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Estimation via stochastic filtering in financial market models

Wolfgang J. Runggaldier

Abstract. When specifying a financial market model one needs to specify also
the model coefficients. The latter may be only partially known and so, in order
to solve problems related to financial markets, it becomes important to exploit
all the information coming from the market itself in order to continuously
update the knowledge of the not fully known quantities and this is where
stochastic filtering becomes useful. The information from the market is not
only given by the prices of the underlying primary assets, but also by the prices
of the liquidly traded derivatives. A major problem in this context is that
derivative prices are given as expectations under a martingale measure, while
the actual observations take place under the real world probability measure.
In the paper we discuss various ways to deal with this problem.

1. Introduction

When specifying a financial market model, one has also to specify the model co-
efficients. The latter may however be only partially known or depend on stochastic
factors that in turn may not be fully observable. When solving problems related to
financial markets, like in portfolio optimization or derivative pricing and hedging,
it is therefore appropriate to exploit all the information coming from the market
itself to continuously update the knowledge of the not fully known quantities in the
model and this is where stochastic filtering proves itself as a useful technique. In
fact, in stochastic filtering, which can be viewed as a dynamic extension of Bayesian
statistics, all not fully known quantities are considered as random variables or sto-
chastic processes and their distribution is continuously updated on the basis of the
currently available information.

The main actors in a financial market are the various assets that may be clas-
sified into two main categories : primary or underlying assets and derivative assets,
where the prices of the latter are “derived” from the prices of the primary assets
and can be expressed as expectations under a so-called martingale measure (MM).
In a complete market there exists only one MM and so all prices are fully specified
within the model. If however the market is incomplete, and this corresponds to
essentially all practical situations, then there exist more MM’s and so, in order to
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perform the pricing of derivatives that are not already traded on the market, one
has first to infer the prevailing martingale measure or, equivalently, the so called
market price of risk. This market price of risk cannot be directly observed on the
market so that, again, filtering techniques may be used to continuously update its
knowledge. It may be remarked in this context that the pricing of derivatives in
an incomplete market can also be accomplished be the method of pricing by utility
maximization or by “indifference pricing” (see e.g. [D], [F], [HKS], [K], [RE]),
where the martingale measure is linked to a utility function. Apart from the fact
that we need a dynamic representation over time of the observed derivative prices,
our aim here is a fully data-oriented approach, whereby the prevailing martingale
measure is continuously updated on the basis of the observed market data via the
market price of risk. In this sense our approach is more statistical and, if linked to
a portfolio optimization problem, it corresponds to approaches in stochastic control
under partial information.

The prices of the primary assets as well as those of the derivative assets that
are liquidly traded constitute the main information available on a given market
and thus also the basic ingredient of filtering. In this context, the fact that the
prices of the derivative assets, also of those that are liquidly traded, are specified as
expectations under a martingale measure becomes a major problem since the actual
observations take place under the real world probability measure, under which the
dynamics of the observables in a stochastic dynamic filtering model have thus to
be specified.

The purpose of this paper is to present some approaches to deal with this
major problem for different types of market models. More precisely, in section 2
we shall consider a standard market model of the Black and Scholes type where
the coefficients are not completely known. In section 3 we shall then consider the
case when those coefficients depend furthermore on a not fully observed, exogenous
stochastic factor process so that the market will be inherently incomplete. For
the case of such incomplete markets, in section 4 we shall then consider a general
setup for the problem of derivative pricing; its practical implementability however
depends heavily on the specific problem at hand. In the last section 5 we shall
consider the problem of derivative pricing for the case of factor models for which
it is possible to impose conditions such that the real world probability measure is
itself a MM thus avoiding the basic problem mentioned above.

The various approaches discussed in the paper are related to research performed
by the author in collaboration with various colleagues. We shall refer to these
papers during the discussion of the individual techniques, in particular in relation
to computational implementation.

2. The case when the underlyings have a market and their prices are
Markovian

We consider here a standard multivariate Black and Scholes market model for
the underlying assets, namely, given a filtered probability space (Ω,F ,Ft, P ),

(2.1) dSt = diag(St)Atdt + diag(St)Σtdwt

where St = [S1
t , · · · , SN

t ]′ and wt = [w1
t , · · · , wM

t ]′ is a (P,Ft)−Wiener with M ≥
N .
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Considering a claim H(ST ) that for simplicity we assume to depend only on
ST , its t−price (t ≤ T ) is

(2.2)
Π(t, St) = e−

∫ T
t

rsdsEQ{H(ST ) | Ft}
= e−

∫ T
t

rsdsEQ{H(ST ) |St}
where rt is assumed to be deterministically given and, under the measure Q,

(2.3) dSt = diag(St)rt1dt + diag(St)ΣtdwQ
t

with

(2.4) dwQ
t = dwt + θtdt

where θt = [θ1
t , · · · , θM

t ]′ is the market price of risk that satisfies

(2.5) At − rt1 = Σtθt

Since we assumed M ≥ N , there exists always a θt satisfying (2.5) and thus also a
martingale measure Q.

Remarks :

• If the market is complete then, for the only purpose of derivative pricing,
the knowledge of Σt suffices, At is not needed. For other purposes, such as
portfolio optimization that is performed under the real world probability
measure, one needs also the knowledge of At. Once Σt is given, At follows
from θt via (2.5).

• If At and Σt and thus also θt are unobserved then, borrowing ideas from
Bayesian statistics, we may more generally assume them to be stochastic
processes that could also be adapted to a filtration larger than Fw

t , i.e.
they may also be affected by some exogenous randomness. In this way the
market becomes incomplete and the estimation of θ becomes important
also for derivative pricing. To formalize the dependence of θt on exogenous
randomness we assume that, under the real world measure P , we have

(2.6) dθt = κ(θ̄ − θt)dt + ρwdwt + ρvdvt

where κ is a diagonal matrix, θ̄ = [θ̄1, · · · , θ̄M ]′, ρw, ρv are matrices of
appropriate dimensions, vt is a (multivariate) Wiener process independent
of wt, and π0(θ0) a given Gaussian initial distribution. With model (2.6),
which is a mean-reverting model, we assume that the evolution of θt is
affected by that of the underlyings (driving noise wt) and also of exogenous
factors (noise vt).

• While Σt may be estimated either as implied or historical volatility, we
shall use a stochastic filtering approach to estimate θt, and thus also At,
on the basis of observed prices of the underlyings and their derivatives.
In this context we recall that, while the observations take place under the
real world measure, derivative prices are specified as expectations under a
martingale measure. Notice also that, for an incomplete market, inference
of θt allows not only to infer At but also the prevailing martingale measure
Q.
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2.1. Estimation of θt via filtering. Assume that on the market one can
observe, in addition to the asset prices St, K derivative prices Π∗i (t) , i = 1, · · · ,K
so that the observation filtration becomes

(2.7) FO
t = σ{Su, Π∗i (u) ; u ≤ t ; i = 1, · · · ,K}

The filtering problem consists in computing recursively the conditional (filter) dis-
tribution

(2.8) πt

(
θt | FO

t

)

starting from a given π0(θ0) and with θt evolving according to (2.6). In this way we
obtain not only a point estimate, but an entire continuously updated distribution
for θ.

Having assigned the dynamics for θt, we next derive the dynamics, under P ,
of the observed prices. For this purpose, according to (2.2), let the (theoretical)
prices at time t ≤ T of the K derivatives on the market be denoted by Πi(t, St) , i =
1, · · · , K and let the corresponding claims be Hi(ST ).

Putting, for i = 1, · · · ,K,

(2.9) F i(t, St) = e
∫ T

t
rsdsΠi(t, St) = EQ{Hi(ST ) | Ft}

by Itô’s formula one has
(2.10)

dF i(t, St) =
[
F i

t (·) + F i
S(·)diag(St)rt1 + 1

2 tr[Σ′t diag(s)F i
SS(·)diag(s)Σt]

]
dt

+ F i
S(·)diag(St)ΣtdwQ

t

Since, by definition, F i(t, St) are martingales under Q, the finite variation terms in
(2.10) have to vanish, which implies for F i(t, s)

(2.11)
{

F i
t (t, s) + F i

S(t, s)diag(s)rt1 + 1
2 tr[Σ′t diag(s)F i

SS(t, s)diag(s)Σt] = 0
F i(T, s) = Hi(s)

Taking into account (2.4), the dynamics of St and Y i
t := F i(t, St) under P are

now

(2.12)
{

dSt = diag(St)[rt1 + Σtθt]dt + diag(St)Σtdwt

dY i
t = F i

S(t, St)diag(St)Σtθt + F i
S(t, St)diag(St)Σtdwt

The complete filter model can then be synthesized as

(2.13)





dθt = κ(θ̄ − θt)dt + ρwdwt + ρvdvt

dSt = diag(St)[rt1 + Σtθt]dt + diag(St)Σtdwt

dY i
t = F i

S(t, St)diag(St)Σtθtdt + F i
S(t, St)diag(St)Σtdwt

where we suppose rt to be deterministically given and also Σt to be given as an
observed quantity either through the quadratic variation or as implied volatility
Σ̂t= Σt(St, Y

i
t ).

Model (2.13) is of the conditionally Gaussian type (recall that π0(θ0) was as-
sumed to be Gaussian) to which the Kalman filter can be applied to obtain the
solution (2.8) (see [LS]). The parameters (κ, θ̄, ρw, ρv) may be estimated by maxi-
mizing the likelihood of the innovations (see [H]). An approach along the lines of
this section may be found in [BCR].
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3. The case when the underlyings are not Markovian (Factor models)

Instead of (2.1) we consider now the following stochastic factor model

(3.1)





dSt = diag(St)At(Zt)dt + diag(St)Σt(Zt)dwt

dZt = bt(Zt)dt + γt(Zt)dvt

where the Wiener processes wt and vt are assumed to be independent and the
stochastic factor Zt may be a hidden or not fully observed process. The coefficients
At(Zt),Σt(Zt) are random processes that depend on Zt but that, in analogy to
the previous section, may possess also additional randomness, this time adapted to
Fw

t .
The market is now incomplete also without the additional randomness assump-

tion on At(Zt), Σt(Zt) and so the estimation of Zt, which again will be based on
observations of St as well as of their derivatives, becomes necessary also for deriv-
ative pricing.

Considering again a claim H(ST ), its t−price (t ≤ T ) is now of the form

(3.2) Π(t, St, Zt) = e−
∫ T

t
rsdsEQ{H(ST ) | Ft}

where we assume again rt to be deterministically given. Under Q

(3.3) dSt = diag(St)rt1dt + diag(St)Σt(Zt)dwQ
t

with

(3.4) dwQ
t = dwt + θtdt

and the (unitary) market price of risk θt satisfies

(3.5) At(Zt)− rt1 = Σt(Zt)θt

so that it may be considered as a function θt = θ(t, Zt). Furthermore, having
assumed At(Zt) and Σt(Zt) to possess additional randomness adapted to Fw

t , the
same holds for θt.

Considering for the moment just a relation of the form θt = θ(t, Zt), applying
Itô’s rule one obtains

(3.6)

dθt = dθ(t, Zt)
=

[
∂
∂tθ(t, Zt) + ∂

∂Z θ(t, Zt)bt(Zt) + 1
2 tr

(
γ′t(Zt) ∂2

(∂Z)2 θ(t, Zt)γt(Zt)
)]

dt

+ ∂
∂Z θ(t, Zt)γt(Zt)dvt

:= Θt(Zt)dt + Ψt(Zt)dvt

thereby defining implicitly the functions Θt(Zt) an Ψt(Zt). We shall now formalize
the additionally assumed Fw

t −adapted randomness in θt by postulating for θt the
following dynamics under P

(3.7) dθt = Θt(Zt)dt + ρwdwt + Ψt(Zt)dvt

3.1. Estimation of θt and Zt via stochastic filtering. Given an obser-
vation filtration FO

t as in (2.7), here the filtering problem consists of computing
recursively the filter distribution πt(θt, Zt| FO

t ) starting from a given π0(Z0, θ0) and
with θt evolving according to (3.7).

To derive the dynamics, under P , of the observed prices, in analogy to section
2 put

(3.8) F i(t, St, Zt) := e
∫ T

t
rsdsΠi(t, St, Zt)
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The martingality of F i(t, St, Zt) under Q implies
(3.9)



F i
t (t, s, z) + F i

S(t, s, z)diag(s)rt1 + 1
2 tr[Σ′t(z) diag(s)F i

SS(t, s, z)diag(s)Σt(z)]
+F i

Z(t, s, z)bt(z) + 1
2 tr[γ′t(z)FZZ(t, s, z)γt(z)] = 0

∀ (t, s, z); i = 1, · · · ,K
F i(T, s, z) = Hi(s)

Synthesizing, we obtain now the following filtering model (under P )

(3.10)





dθt = Θt(Zt)dt + ρwdwt + Ψt(Zt)dvt

dZt = bt(Zt)dt + γt(Zt)dvt

dSt = diag(St)[rt1 + Σt(Zt)θt]dt + diag(St)Σt(Zt)dwt

dY i
t = [F i

S(t, St, Zt)diag(St)Σt(Zt)θt]dt
+ F i

S(t, St, Zt)diag(St)Σt(Zt)dwt + F i
Z(t, St, Zt)γt(Zt)dvt

i = 1, · · · ,K

where the only parameter is now ρw that may be estimated either via a combined fil-
tering and parameter estimation by computing πt(Zt, θt, ρ

w| FO
t ) or via calibration

by matching theoretical with observed prices.
The main difference with the previous model (2.13) is that (3.10) is a nonlinear

filtering model where, in addition, the observation diffusion coefficients depend
on unobserved quantities causing the filtering problem to degenerate. This latter
difficulty can be overcome by considering the observable prices to be observable
only in additional noise, which can be justified by bid-ask spread, mispricing, a-
synchronicity, etc. We shall also assume this additional noise to be sufficiently small
to prevent substantial arbitrage opportunities.

Putting then

(3.11) Ȳ i
t =

{
Si

t , i = 1, · · · , N

Y i−N
t , i = N + 1, · · · , N + K

and denoting by ηi
t the (cumulative) noisy observations, we let

(3.12) dηi
t = Ȳ i

t dt + dβi
t ; i = 1, · · · , N + K

where βt = (β1
t , · · · , βN+K

t )′ is an independent observation noise and Ȳ i
0 is assumed

to be observed without noise. This approach corresponds to the one in [BCR] and
has been applied in the context of bond markets in [CPR].

4. Filtering for derivative pricing under partial information (general
setup)

Consider again the stochastic factor model (3.1) of the previous section 3 and
put Ft = σ{ws, vs; s ≤ t} so that, with FO

t as in (2.7), one has FO
t ⊂ F . Assume

rt to be deterministically given.
Given a claim H(ST ) and a martingale measure Q, define the t−price (t ≤ T )

of H(ST ) with respect to the information FO
t as

(4.1) Π̃(t) = EQ
{

e−
∫ T

t
rsdsH(ST ) | FO

t

}

It is an arbitrage-free price with respect to the information represented by FO
t in

the sense that

(4.2)
Π̃(t)
Bt

= EQ

{
Π̃(T )
BT

| FO
t

}
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where Bt = B0 exp
{∫ t

0
rsds

}
. (For additional justification of the definition in (4.1)

see [BGJR]).
To perform pricing of illiquid (OTC) derivatives on the basis of the information

FO
t , one has thus to compute expectations of the form

(4.3) EQ{H(ST ) | FO
t }

where, under Q, St satisfies (3.3) with wQ
t according to (3.4). Furthermore, one

has dQ
dP | FT

= LT with

(4.4) dLt = −Ltθtdwt ; L0 = 1 (under P )

By Bayes’ rule

(4.5) EQ{H(ST ) | FO
t } =

EP {LT H(ST ) | FO
t }

EP {LT | FO
t }

so that, to compute (4.3), it suffices to obtain an explicit expression for the nu-
merator in the right hand side of (4.5) (the denominator is of the same form with
H(·) ≡ 1).

Since for the case of the given model (3.1) with θt as in (3.7) and Lt as in (4.4),
the tuple (St, Zt, θt, Lt) is Markov under P , one may write

(4.6) EP {LT H(ST ) | FO
t } = EP {EP {LT H(ST ) | Ft} | FO

t }
= EP {ΨH(t, St, Zt, θt, Lt) | FO

t }
for a suitable function ΨH(·).

To compute the quantities of interest in (4.3) it is therefore useful to be able
to obtain the filter distribution

(4.7) πt(Zt, θt, Lt| FO
t )

corresponding to the filter model

(4.8)





dθt = Θt(Zt)dt + ρwdwt + Ψt(Zt)dvt

dLt = −Ltθtdwt

dZt = bt(Zt)dt + γt(Zt)dvt

dSt = diag(St)[rt1 + Σt(Zt)θt]dt + diag(St)Σt(Zt)dwt

dY i
t = [F i

S(t, St, Zt)diag(St)Σt(Zt)θt]dt
+ F i

S(t, St, Zt)diag(St)Σt(Zt)dwt + F i
Z(t, St, Zt)γt(Zt)dvt

(i = 1, · · · ,K)
dηi

t = Ȳ i
t dt + dβi

t ; i = 1, · · · , N + K

where Ȳ i
t =

{
Si

t , i = 1, · · · , N

Y i−N
t , i = N + 1, · · · , N + K

the functions F i(t, s, z) satisfy (3.9), and the initial distribution of (θ0, L0, Z0, S0, Y
i
0 )

is characterized by π0(θ0, Z0), L0 = 1 and S0, Y
i
0 deterministically given (observed

without noise).
The approach described in this section is a very general approach. In exchange

for its generality its practical implementation requires however the explicit deter-
mination of the function ΨH(·) in (4.6), of F (·) according to (3.9) and the solution
of the nonlinear filtering problem corresponding to (4.8). The feasibility of these
computations depends heavily on the specific problem at hand. For a more specific
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setup, in the next section we shall describe a filtering approach that, although pos-
sessing some of the features of the approach of this section, has in particular cases
led to explicitly computable solutions.

5. Filtering for pricing under partial observation in factor models

Let Zt denote a Markovian factor process with general state space, where some
of the components may be unobservable, but others may be observable asset prices.
Note that we assume Zt to be globally Markov in the sense that the evolution of
each component may depend on the entire vector Z.

Assume that there exists a time instant T > 0 that without loss of generality
we may consider to be the same for all assets, at which the price of any asset can
be expressed as a known function of ZT . We assume thus that for each asset there
exists a corresponding H(·) such that

(5.1) ΠH(T ) = H(T, ZT )

where by ΠH(T ) we have denoted the price, at T > 0, of the given asset. Notice
that for the components of Z that are asset prices themselves, the function H(·)
is simply the projection onto the corresponding component. Concerning the short
rate rt we assume, as before, that it is given as a deterministic time function.

Analogously to what one does in general asset pricing theory, given the Marko-
vianity of the process Zt, we make now the further assumption that, for t 6= T , the
asset prices may be expressed as

(5.2) ΠH(t) = FH(t; Zt)

for a suitable function FH(·).
On a given filtered probability space (Ω,F ,Ft, P ) we may then consider the

factor market model

(5.3)
{

dZt = bt(Zt)dt + γt(Zt)dwt

ΠH(t) = FH(t, Zt)

where, for t = T , ΠH(T ) = H(T, ZT ) with H(·) a known function. To prevent
arbitrage, the function FH(t, Zt) cannot be chosen arbitrarily and so one may ask
what are the conditions on FH(·) to have absence of arbitrage. Furthermore, since
derivative prices are expressed as expectations under a martingale measure while
the filter dynamics have to be defined under the real world probability measure,
one may more specifically ask what are the conditions on FH(·) so that P itself
becomes a martingale measure.

The required conditions follow from imposing that the discounted values of
ΠH(t) = FH(t, Zt) are (P,Ft)−martingales. Applying Itô’s rule to FH(t, Zt) and
putting, because of the martingale property, the finite variation terms equal to zero,
one then obtains

(5.4)





FH
t (t, z) + FH

Z (t, z)bt(z)
+ 1

2 tr[γ′t(z)FH
ZZ(t, z)γt(z)]− rtF

H(t, z) = 0 , ∀(t, z)

FH(T, z) = H(T, z).

Note that, for particular families of H(·), this condition may take specific and
computationally convenient forms. An example are the exponentially affine models
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for the bond market where the above conditions reduce to a system of ODE’s (see
e.g. Section 17.3 in [B]). Due to the Feynman-Kac formula, from (5.4) one also has

(5.5) FH(t, z) = Et,z

{
e−

∫ T
t

rsdsH(T, ZT )
}

Let

(5.6) FO
t = σ

{
ΠHi(s) ; s ≤ t ; i = 1, · · · ,K

}

represent the information coming from market data. We are interested in the pricing
of illiquid (OTC) derivatives on the basis of the information represented by FO.
Given a maturity τ , we consider simple claims of the form Φ(FH(τ, Zτ )) on an
underlying asset with price ΠH(τ) = FH(τ, Zτ ). In line with (4.1) we then want to
compute, for t ≤ τ , an expression of the form

(5.7)
E

{
e−

∫ T
t

rsdsΦ(FH(τ, Zτ )) | FO
t

}

= E
{

E
{

e−
∫ T

t
rsdsΦ(FH(τ, Zτ )) | Ft

}
| FO

t

}

= E{Ψ(t, Zt) | FO
t }

where we implicitly define the function ΨH(·).
To compute the rightmost expression in (5.7) we need the filter distribution

πt(Zt| FO
t ) corresponding to the model

(5.8)



dZt = bt(Zt)dt + γt(Zt)dwt

dY i
t = rtF

Hi(t, Zt)dt + FHi

Z (t, Zt)γt(Zt)dwt

i = 1, · · · ,K

where Zt contains unobserved components, while all Y i
t (i = 1, · · · , K) are for the

moment considered as observables.
In this filtering model the observation diffusion term depends in general again

on Zt so that, as in the previous section, we introduce a further observation noise
βt = (β1

t , · · · , βK
t ) thereby considering Zt and Y i

t as only partially observed with
observations ηi

t satisfying

(5.9) dηi
t = Y i

t dt + dβi
t ; i = 1, · · · ,K.

In the context of bond markets this approach has been explicitly implemented in
[GR] without the need of a further observation noise and using the Kalman filter.

5.1. An alternative approach. As already pointed out, one of the main
problems for applying filtering techniques when the observations contain also de-
rivative asset prices, is that the derivative prices are specified as expectations under
a martingale measure, while the filter dynamics have to be specified under the real
world probability measure. To deal with this issue, the previous approach was
based on the assumption that ΠH(t) = FH(t, Zt) and on the conditions imposed
on FH(·) for P to be a martingale measure.

An alternative for having P itself a martingale measure can be based on the
techniques of change of numeraire and one may ask the question whether there
is a numeraire (numeraire portfolio) for which the real world measure becomes a
martingale measure. The answer is positive in the sense that such a numeraire is
given by the growth optimal portfolio (GOP), which (see e.g. [L]) is a self financing
portfolio that achieves maximum expected logarithmic utility from terminal wealth.
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Such an approach is described in [PR] and it turns out that, when one performs
pricing with the GOP as numeraire, then in the case of complete markets the prices
obviously coincide with those computed as expectations with respect to the unique
martingale measure, while in incomplete markets they correspond to the prices
computed under the minimal martingale measure.
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