algorithm, this produces a distance δ to
the original matrix

δalgo = ‖Xalgo − C‖2
F .

Here Xalgo denotes the rank reduced matrix found by algorithm ‘algo’ and C
denotes the original matrix.

The worst of geometric optimization and Zhang-Wu versus the
parametrization method. In the left panel of figure 2 we plot the
empirical distribution of the data

(15)
δ
(i)
param − δ

(i)
worst

δ
(i)
param

, with δ
(i)
worst := max{δ(i)

lagrange, δ
(i)
newton, δ

(i)
dog, δ

(i)
prcg, δ

(i)
frcg}.

The allowed CPU time for either Lagrange or geometric optimization is 2
seconds. The parametrization method however was allowed 4000 iterations;
this led to CPU times of 4-11 seconds.

The worst of geometric optimization versus the parametrization
method. In the right panel of figure 2 we plot (for a different set of
random matrices) the empirical distribution of the data in equation (15)
without comparison with the Lagrange algorithm:

δ
(i)
worst := max{δ(i)

newton, δ
(i)
dog, δ

(i)
prcg, δ

(i)
frcg}.
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n=30, d=3, 2 sec. CPU time, 
200 random DJDP matrices,

Parametrization method versus the worst of
geometric optimization and Lagrange
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n=40, d=4, 3 sec. CPU time, 
200 random DJDP matrices,

Parametrization method versus the worst of
geometric optimization
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Figure 2: Results versus the parametrization method.

The allowed CPU time for geometric optimization is 3 seconds. The parame-
trization method however was allowed 2000 iterations; this led to CPU times
of 6-17 seconds.

Geometric optimization versus the Zhang-Wu algorithm. To jointly
compare distances produced by the algorithms over the various matrices, all
lengths are normalized by the nearest found matrix. We obtain the data

(
δ
(i)
lagrange

δ
(i)
min

δ
(i)
newton

δ
(i)
min

δ
(i)
dog

δ
(i)
min

δ
(i)
prcg

δ
(i)
min

δ
(i)
frcg

δ
(i)
min

)

with
δ
(i)
min = min

{
δ
(i)
lagrange, δ

(i)
newton, δ

(i)
dog, δ(i)

prcg, δ
(i)
frcg

}
.

The distribution of this data for the two sets of matrices has been displayed
in figures 3 and 4.

Discussion of the results. From figures 3 and 4 it becomes clear that
geometric optimization is by far superior over the Lagrange multiplier algo-
rithm of Zhang and Wu, for the particular numerical cases studied. In turn,
the Zhang-Wu algorithm is by far superior over the parametrization method,
for the numerical case investigated in the left panel of figure 2.

Comparative features of the algorithms. Various comparative fea-
tures of the algorithms for finding the nearest correlation matrix are listed
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Figure 3: Results on random Davies-Higham matrices.
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Table 2: Comparative features of the algorithms.

feature Zhang-Wu Dykstra, Han, geometric
Higham optimization

convergence not guaranteed global global

if converged global global local
minimum minimum minimum

rate at best at best locally
of convergence linear linear quadratic

freedom of norm weighted weighted any norm
Frobenius Frobenius

restriction positive none none
on target matrix definiteness

neighbourhood no no yes
search

rank conditions yes no yes
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in table 2. Here the algorithm of Dykstra, Han and Higham is the successive
projection algorithm ([Dyk83], [Han88]) applied in [Hig02] to the problem
of finding the nearest (possibly full-rank) correlation matrix. Some remarks
explaining the statements in the table are given below:

• Global convergence. The Zhang-Wu algorithm is guaranteed to have
at least one accumulation point by proposition 4.1 of [ZhW03]. The
same proposition then states that: ‘if the accumulation point has dis-
tinct dth and d+1th eigenvalues, then that point is a global minimizer’.
As the distinct eigenvalue condition however does not hold in general
(we have seen counterexamples in our numerical experiments), it fol-
lows that global convergence is not guaranteed. The Dykstra, Han
and Higham and geometric optimization algorithms are guaranteed to
converge globally. For details the reader is referred to [Hig02] and
proposition 10, respectively.

• Rate of convergence. Methods such as the Zhang-Wu and Higham
methods can be applied to linear sets; for linear sets the rate of conver-
gence of the alternating projections method is linear, see [Deu83] and
[DeH97]. Therefore we can expect at best linear convergence for the
Higham and Zhang-Wu algorithms. See also the remark after algorithm
3.3 in [Hig02]. For the convergence rate of the geometric optimization
algorithms, see proposition 11.

• Restriction on the target matrix. In the definition of the Zhang-Wu
algorithm matrices are formed that take the d largest (in norm) eigen-
values of a given matrix (also of the target matrix). If the target matrix
is not positive semidefinite, some of these eigenvalues at the optimal
Lagrange multiplier may be negative. It follows that the algorithm
would produce matrices that are not positive semidefinite.

For explanations of properties of the algorithms that have not been explained
in the above remarks the reader is referred to [ZhW03], [Hig02] and the cur-
rent text, respectively. Note that the entries for the parametrization method
in table 2 would be identical to the entries of the geometric optimization
method. The distinctive difference (not listed in the table) is that for geo-
metric optimization, we obtain simple expressions for the gradient, Hessian
etc. Theoretically, that leads to a more efficient implementation. This has
also been shown numerically by the tests reported in figure 2.

7 The Thomson problem
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Table 3: Energy minimization results for various n after 20 iterations. The
column [HSS94] are conjecturally minimal configurations.

this paper
n newton dog prcg frcg [DeS98] [HSS94]

5 6.4752 6.4758 6.4789 6.4771 6.4747
10 32.7210 32.7204 32.7210 32.8403 32.7169
25 243.8983 243.8495 243.8544 244.4211 243.8128
50 1055.668 1055.781 1055.695 1056.737 1055.5128 1055.1823

The purpose of this section is to show that the optimization tools developed
in this paper can be applied to other areas.

The Thomson problem is concerned with minimizing the potential energy
of n charged particles on the 2-sphere S2 ⊂ R3 (d = 3). The associated
potential is given by

F (Y ) =
n∑

i=1

n∑
j=i+1

1

‖Yi − Yj‖2

.

Note that the potential energy is invariant under the action of the orthogonal
group; the minimization problem is thus over the set Mn,d. This problem has
a long history, see for example www.ogre.nu/sphere.htm.

Geometric optimization techniques have previously been applied to the
Thomson problem in the literature in [DeS98], but these authors have only
considered conjugate gradient techniques on Tn,d. In comparison, we stress
here that our approach considers the quotient space Mn,d, which allows for
Newton’s algorithm (the latter not developed in [DeS98]). For numerical il-
lustration, the results for various dimensions n have been included in table 3.

8 Conclusions

We applied geometric optimization tools for finding the nearest low-rank cor-
relation matrix. Despite the involved differential geometric machinery, it is
interesting to see that the approach results in an algorithm more efficient
than any existing algorithm in the literature (for the numerical cases con-
sidered). The geometric approach also allows for insight and more intuition
into the problem.
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Appendix 1: Proof of theorem 3

Proof of (i). The maps Ψ and Φ are well defined: To show that Ψ is well
defined, we need to show that if Y2 ∈ [Y1], then Y2Y

T
2 = Y1Y

T
1 . From the

assumption, we have that ∃Q ∈ Od : Y2 = Y1Q. If follows that

Y2Y
T
2 = (Y1Q)(Y1Q)T = Y1QQT Y T

1 = Y1Y
T
1 ,

which was to be shown.
To show that Φ is well defined, we need to show:

(A) If X ∈ Cn,d then there exists Y ∈ Tn,d such that X = Y Y T .

(B) If Yi ∈ Tn,d, i = 1, 2 with Y1Y
T
1 = Y2Y

T
2 =: X then there exists Q ∈ Od

such that Y1 = Y2Q.

Ad (A): Let

X = QΛQT , Q ∈ On, Λ = diag(Λ),

be an eigenvalue decomposition with Λii = 0 for i = d + 1, . . . , n. Note
that such a decomposition of the specified form is possible because of the
restriction X ∈ Cn,d. Then note that

Q
√

Λ =
(

(Q
√

Λ)(:, 1 : d) 0
)
.

Thus if we set Y = (Q
√

Λ)(:, 1 : d) then Y Y T = X and Y ∈ Tn,d, which was
to be shown.

Ad (B): Apply Gram-Schmidt jointly to the sets of vectors

{
Y

(i)
1 , . . . Y (i)

n

} ⊂ Rd, i = 1, 2.

We find two orthogonal sets of vectors

{
Z

(i)
1 , . . . Z

(i)

e(i)

} ⊂ Rd, i = 1, 2,

with e(i) ≤ d, such that

span
(

Y
(i)
1 , . . . Y (i)

n

)
= span

(
Z

(i)
1 , . . . Z

(i)

e(i)

)
.

The key idea in the proof of item (B) is that the Gram-Schmidt procedure is
defined in terms of the vector products of the Y vectors; and these are equal
for both the Y (1) and Y (2) vectors and determined by the vector product
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matrix X. The first result that follows from this idea is that the spaces
spanned by Z(1) and Z(2) have equal dimensions,

e := e(1) = e(2).

Note that there exists an orthogonal transformation Q ∈ Od such that9

Z
(1)
k Q = Z

(2)
k , k = 1, . . . , e.

Claim. We have
Y

(1)
j Q = Y

(2)
j , j = 1, . . . , n.

Note that the proof of item (B) is complete when it is shown that this claim
holds.

Proof of claim. The proof follows by induction on j.

• For j = 1, note that Z
(i)
1 = Y

(i)
1 since ‖Y (i)

1 ‖ = 1. Thus

Y
(1)
1 Q = Z

(1)
1 Q = Z

(2)
1 = Y

(2)
1 .

• Suppose the claim holds for j′ = 1, . . . , j − 1. Then write

Y
(i)
j = P

(i)
j + R

(i)
j , with(16)

P
(i)
j =

j−1∑

j′=1

〈Y (i)
j′ , Y

(i)
j 〉Y (i)

j′ , and

R
(i)
j = Y

(i)
j − P

(i)
j .

[Projection P and remainder R.] Note that we have P
(1)
j Q = P

(2)
j since

P
(1)
j Q =

j−1∑

j′=1

〈Y (1)
j′ , Y

(1)
j 〉Y (1)

j′ Q

(a)
=

j−1∑

j′=1

〈Y (1)
j′ , Y

(1)
j 〉Y (2)

j′

(b)
=

j−1∑

j′=1

〈Y (2)
j′ , Y

(2)
j 〉Y (2)

j′ = P
(2)
j .(17)

9If e = d then such Q is determined uniquely, else if e < d then there exists more than
one such Q. In the latter case, the Z may be extended to a full orthogonal basis of Rd.
Given (extended) Z matrices then Q is uniquely determined by Q = (Z(1))T Z(2).
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Equality (a) follows by the induction hypothesis and equality (b) by
the joint property Y (i)(Y (i))T = X.

A formula for the length of R
(i)
j is given by

‖R(i)
j ‖2 = 〈Y (i)

j − P
(i)
j , Y

(i)
j − P

(i)
j 〉

= ‖Y (i)
j ‖2 − 2

j−1∑

j′=1

〈Y (i)
j′ , Y

(i)
j 〉2

+

j−1∑
j1=1

j−1∑
j2=1

〈Y (i)
j1

, Y
(i)
j 〉〈Y (i)

j2
, Y

(i)
j 〉〈Y (i)

j1
, Y

(i)
j2
〉

= Xjj − 2

j−1∑

j′=1

Xj′j +

j−1∑
j1=1

j−1∑
j2=1

Xj1,jXj2,jXj1,j2 .

Thus ‖Rj‖ := ‖R(1)
j ‖ = ‖R(2)

j ‖.
If R

(1)
j = 0 then R

(2)
j = 0 and from equations (16) and (17) it follows

Y
(1)
j Q = P

(1)
j Q = P

(2)
j = Y

(2)
j

and the induction step holds. Without loss of generality we may thus
assume Rj 6= 0. Denote by k(j) the minimum integer such that

span
(

Z
(i)
1 , . . . , Z

(i)
k(j)

)
= span

(
Y

(i)
1 , . . . , Y

(i)
j

)
.

Note that the definition of k(·) is independent of i, since the Gram-
Schmidt process is defined in terms of the inner products that are
common for both i = 1, 2 and determined by X. Note that the new
Gram-Schmidt vector is given by the normalized remainder term R:

Z
(i)
k(j) =

1

‖Rj‖R
(i)
j

and
R

(1)
j Q = ‖Rj‖Z(1)

k(j)Q = ‖Rj‖Z(2)
k(j) = R

(2)
j .

Thus Y
(1)
j = P

(1)
j + R

(1)
j and both P

(1)
j and R

(1)
j map to their respec-

tive counterparts under Q. By linearity, Y
(1)
j then is mapped to its

respective counterpart Y
(2)
j , which was to be shown.
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Proof of (ii). Diagram (4) is commutative: To show that Ψ ◦ π = s: Let
Y ∈ Tn,d, then π(Y ) = [Y ] and Ψ([Y ]) = Y Y T and also s(Y ) = Y Y T . To
show that Φ ◦ s = π: Let Y ∈ Tn,d, then s(Y ) = Y Y T and Φ(Y Y T ) = [Y ]
and also π(Y ) = [Y ].

Proof of (iii). The map Ψ is a homeomorphism with inverse Φ: It is
straightforward to verify that Φ ◦ Ψ and Ψ ◦ Φ are both the identity maps.
The map Ψ is thus bijective with inverse Φ. To show that Ψ is continuous,
note that for quotient spaces we have: The map Ψ is continuous if and only
if Ψ ◦ π is continuous (see for example [AMR88], proposition 1.4.8). In our
case, Ψ ◦ π = s with s(Y ) = Y Y T is continuous. The proof now follows from
a well-known lemma from topology: A continuous bijection from a compact
space into a Hausdorff space is a homeomorphism (see for example [Mun75],
theorem 5.6). 2

Appendix 2: The proofs of section 3

First we prove lemma 7 and second we prove theorem 8.

Proof of lemma 7: For ∆ ∈ TY Tn,d,

∆ ∈ HYTn,d ⇔ 〈∆, X〉 = 0, ∀X ∈ VYTn,d

⇔ 〈∆, Y Z〉 = 0, ∀Z ∈ Rd×d, Z skew-symmetric.(18)

Now 〈∆, Y Z〉 = tr(∆ZT Y T ). We calculate ∆ZT Y T :

∆ZT Y T =

(
d∑

k=1

∆ikZjk

)i=n,j=d

i=1,j=1

Y T

=

(
d∑

k1=1

d∑

k2=1

∆ik1Zk2k1Yjk2

)n

i,j=1

.

Taking the trace, we find

〈∆, Y Z〉 =
n∑

i=1

d∑

k1=1

d∑

k2=1

∆ik1Yik2Zk2k1

=
n∑

i=1

〈∆T
i Yi, Z〉.(19)

From equations (18) and (19) the claim then follows. 2
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Proof of theorem 8: Let Y (·) be a geodesic starting at Y (0) along a tangent
∆ in the horizontal space. By lemma 7 it suffices to show that

(20)
n∑

i=1

〈Ẏ T
i (t)Yi(t), Z〉 = 0, ∀Z ∈ Rd×d, Z skew-symmetric.

So let such Z be given. First of all note that

(21) 〈XT
1 X2, Z〉 = −〈XT

2 X1, Z〉

for any X1 and X2 since Z is skew-symmetric. In particular

(22) 〈XT X,Z〉 = 0, for any X.

Then we have from the geodesic formulas (5):

Ẏ T
i (t)Yi(t) =

{
− ‖∆i‖ sin

(‖∆i‖t
)

Yi(0) + cos
(‖∆i‖t

)
∆i

}

{
cos(‖∆i‖t

)
Y T

i (0) +
1

‖∆i‖ sin
(‖∆i‖t

)
∆T

i

}

=
{

A + B
} {

C + D
}

, say.

When we take the inner product with Z then the terms A × C and B ×D
cancel because of the property of equation (22). We are left with:

〈Ẏ T
i (t)Yi(t), Z〉 = − sin2

(‖∆i‖t
)〈Yi(0)∆T

i , Z〉+ cos2
(‖∆i‖t

)〈∆iY
T
i (0), Z〉

= 〈∆iY
T
i (0), Z〉,

where in the second equality we changed the sign and transposed Yi(0)∆T
i in

the first term by virtue of equation (21). Subsequently the familiar equation
sin2 + cos2 = 1 was applied. Since ∆ is horizontal at Y (0) by assumption,
equation (20) follows, which was to be shown. 2

Appendix 3: Quotient of manifolds

Definition 15 Let M be a smooth manifold, and G a Lie group. A smooth
action from the right of G on M is a smooth map A : M ×G → M denoted
by A(m, g) = mg−1 that satisfy following conditions

• If e is identity element of G, then for any m ∈ M

me = e
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• If g1, g2 ∈ G, then for any m ∈ M we have

m(g1g2)
−1 = (mg−1

2 )g−1
1

.

Definition 16 Let Φ be a continuous mapping from a topological space U to
topological space V . Then Φ is called proper if Φ−1(K) is compact in U for
every compact subset of V .

A continuous action of a topological group G on a topological space M is
said to be a proper action if

(23) (m, g) 7→ (mg−1, m) is a proper mapping : M ×G → M ×M

Theorem 17 Let G be a Lie group, M a smooth manifold and A a smooth
action of G on M that is proper and free. Then orbit space M/G has a unique
structure of a smooth manifold of dimension equal to dim M − dim G with
following properties. If π : M → M/G is the canonical projection m 7→ mG,
then for every b ∈ M/G there is an open neighborhood S ⊆ M/G and a
smooth diffeomorphism:

τ : m 7→ (s(m), χ(m)) : π−1(S) → S ×G,

such that, for every m ∈ π−1(S), g ∈ G:

π(m) = s(m) and τ(mg−1) = (s(m), gχ(m)).

The topology of M/G is equal to quotient topology
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