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Abstract. Part I proposes a numeraire-invariant option pricing
framework. It defines an option, its price process, and such notions
as option indistinguishability and equivalence, domination, payoff pro-
cess, trigger option, and semipositive option. It develops some of their
basic properties, including price transitivity law, indistinguishability
results, convergence results, and, in relation to nonnegative arbitrage,
characterizations of semipositivity and consequences thereof. These are
applied in Part II to study the Snell envelop and american options. The
measurability and right-continuity of the former is established in gen-
eral. The american option is then defined, and its pricing formula (for
all times) is presented. Applying a concept of a domineering numeraire
for superclaims derived from (the additive) Doob-Meyer decomposi-
tion, minimax duality formulae are given which resemble though differ
from those in [R] and [H-K]. Multiplicative Doob-Meyer decomposition
is discussed last. A part III is also envisaged.

1. Introduction

This paper proposes a new option pricing framework in Part I and
applies it to the Snell envelop and american options in Part II. A third
part is shortly envisaged, with application to bermudan options.

Part I develops a notion of an option as a pair consisting of an ex-
piry and a payoff, and of its price process defined up to the expiry. The
definition references an arbitrary numeraire, but is actually numeraire-
independent due to the optional sampling theorem. Some basic prop-
erties such as price transitivity law, indistinguishability results, con-
vergence results, and, emphasizing nonnegative arbitrage, properties
of “semipositive options” are derived. Various other notions such as
“domination”, “payoff processes,” and “trigger options” are pursued.
The concepts and results of this part are integral to Parts II and III.
The “dominated and trigger option convergence” theorems are used

1This paper is an expansion of an earlier draft entitled “Minimax optimality of
bermudan and american claims and their Monte-Carlo upper bound approxima-
tion”. I thank an anonymous referee for valuable comments on that draft.
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repeatedly in Part II, and semipositivity aligns the analysis of general
nonnegative options on the same footing as positive ones.

Part II, technically the most advanced of the parts, defines the Snell
envelop of a right-continuous payoff process and proves it is adapted
and right continuous. It then defines an american option and derives
its pricing formula. Utilizing “domineering numeraires” resulting from
the additive Doob-Meyer decomposition of “superclaims”, it presents
minimax duality formulae for positive, nonnegative and semipositive
american options. The concept of a domineering numeraire, while
derived from the additive Doob-Meyer decomposition, is also closely
connected to the multiplicative Doob-Meyer decomposition, as we see.
Accordingly, we refer to this result as multiplicative minimax duality,
to distinguish it from a similar but different result in [R].

Part III picks up a more detailed study of the issues in Part II for
the more concrete case of finite option streams. While still under
continuous-time filtration, induction is available here. This simplifi-
cation is partially made up for by a more elaborate definition of a
bermudan option where the exercise dates themselves are allowed to
be random rather than fixed times like semiannually. The main con-
struct is the “rollover operator”. Applied to a finite nonnegative option
stream, it produces a “rollover option” connected to the multiplicative
Doob-Meyer decomposition, and one with an intuitive financial inter-
pretation as reinvestment of payoff at expiry in the next option.

Results in Part III include a multiplicative counterpart of minimax
duality in [H-K] for bermudan options, further studied in [A-B], [K-S]1,
[K-S]2, and applied in [J-T]. Particularly, a notion of a regenerative
trigger option stream is pursued, one closely connected to the primal-
dual exercise strategies in [A-B], though more explicitly fashioned after
a notion of regeneration in [K-S]1, extended in [K-S]2 to an iterative
construction of the bermudan Snell envelop by a convergent sequence
of stopping times. Finite option streams are commonplace in fixed-
income and credit markets. They might also serve as a base for further
results on right-continuous payoff processes by convergence arguments.

The proposed framework is rooted in a “pricing model”, consisting of
a stochastic base and a state price density (or deflator), leading to no-
tions of a (contingent) claim C and its price process (Ct), a numeraire
β as a positive claim, and its associated numeraire measure Pβ. Op-
tions and their price processes are then defined in reference to a fixed
but arbitrary numeraire, followed by demonstration of independence
of their definition from choice of numeraire. Such manner of defini-
tion and derivation continues to the point where we can start to define
constructs and manipulate formulae through intrinsic operations, by-
passing reference to any numeraire and its expectation operator, while
leaving that option open, as expedient.
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The crux of our approach is to view an option as a pair O = (T,O),
consisting of an expiry T and a payoff O paid at time T . The expiry
T can of course be random, as is the case in american and bermudan
options, trigger (barrier) options, and credit derivatives. The payoff O
must of course be known at time T , more precisely be measurable with
respect to the σ-algebra FT of events at or before stopping time T .

But, an integrability condition is also needed, simply that O/βT is
integrable under numeraire measure Pβ for some, or equivalently for
all, numeraires β. This is our definition of an option. Its numeraire in-
variance, i.e., the independence of Pβ-integrability of O/βT from choice
of numeraire β, is attested by the optional sampling theorem. Thus
internalized within an option (and in its price process), the theorem is
transparently invoked by price transitivity law henceforth.

The definition of price of an option O = (T,O) at times and states
before expiry T is modelled on that of the claim induced by investing
(rolling over) at T the payoff O in a (any) numeraire. While such claim
price depends on the choice of numeraire after expiry, it is independent
of this choice before expiry, as is intuitive. More precisely, the price
process (Ot) of option O lives as a measurable function on the stochastic
interval [[0, T ]], dependent only on the underlying pricing model. After
expiry, the option has ceased to exist and has no operational price.

But, as it is beneficial to view such a function on [[0, T ]] as a stochas-
tic process in the normal sense of being defined at all times and states,
we set the option price process (Ot) to zero after expiry T , an alter-
native easier to visualize, and more suitable for our purposes, than the
stopped price process (Ot∧T ) - equivalent nonetheless. The option price
process (Ot) is thus characterized as the unique process vanishing after
expiry such that OT = O a.s. and the stopped numeraire-deflated price
process (Ot∧T /βt∧T ) is a right-continuous martingale in the numeraire
measure Pβ, for some, hence all, numeraires β.

Almost all our technical needs are met by Chapters 2, 4 and 8 of [E],
with only few scattered references to other chapters.

1.1. Detailed description of Part I. Section 2 establishes notation,
and sets up a more-or-less accepted notion of a (contingent) claim via
a given state price density (or deflator) on a stochastic base. Posi-
tive claims, designated as numeraires, are granted special emphasis,
deemed among the most readily observable, while being in one-to-one
correspondence with equivalent probability measures (up to a positive
multiplicative constant), the so-called numeraire measures.

By definition, the state price density (ξt) induces a linear isomor-
phism between claims C and martingales (namely, C  (ξtCt), where
(Ct) is the claim price process). Martingales are interpreted as fair
games, which trading and investment are also in some sense. Nonethe-
less, it is a claim that affords here financial interpretation as a specific
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traded instrument, not a martingale. Such setup, used also in [J], suf-
fices here, though no doubt would benefit from amendments for more
comprehensive studies that address hedging and replication.

Section 3 defines an option and its price process. A convenient and
financially intuitive notation ensues that somewhat deflects the tra-
ditional focus on the expectation operator in price calculations. The
simple expression (T,O)t now describes the price Ot at time t of an
option O = (T,O) which pays O at stopping time expiry T .

Price transitivity law is the dividend - pricing a T -expiry option O at
time S, then pricing the result to time τ , is the same as directly pricing
O at τ , i.e., (S,OS)τ = Oτ for τ ≤ S ≤ T . This law encapsulates the
law of iterated expectations: it is just a restatement of the formula
E[MT | FS | Fτ ] = E[MT | Fτ ] = Mτ valid for a martingale (Mt) by the
optional sampling theorem. But, to apply the latter to pricing, an
additional step is needed, namely choice of a numeraire and division
by that numeraire. Price transitivity takes care of that internally.

We call two options equivalent if the they have a.s. the same expiry
and a.s. the same payoff, and indistinguishable if they have indistin-
guishable price processes. Equivalent options are indistinguishable, but
the converse is not generally true. We show two options are indistin-
guishable if and only if they have a.s. equal payoffs and their expiries
differ a.s. only where the payoff is zero. An interpretation of this is
that postponing zero payoffs does not change an option in an essential
way. Another observation is price additivity of certain event-triggered
choice of two payoffs, generalizable inductively, and handy in Part III.

Section 4 presents our convergence results, simple, still effective in
Part II. The main criteria is “domination”. An option O dominates a
process (Zt) if a.s. |Zt| ≤ Ot all t. A “dominated option convergence
theorem” makes a statement about convergence of prices of a sequence
of uniformly dominated options with convergent expiries and payoffs.

The notion of a payoff process, a progressively measurable process
(Zt) dominated by some option, plays an important role here. Its main
feature is that for any stopping time T , the pair (T, ZT ) is an option,
what we call a trigger option.1 A “trigger option convergence theorem”
states that if (Zt) is a right-continuous payoff process and Tn ↘ T , then
a.s. (Tn, ZTn

)t → (T, ZT )t, all t. Some consequences are noted also.
Section 5 introduces semipositivity. A semipositive option is a non-

negative option that has positive price at any time before expiry. Re-
markably, any nonnegative option is indistinguishable from a semiposi-
tive one. Indeed, as soon as the option price becomes zero, it is certain
then that price will remain zero thereafter, yielding zero payoff. So,
it makes no substantive difference to the counterparties to expire the
option then, aside from the side benefit of easing maintenance costs.

1More strongly, domination implies (Zt/βt) is Pβ class D for any numeraire β.
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More precisely, let O = (T,O) be a nonnegative option, i.e., O ≥ 0
a.s. Let T 0 be the first time that its price becomes zero. So, Ot is
positive for t < T 0. This implies by price transitivity that option
(T 0,OT 0) is semipositive. We show that this semipositive option is
indistinguishable from option O. Furthermore, it is equivalent to any
other semipositive option that is indistinguishable from O.

These assertions follow from nonnegative arbitrage, the statement
that once the price of a nonnegative option becomes zero, it will stay
zero for ever. This implies positivity properties, e.g., almost all sample
paths of a positive option are positive at all times at or before expiry.

Semipositivity has an interesting characterization in terms of “tight
events”. Loosely speaking, the zero-payoff set {O = 0} of a semipos-
itive option is not previsible before expiry; nor is any portion of it.
This indicates that semipositivity is a property of the zero-payoff set.
It implies that a nonnegative option is semipositive if its zero-payoff
set is contained in the zero-payoff set of some semipositive option.

Semipositivity proves an effective tool for reducing the study of non-
negative options to a more tractable class enjoying similar properties
as positive options. It enables an extension of minimax duality to non-
negative and semipositive american and bermudan options, and leads
to the associativity of the rollover operator and consequences thereof.

1.2. Detailed description of Part II. Section 6 defines the Snell
envelop - a numeraire-invariant process (Vt) associated to any right-
continuous payoff process (Zt), and interpreted as the price at time t
of the american option issued at time t, which whenever exercised at
some (stopping) time Tt ≥ t, yields ZTt

.2 Rather than simply assuming
it, we venture on a result that falls more on a specialist’s domain: the
measurability and right-continuity of the Snell envelop (Vt). Reckoning
that the convergence results of Part I supply the prerequisites for this
assertion, we stand by the proof detailed in section 6.1.3

The definition next of the american option A := (T0, ZT0
) hinges on

an additional analytic technicality, that the supremum in the definition
of Snell envelop is actually attained at a stopping time (for each t).4

Counterexamples to three desirable properties are given to illustrate

2The numeraire-invariance of the Snell is recognized in [A-B], [JT], and [K-S]1,
but rather implicitly, and not exploited to the extent here. This seemingly obvious
invariance follows from invariance of trigger option prices (T,ZT )t for any stopping
time T , in turn a consequence of general option price invariance.

3The proof partially relies on approximation by bermudan options, whose price
measurability is well-known by backward induction. It also uses a well-known
bermudan option pricing formula (one easily derived by induction as in part III), in
terms of certain extension V s

t of the Snell envelop with V t
t = Vt. Right continuity

utilizes this formula and additional trigger option convergence arguments.
4We also define the american stream as the curve of options (At),At := (Tt, ZTt

),
with Tt as described above. So, A = A0.
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the difficulties. Once riding the tide, we are back in calm waters, and
may cruise along on sheer delight of algebra.

A main result is an american option pricing formula At for any time t,
implying, as is well-known, that A0 equals V0, the supremum of prices
of all trigger options. The difference being that here we first define
the american option, and then show this as a (nontrivial) consequence,
rather than defining its time-0 price as V0, without ever mathematically
defining the american option itself, as hitherto been the case.

Section 7 is on minimax duality, a formula equating the Snell en-
velop to the infimum (or, suitably formulated, the minimum) over all
numeraires (or semipositive claims) of the price of a “max lookback
option” obtained by rolling the payoff process over the numeraire.

First we cast an immediate consequence of the Doob-Meyer decom-
position theorem in a form suitable to our setting, namely, existence
of “domineering numeraires” for “superclaims”. (A superclaim, ana-
logue of a class D supermartingale, is a payoff processes (Vt) satisfying
(s, Vs)t ≤ Vt for t ≤ s. A domineering numeraire (at t = 0) is then a nu-
meraire B such that V0 = B0 and Vt ≤ Bt for t > 0. The Snell envelop
turns out to be a superclaim.) Then, we present the multiplicative min-
imax duality formula, first for the simpler case of positive options, and
then more generally for nonnegative and semipositive options. There
are two versions of this formula and other related results.

A comparison is made to the “additive minimax duality” in [R],
and in the case of bermudan options, in [H-K]. Initially it seemed to
us that the main distinction here is one between the additive versus
multiplicative versions of the Doob-Meyer decomposition. But ours
now rests on the additive decomposition too. The main difference is
that the additive version of [R] and [H-K] requires a reference numeraire
in its formulation, whereas ours doesn’t. In this sense, ours is more
numeraire-invariant. Its statement is accordingly simpler. It remains
to be seen which version is more effective in upper bound numerical
approximation of bermudan option prices by Monte-Carlo simulation.5

Section 8 returns to Doob-Meyer decomposition, this time the mul-
tiplicative one. While we bypassed this decomposition for minimax du-
ality, it still seems very relevant to our study. In fact, its finite stream
version subsumes much of part III. The multiplicative decomposition

5The recent book of [G] contains application of this and other Monte-Carlo tech-
niques to bermudan options. Related algorithms are studied in [D]. [F-L-M-S-W]
compare several of such Monte-Carlo approaches to evaluating american options.
See also a discussion in [A-B] on the background of these techniques. [C-H] pro-
pose a forward integro-PDE framework for american options, incorporating jumps,
including the variance gamma type and the variety in [C-G-M-Y]. Forward Dupire
PDE and its integro-PDE generalization to jump-diffusion in [A-A], originally de-
vised for european call and put option volatility smile, are extended there to price
american options now. Option pricing in presence of jumps in general is dealt at
length in the recent book of [C-T].
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has a simpler formulation than the additive one, and by producing a
numeraire as its output, qualifies as a major source for self-financing
trading strategies, some of which may be useful for approximating
bermudan option prices, as in [A-B], [H-K], [K-S]1, [K-S]2.

The section first defines a “local claim”, an analogue of a local mar-
tingale. Then, it shows that any supernumeraire (positive superclaim)
admits a unique decomposition as product of a local numeraire and a
decreasing, predictable process valued 1 at time 0, a result doubtless
well known but seldom discussed. When the local numeraire is actually
the price process of a numeraire, there appear to be interesting conse-
quences, a known one noted. We also give a Novikov-type criteria for
this property in the continuous case and a borrowed counterexample.

Part I: A Numeraire-Invariant Option Framework

2. Claims and Numeraires

2.1. Stochastic base notation. Fix throughout a stochastic base
(Ω, (Ft)t∈[0,m], P), consisting of a state space Ω, a right continuous fil-
tration (Ft)

m
t=0 on Ω with finite final maturity 0 < m < ∞, and a

complete probability measure P on F := Fm, where it is assumed for
simplicity that F0 consists of the events of probability 0 or 1. (The
assumption of a compact time t domain [0,m] is also for simplicity.)

Stopping times take (finite) value in [0,m] in this paper. Specifically,
the set T of all stopping times is defined by

T := {T : Ω −→ [0,m] : {T ≤ t} ∈ Ft, ∀ 0 ≤ t ≤ m}.

Letters t and s are reserved for times in [0,m] and letter T and some-
times S or τ stand for stopping times.

Stochastic processes are denoted as Z· = (Zt) = (Zt)t∈[0,m]. Such dot
and parenthetic notation is uniformly used as appropriate for other
parameterized objects, sometimes with superscript index, other times
for sequences, such as a discrete process.

Given a stopping time T , the σ-algebra of “events before T” is de-
noted FT := {Λ ∈ F : Λ ∩ {T ≤ t} ∈ Ft}, as customary. By Theorem
2.33 in [E], XT is FT -measurable for any progressively measurable pro-
cess (Xt) (e.g., an adapted right-continuous or a predictable process).

The optional sampling theorem states that E[MT | FS] = MT∧S a.s.
for all right-continuous martingales (Mt) and stopping times S and T ;
so E[MT | FS] = MS a.s. when S ≤ T 6 (Ditto for supermartingales.7)

6e.g., Theorem 4.12 in [E]. To see the first formula from the second, note
E[1T>SMT | FS ] = E[1T>SMT∨S | FS ] = 1T>SE[MT∨S | FS ] = 1T>SMS , as 1T>S

is FT -measurable and by first formula. Since 1T≤SMT is FS-measurable, it follows
E[MT | FS ] = E[1T≤SMT + 1T>SMT | FS ] = 1T≤SMT + 1T>SMS = MT∧S .

7Namely, E[MT | FS ] ≤ MT∧S a.s. A right-continuous supermartingale has a
Doob-Meyer decomposition if it is of class D (c.f., Theorem 8.15 in [E]). Time do-
main being compact, all martingales are closed here. So a process (Xt) is of class
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Often to certain objects with unsubscripted symbols, e.g., β standing
for a numeraire or O standing for an option, we associate a stochastic
process (their price processes), denoted as β· = (βt) = (βt)t∈[0,m], etc.

We sometimes indicate indistinguishability by a short hand like “a.s.
Xt = Yt all t”. Should we write instead, “Xt = Yt a.s. all t”, we’d mean
the processes are merely modifications of each other. We employ such
abbreviation in similar contexts, but more often than not on guard, we
amend it with clarifying longer and precise statements.

For ease of notation, we often drop subscript bracelets around event
indicator functions for short expressions, e.g., denote 1{X>Y } by 1X>Y .

2.2. State price density and Claims. A State Price Density (or
Deflator) is a process ξ· = (ξt)

m
t=0 such that (1) it is adapted, (2) it is

right-continuous and has left limits, (3) a.s. ξt > 0 all t, (4) a.s. ξt− > 0
all t, (5) ξ0 = 1, and (6) ξt is P-integrable for all t.

These conditions imply that almost all sample paths of the deflator
(ξt) are bounded above, and are bounded below strictly above zero.

The financial interpretation of our setting rests entirely on the fol-
lowing interpretation of the state price density (ξt). Let Λ ∈ Ft be an
event. Then,

∫
Λ

ξt(ω)P(dω) = E[1Λξt] equals the price at time 0 of the
contingent claim that pays at time t one unit of base currency if event
Λ occurs by time t and zero otherwise. In particular, time-0 price of
the t-maturity zero-coupon bond equals E[ξt].

As is well-known, the state price density encapsulates both interest-
rate and risk-premia information. (See, for instance, Corollary 8.4.)

We refer to the pair M = ((Ω,F·, P), ξ·) consisting of a stochastic
base and a state price density on it as a Pricing Model.

Henceforth, we fix a pricing model M throughout the paper, and use
the notation and terminology above without recall at will.

A Claim is an F -measurable random variable C such that ξmC is
P-integrable. The set of all claims is denoted C.

The Price Process of a claim C ∈ C is the unique (up to indistin-
guishability) process C. = (Ct)t∈[0,m] such that Cm = C and (ξtCt) is a
right-continuous P-martingale. So, Ct = E[Cmξm | Ft]/ξt, a.s., all t.

Claim price processes are right-continuous and have left limits be-
cause so do the deflator (ξt) and all right-continuous martingales.

A Continuous Claim is one with a continuous price process.

2.3. Numeraires and numeraire measures. An a.s. positive claim
β is called a Numeraire; so β > 0 a.s. We write β ∈ C+ ⊂ C.

Clearly, β0 > 0 and βt > 0 a.s., all t. More strongly, a.s. βt > 0 all t.

D, (i.e., {XT : T ∈ T } is uniformly integrable) if it is “dominated” by a martingale
(Mt), i.e., a.s. |Xt| ≤ Mt all t. The converse holds for right-continuous supermartin-
gales by Doob-Meyer decomposition. So here, a right-continuous supermartingale
is of class D if and only if it is dominated by a martingale.
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In fact, almost all sample paths of (βt) are bounded below strictly
above zero, i.e., for almost all ω, there exists an ε > 0 such that
βt(ω) > ε for all t. This is well-known for positive right-continuous
martingales (Theorem 4.16 in [E]), and follows for numeraires by the
positivity assumptions on (ξt). (See also Corollaries 5.4 and 7.4 below).

For any numeraire β, define the induced Numeraire Measure Pβ by

dPβ

dP
=

ξmβ

β0

.

Then Pβ is a P-equivalent probability measure because β > 0 a.s. By
the Radon-Nikodym theorem, every P-equivalent probability measure
equals Pβ for some numeraire β ∈ C+ (unique up to a multiple).

If B is another numeraire, then dPB/dPβ = (β0/B0)B/β.
Clearly, 1/ξm is a numeraire, (1/ξm)t = 1/ξt, and P1/ξm = P.
Let β be a numeraire. As is well known, a random variable C is a

claim if and only if C/β is Pβ-integrable, in which case, the β-deflated
price process (Ct/βt) is a right-continuous Pβ-martingale. Therefore,

Ct = βtE
β[

C

β
| Ft]

a.s. all t, for any claim C and any numeraire β.
If β is a numeraire and T is a stopping time, then βT > 0 a.s. This

follows because a.s. βt > 0 all t as mentioned above, or, alternatively,
from the optional sampling theorem as ξT βT = E[ξmβm | FT ] > 0 a.s.

Proposition 2.1. Let β and B be two numeraires and T be a stopping
time. Then dPB

|FT
/dPβ

|FT
= (β0/B0)BT /βT .

Proof. Let X be a bounded FT -measurable random variable. Then

B0

β0

EB[X] = Eβ[X
B

β
] = Eβ[Eβ[X

B

β
| FT ]]

= Eβ[XEβ[
B

β
| FT ]] = Eβ[X

BT

βT

],

the last equality by the optional sampling theorem, as the process
(Bt/βt) is a right-continuous Pβ-martingale and B/β = Bm/βm. �

.
B0

β0

EB[
O

BT

] = Eβ[
O

BT

Bm

βm

] (change of numeraire)

= Eβ[Eβ[
O

BT

Bm

βm

| FT ]] (iterating expectation)

= Eβ[
O

BT

Eβ[
Bm

βm

| FT ]] (by FT measurability of
O

BT

)

= Eβ[
O

BT

BT

βT

] (optional sampling theorem)
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= Eβ[
O

βT

] < ∞,

the last equality by the optional sampling theorem, as the process
(Bt/βt) is a right-continuous Pβ-martingale and B/β = Bm/βm.

3. Options and their price processes

3.1. Options. Given a stopping time T , let CT denote the set of all
FT -measurable random variables O such that O/βT is Pβ-integrable for
some numeraire β. (So, C = Cm).

If this property holds for 1 numeraire then it holds for all numeraires:

Proposition 3.1. If O ∈ CT , then O/BT is PB-integrable for all nu-
meraires B.

Proof. Say O/βT is Pβ-integrable, and let B be another numeraire. By
Proposition 2.1, O/BT = (O/βT )(BT /βT ) is PB-integrable. �

It follows that O ∈ CT if and only if ξT O is P-integrable.
An Option O is a pair O = (T,O), where T is a stopping time and

O ∈ CT . Its Expiry is the stopping time T , also denoted TO. Its Payoff
is the random variable O. The set of all options is denoted O.

Note, if O = (T,O) is an option, then so is |O| := (T, |O|).
An option is Positive (resp. Nonnegative) if its payoff is positive

(resp. nonnegative) a.s.
A European option is one whose expiry is deterministic.
The s-maturity zero-coupon bond (s, 1) is an example. As Cm = C,

we may identify a claim with an m-expiry european option.

3.2. Discussion. We will define and see that options are closed under
such operations as addition (making a portfolio of options into an op-
tion, with linear pricing), ‘rolling” one option over another (investing
at expiry the payoff of first in the second), or more generally rolling
over an “option stream” (a sequence or curve of options), (compound)
call or put options on an option, or a swaption, i.e., an option to ex-
change two options. This makes the notion sufficiently comprehensive
for modelling standard american and bermudan options, trigger op-
tions (e.g. trigger swaps or knockout options possibly with rebate),
and credit derivatives (e.g., a default protection), among more exotic
structures. Stocks and bonds can also be viewed as options.

Most options are nonnegative in practice. This includes an option
to enter a trade, such as call and put options or swaptions. A Putable
bond (from point view of the option holder, i.e., the investor) is a
positive option. On the other hand, a callable bond (from the point of
view of the option holder, i.e., the issuer) is a negative option.

The study of optimal exercise of a negative option (e.g. a bermudan
callable bond) can be reduced to that of a positive option, namely its
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negative, (e.g., the bond from viewpoint of investor), but one with value
minimization over stopping times rather than value maximization. An
alternative is transformation to a nonnegative maximization problem.
A bermudan callable bond is equivalent to a short position in the un-
derlying bond and a long position on a bermudan bond call option.
So, its valuation is reduced to that of the latter, a nonnegative maxi-
mization problem. The same can done with all other negative “payoff
processes,” for as defined later, they are “dominated” by a numeraire.

3.3. Option price process. For the rest of this subsection, let O =
(T,O) be a T -expiry option with payoff O (in CT ).

For any numeraire β, define the “rollover claim” CO,β by

CO,β :=
Oβ

βT

∈ C.

Further define the process Oβ
· = (Oβ

t )t∈[0,m] (on all of [0,m] × Ω) by

Oβ
t := 1t≤T CO,β

t ∈ Ct∧T .

The following numeraire invariance property is key to our approach.

Theorem 3.2. For any two numeraire β and B, the processes (Oβ
t )

and (OB
t ) are indistinguishable.

The theorem will be established in stages, the main step being Lemma
3.4 which shows Oβ

t = OB
t a.s. all t.

The rollover claim CO,β may be interpreted as investing at expiry T
the option payoff O in O/βT units of the numeraire β, and holding this
until terminal maturity m to finally yield a payoff equal CO,β.

Intuitively, the rollover claim CO,β is the same as the option O before
expiry T , because it is not yet invested in the numeraire β . So, before
expiry the option price should be the same as the rollover claim price,
regardless of choice of numeraire β. This indicates that a suitably-
defined option price process of O should equal the price process of the
rollover claim CO,β on the stochastic interval [[0, T ]] := {(t, ω) : t ≤
T (ω)} (at least outside of an evanescent subset).

Note, the rollover claim price process CO,β
· = (CO,β

t )t∈[0,m] is by
definition (and a cancellation) the unique (up to indistinguishability)
adapted right-continuous process such that for all t

CO,β
t = βtE

β[
O

βT

| Ft] a.s.

The price of the rollover claim at expiry equals the option payoff:

Lemma 3.3. For any numeraire β, we have CO,β
T = O a.s.
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Proof. Since process (CO,β
t /βt) is a Pβ-martingale, we have by the op-

tional sampling theorem a.s.,

CO,β
T = βT Eβ[

CO,β
m

βm

| FT ] = βT Eβ[
O

βT

| FT ] = O.

(The last equality is because βT hence O/βT is FT measurable.) �

Given a numeraire β, above we defined the process Oβ
· to be the

rollover claim price process CO,β
· cut off to zero after expiry T , i.e.,

Oβ
t := 1t≤T CO,β

t . The reason for the cutoff is that the rollover claim

price process (CO,β
t ) surely depends on the numeraire β after expiry -

in fact 1t>T CO,β
t = 1t>T (O/βT )βt. But, not so with the cutoff:

Lemma 3.4. For any two numeraires β and B, OB
t = Oβ

t a.s. all t.

Proof. By the definition of Oβ
t , we have

(∗) Oβ
t = βtE

β[1t≤T
O

βT

| Ft] = βtE
β[1t≤T

O

βt∨T

| Ft] = 1t≤T βtE
β[

O

βt∨T

| Ft].

Now, a.s.,

OB
t = 1t≤T BtE

B[
O

Bt∨T

| Ft] ((*) applied to B)

= 1t≤T βtE
β[

O

Bt∨T

Bm

βm

| Ft]] (change of numeraire)

= 1t≤T βtE
β[

O

Bt∨T

Bm

βm

| Ft∨T | Ft]] (iter. expect. as Ft∨T ⊃ Ft)

= 1t≤T βtE
β[

O

Bt∨T

Eβ[
Bm

βm

| Ft∨T ] | Ft]

= 1t≤T βtE
β[

O

Bt∨T

Bt∨T

βt∨T

| Ft] (optional sampling theorem)

= 1t≤T βtE
β[

O

βt∨T

| Ft] = Oβ
t ((*) applied to β)

�

The above shows that the process (Oβ
t ) and (OB

t ) are modifications
of each other. To establish indistinguishability, we further need

Lemma 3.5. Let β be a numeraire. Then, a stochastic process O· =
(Ot) is indistinguishable from the process Oβ

· = (Oβ
t ) if and only if

(a) process (1t>TOt) is indistinguishable from the zero process, (b) the
stopped process (Ot∧T ) is right continuous, (c) OT = O a.s., and (d)

for each t, Ot = Oβ
t a.s.
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Proof. Clearly, process Oβ
· satisfies (a), (b), and (d). It also satisfies (c)

by Lemma 3.3. Hence, if O· is indistinguishable from Oβ
· , it too satisfies

(a)-(d). Conversely, assume O· satisfies (a)-(d). Note, (d) implies O· is

an adapted process, and (a) and (d) imply Ot∧T = Oβ
t∧T a.s. all t, be-

cause Ot∧T = 1t≤TOt+1t>TOT and similarly for Oβ
t . So, process (Ot∧T )

is a modification of process (CO,β
t∧T ). But, the former is right-continuous

by (c). So is the latter, as (CO,β
t ) is so. But two right-continuous mod-

ifications are easily seen to be indistinguishable (e.g. Lemma 2.21 in

[E]). Therefore, the processes (Ot∧T ) and (CO,β
t∧T ) are indistinguishable,

which by (a) implies (Ot) and (CO,β
t ) are indistinguishable. �

Proof. of Theorem 3.2: Clearly, the process OB
· satisfies the condi-

tions (a), (b) in Lemma 3.5. And it satisfies conditions (c) and (d)
respectively by Lemmas 3.3 and 3.4. Therefore, by Lemma 3.5 it is
indistinguishable from process Oβ

· . �

We define the Price Process of option O to be any stochastic process
that is indistinguishable from process Oβ

· for some numeraire β. The
theorem shows that any two option price processes of option O are
indistinguishable. This justifies use of the word “the” in the definition.

The definition of option price process and the theorem imply that
Oβ

· is the price process of option O for any numeraire β. In particu-

lar, O
1/ξm

· is the option price process. Therefore, the price process of
option O exists. Further, it is unique up to indistinguishability by the
theorem. We denote it (really its indistinguishability equivalence class)
by O· = (Ot)t∈[0,m]. So, for any numeraire β, the option price process
O· is indistinguishable from process Oβ

· , and for all t,8

(3.1) Ot = 1t≤T βtE
β[

O

βT

| Ft] a.s.

By Lemma 3.3, OT = O a.s. So, for any option O we have

O = (TO,OTO
),

another way of saying an option’s price at expiry equals its payoff.
Lemma 3.5 characterizes the option price process O· = (Ot) as the

unique (up to indistinguishability) process that (a) vanishes after ex-
piry, (b) the stopped process (Ot∧TO

) is right continuous, (c) OTO
equals

the option payoff, and (d) satisfies Eq. (3.1).
Note, if O = (T,O) is an option then

(T,O)t = Ot = 1t≤TOt = (T, 1t≤T O)t.

Similarly, if (Xt) is any bounded adapted process, (T,XtO)t = Xt(T,O)t.
Given an option O and a numeraire β, the stopped numeraire-relative

price process (Ot∧TO
/βt∧TO

) is a right-continuous Pβ-martingale. In

8We also have Ot = 1t≤T βtE
β [O/βT | Ft∧T ] a.s.
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particular, if O is european, i.e., TO is deterministic, then the β-deflated
option price process (Ot/βt) is a Pβ-martingale on the interval [0, TO].

Option price at a stopping time is given by a similar formula:

Proposition 3.6. Let O = (T,O) be an option and τ a stopping time.
Then, Oτ ∈ Cτ , and for any numeraire β, we have a.s.

Oτ = 1τ≤T βτEβ[
O

βT

| Fτ ].

Proof. By definition, Oτ = 1τ≤T CO,β
τ . As (CO,β

t /βt) is a Pβ-martingale,
the optional sampling theorem implies CO,β

τ /βτ is Pβ-integrable; hence
so is Oτ/βτ i.e., Oτ ∈ Cτ . It also implies a.s.,

CO,β
τ∧T

βτ∧T

= Eβ[
CO,β

T

βT

| Fτ ] = Eβ[
O

βT

| Fτ ].

Hence a.s.,

Oτ = 1τ≤T CO,β
τ = 1τ≤T CO,β

τ∧T

= 1τ≤T βτ∧T Eβ[
O

βT

| Fτ ] = 1τ≤T βτEβ[
O

βT

| Fτ ].

�

3.4. Price transitivity law. Let O be an option and S ≤ TO be a
stopping time. As just shown, the time-S price OS is in CS. So, the
pair (S,OS) is an option. The law of iterated expectation translates
into a transitivity law for option prices. Namely, if we price (S,OS) at
an earlier time t ≤ S, it should give the price Ot of option O at time t:

Theorem 3.7. (Price Transitivity) Let O be an option, and S ≤ TO

be a stopping time. Then, a.s., for all t,9

(S,OS)t = 1t≤SOt.

Further, if τ ≤ S is another stopping time then, (S,OS)τ = Oτ a.s.

Proof. The first statement follows from the second by setting τ = t∧S
in the second, and invoking Lemma 3.5 to conclude indistinguishability.
As for the second, let β be a numeraire. Applying Proposition 3.6 twice,
then iterating expectation, and applying Proposition 3.6 once again,

(S,OS)τ = βτEβ[
OS

βS

| Fτ ]

= βτEβ[Eβ[
OT

βT

| FS] | Fτ ] = βτEβ[
OT

βT

| Fτ ] = Oτ .

�

9That is, processes ((S,OS)t) and (1t≤SOt) are indistinguishable.
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Price transitivity facilitates option price manipulations, often obvi-
ating the need every time to choose a reference numeraire, translate
prices as expectations of ratios in the numeraire measure, iterate ex-
pectations, and translate back to prices. Price transitivity does all this
in one step, without even asking for a reference numeraire. It encapsu-
late the optional sampling theorem as built-in feature, automatically
invoking it whenever used. This makes it handy for calculations, as ex-
emplified by the theorem on indistinguishability in the next subsection.

Define the sum of two options O1 = (T1, O
1) and O2 = (T2, O

2) by

O1 + O2 := (T1 ∧ T2,O
1
T1∧T2

+ O2
T1∧T2

).

The price operator is linear: if S ≤ T1∧T2, then (O1+O2)S = O1
S +O2

S.
More generally, (O1 +O2)t = 1t≤T2

O1
t + 1t≤T1

O2
t . The sum operator is

associative: O1 + (O2 + O3) = (O1 + O2) + O3, as follows from price
transitivity and price linearity.

Multiplication of a T -expiry option O by a scalar a ∈ R is defined
by aO := (T, aOT ). As such, as alluded to in Sect. 3.2, a portfolio of
long and short positions in options is itself an option, and the portfolio
price equals the algebraic sum of prices of the constituent options.10

Given a T1-maturity option O1, a T2-maturity option O2 and a stop-
ping time T ≤ T1 ∧T2, the option (T, (O1 −O2)+

T ) is called a swaption.
It is a T -expiry option to swap (exchange) O2 with O1, i.e., the right
to receive at T the option O1 and pay the option O2. If O2 (resp. O1)
is a T -maturity zero-coupon bond (T,K) with face value 0 < K ∈ R,
then, the swaption is a call option (resp. put) option on O1 (resp. on
O2). Callable and putable assets can be defined similarly.

Note, for any two options O and O′ and any two stopping times
τ ≤ T , we have max(Oτ ,O

′
τ ) ≤ (T, max(OT ,O′

T ))τ .

3.5. Postponing zero payoffs: indistinguishable options. It is
certainly possible for two different options to have indistinguishable
price processes. For example, if S 6= T are two stopping times, then
the S and T -expiry “zero options” (S, 0) and (T, 0) are different, yet
their price processes are indistinguishable from the zero-process.

More generally, let O1 = (T1, O
1) be an option and T2 ≥ T1 be

stopping times. Set T = 1O1 6=0T1 + 1O1=0T2. Then, the price processes
of options (T,O1) and O1 are indistinguishable. This is intuitive for,
ignoring back office overheads, the counterparties care less if a zero
payment due at T1 is postponed to a later even unknown time T .

Two options O1 = (T1, O
1) and O2 = (T2, O

2) are Equivalent if
T1 = T2 a.s. and O1 = O2 a.s.

10Obviously a(O1 + O2) = aO1 + aO2. However, these definitions of sum and
scalar product do not make O into a vector space. Indeed, there is no “zero vector.”
For example, if O1 and O2 are two options, O1 −O1 6= O2 −O2 unless TO1 = TO2 .
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Two options O1 = (T1, O
1) and O2 = (T2, O

2) are indistinguishable
if O1 = O2 a.s. and {T1 6= T2} ⊂ {O1 = 0} a.s.

So, if O1 and O2 expire at different times, they both pay zero, and
if they expire at the same time, they pay the same amount.

Obviously, equivalence implies indistinguishability. Not so the other
way, e.g., the options (0, 0) and (m, 0) are indistinguishable, but not
equivalent because m > 0. It is easy to see that option indistinguisha-
bility is an equivalence relation. This follows even more easily from

Theorem 3.8. Two options are indistinguishable if and only if their
price processes are indistinguishable.

Proof. Let O1 = (T1, O
1) and O2 = (T2, O

2) be two options. First
assume they are indistinguishable. Note this implies O1 = 1T1=T2

O1

a.s. Also by definition, a.s. O2 = O1 =: O. Hence a.s.,

O1
t = 1t≤T1

O1
t = 1t≤T1

(T1, O)t = (T1, 1t≤T1
O)t = (T1, 1t≤T1=T2

O)t.

By symmetry, we also conclude O2
t = (T2, 1t≤T1=T2

O)t a.s. This shows
(O1

t ) and (O2
t ) are indistinguishable processes. Indeed, if β is a nu-

meraire, it shows a.s.,

O1
t = βtE

β[1t≤T1=T2

O

βT1

| Ft] = βtE
β[1t≤T1=T2

O

βT2

| Ft] = O2
t .

Conversely, assume price processes of O1 and O2 are indistinguishable
from each other and from a process O·. Since O· is the price processes
of both options, we have 1t≤T1

Ot = Ot = 1t≤T2
Ot. Hence Ot vanishes

on {t > T1 ∧ T2}, implying OT1∨T2
= 1T1=T2

OT1
. It follows from price

transitivity that OT1∧T2
= (T1 ∨ T2, 1T1=T2

OT1
)T1∧T2

. Since 1T1 6=T2
is

T1 ∧ T2-measurable, multiplying both sides gives 1T1 6=T2
OT1∧T2

= (T1 ∨
T2, 1T1 6=T2

1T1=T2
OT1

)T1∧T2
= 0 a.s. In particular, 0 = 1T1<T2

OT1∧T2
=

1T1<T2
OT1

. But, we also know 1T1>T2
OT1

= 0 because again, Ot being
price process of O2

t satisfies 1t>T2
O2

t = 0. Hence, 1T1 6=T2
OT1

= 0. This
shows {T1 6= T2} ⊂ {OT1

= 0} a.s. By symmetry, we also conclude
{T1 6= T2} ⊂ {OT2

= 0} a.s. So, OT1
and OT2

are a.s equal to zero on
set {T1 6= T2}. But, they are obviously equal on {T1 = T2} too. So,
O1 = OT1

= OT2
= O2, a.s. Indistinguishability follows. �

An option O is Semipositive if it is nonnegative and a.s. Ot positive
on the set {t < T}. We will show in section 5, that for any nonneg-
ative option O there exists a unique (up to equivalence) semipositive
option indistinguishable from it. This is in some sense the opposite of
postponing zero payoffs. Contrariwise, it settles a zero payoff at the
earliest possible moment, namely, the first time price becomes zero.

3.6. Event-triggered price additivity. The following intuitive re-
sult usefully generalizes in an inductive fashion, lending itself to the
underlining structure of regenerative trigger streams in Part III. Its
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simple proof is another illustration of calculation using intrinsic oper-
ations, rather than falling back on numeraires and expectation.

Proposition 3.9. Let O1 = (T1, O
1) and O2 = (T2, O

2) be two options
with T1 ≤ T2. Let Λ1 ∈ FT1

be an event. Set T = 1Λ1
T1 + 1Λc

1
T2 and

O = 1Λ1
O1 + 1Λc

1
O2. Then O ∈ CT and the price process of (T,O) is

(1Λ1
T1 + 1Λc

1
T2, 1Λ1

O1 + 1Λc

1
O2)t = (T1, 1Λ1

O1)t + (T2, 1Λc

1
O2)t.

Proof. Using 1t≤T = 1Λ1
1t≤T1

+ 1Λc

1
1t≤T2

, we calculate,

(1Λ1
T1 + 1Λc

1
T2, 1Λ1

O1 + 1Λc

1
O2)t

= (1Λ1
T1 + 1Λc

1
T2, 1t≤T (1Λ1

O1 + 1Λc

1
O2))t

= (1Λ1
T1 + 1Λc

1
T2, (1Λ1

1t≤T1
+ 1Λc

1
1t≤T2

)(1Λ1
O1 + 1Λc

1
O2))t

= (1Λ1
T1 + 1Λc

1
T2, 1Λ1

1t≤T1
O1 + 1Λc

1
1t≤T2

O2))t

= (T1, 1Λ1
1t≤T1

O1)t + (T2, 1Λc

1
1t≤T2

O2)t

= (T1, 1Λ1
O1)t + (T2, 1Λc

1
O2))t.

(This calculation can also be done using more familiar numeraire and
expectation operator notation.11) �

The result has a simple interpretation. The stopping time T =
1Λ1

T1 + 1Λc

1
T2 is constructed to stop at T1 if event Λ1 has occurred by

then, and to stop at T2 otherwise. Accordingly, the payoff O = 1Λ1
O1+

1Λc

1
O2 pays at T1 the same as option O1 if event Λ1 has occurred, and

otherwise, pays at T2 the same as option O2. It is not then surprising
that the price process of option O = (T,O) should be indistinguishable
from the sum of price processes of a T1-expiry option with payoff 1Λ1

O1

and a T2-expiry option with payoff 1Λ1
O2. The crucial assumptions here

are that Λ1 ∈ FT1
and T1 ≤ T2.

12

11Indeed, we may repeat these calculations, with reference to a numeraire β.
Using 1Λ1

/βT = 1Λ1
/βT1

and 1Λc

1
/βT = 1Λc

1
/βT2

and the definition of price,

Ot = βtE
β [1t≤T

O

βT

| Ft]

= βtE
β [(1Λ1

1t≤T1
+ 1Λc

1
1t≤T2

)(1Λ1
O1 + 1Λc

1
O2)/βT | Ft]

= βtE
β [1Λ1

1t≤T1

O1

βT1

+ 1Λc

1
1t≤T2

O2

βT2

| Ft]

= 1t≤T1
βtE

β [1Λ1

O1

βT1

| Ft] + 1t≤T2
βtE

β [1Λc

1

O2

βT2

| Ft].

= (T1, 1Λ1
O1)t + (T2, 1Λc

1
O2)t.

12Using the definition of sum of two options previously, one can easily show that
option (O, T ) can be represented as the sum (O, T ) = (T, 1Λ1

O1) + (T2, 1Λc

1
O2).

Linearity of the price operator then gives another demonstration of the proposition.
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4. Dominated and trigger option convergence

4.1. Dominated option convergence. An option O Dominates a
process (Zt) if a.s. |Zt| ≤ Ot for all t ∈ [0,m].

We then interchangeably say (Zt) is Dominated by option O.
Note then |ZT | ≤ OT a.s. for any stopping time T .13

Note also if (Zt) is a right continuous process and |Zt| ≤ Ot a.s. for
each t, then O dominates (Zt).

14

A process (Zt) is Dominated if it is dominated by some option.
An option O Dominates another option E if O dominates (Et).
Note, any option is dominated by a numeraire.15 Therefore, a process

(Zt) is dominated if and only if it is dominated by some numeraire.
Note an option O dominates E if |ETE

| ≤ OTE
a.s. For then |Et| ≤ Ot

a.s. all t; so domination follows by right continuity of (Et) on {t < TE}.

Theorem 4.1. (Dominated Option Convergence) Let (On)∞n=1,O
n =

(Tn, O
n) be a sequence of options such that (T n) is decreasing, and

T n ↘ T a.s. and On → O a.s. to some random variables T and O.
Assume there exists a numeraire β that dominates options On all n.
Then O = (T,O) is an option, and a.s. On

t → Ot, all t.

We prove the theorem simultaneously with a similar result that re-
places the decreasing assumption on (Tn) with a continuity assumption.
(Recall a claim is continuous if it has a continuous price process.)

Theorem 4.2. Let (On)∞n=1,O
n = (Tn, O

n) be a sequence of options
such that T n −→ T a.s. and On → O a.s. Assume there exists a
continuous numeraire β that dominates options On for all n. Then
O = (T,O) is an option, and a.s. On

t → Ot, all t.

Proof. Assumption of either theorem implies On/βTn
→ O/βT a.s. (In

the case (Tn) is decreasing by right continuity of (βt).) But, |On/βTn
| ≤

1. So by (conditional) bounded convergence theorem, Eβ[On/βTn
| Fτ ] →

Eβ[O/βT | Fτ ] a.s. for any stopping time τ . Thus,

On
τ = 1τ≤Tn

Eβ[On/βTn
| Fτ ] → 1τ≤T Eβ[O/βT | Fτ ] = Oτ a.s.

To prove the stronger statement a.s. On
t → Ot, all t, let Q be the

subset of rational numbers [0,m]. Since Q is countable, by what we just
showed there is an event Λ of probability 1 such that On

s (ω) → Os(ω)
for all s ∈ Q and ω ∈ Λ. Since any t can be approximated on the right

13The definition of domination requires a.s. |Zt| ≤ Ot all t, rather than the
weaker property |Zt| ≤ Ot a.s. all t. The latter property does not imply |ZT | ≤ OT

a.s. for all stopping times T . Indeed, let T be a stopping time with a continuous
probability distribution (e.g., exponentially distributed). Then, Zt = 0 a.s. all t,
where Zt = 1{T=t}. But, ZT = 1. Note also, the definition of domination actually

makes sense for any function (Zt) on [0,m] × Ω.
14This follows easily by approximating any time t by a rational number to its

right and then using right continuity of process (Ot∧TO
).

15Indeed, option (T,O) is dominated by numeraire β(1+|O|/βT ) for any β ∈ C+.
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by some s ∈ Q, it follows from this, and the right continuity of stopped
option prices, and the inequality

|On
t −Ot| ≤ |On

t −On
s | + |On

s −Os| + |Os −Ot|,

that On
t (ω) → Ot(ω) for all ω ∈ Λ and any time t. �

The result resembles the dominated convergence theorem in its as-
sumption. The conclusion is that a sequence of processes is everywhere
pointwise convergent on [0,m] × Ω less an evanescent set.

The following application is useful for semipositive minimax duality.

Lemma 4.3. Let O = (T,O) be an option and B and β be numeraires.
Then |CO,B+β| ≤ C |O|,B + C |O|,β a.s. (Recall CO,β := Oβ/βT .)

Proof. . As BT > 0 a.s. and βT > a.s., we have. a.s.

B + β

BT + βT

<
B

BT

+
β

βT

.

Hence |CO,B+β| ≤ |O|(B/BT + β/βT ) = C |O|,B + C |O|,β a.s. �

Corollary 4.4. Let O be an option and B and β be two numeraires.
Then, a.s. all t,

lim
ε↘0

CO,B+εβ
t = CO,B

t .

Proof. For any ε > 0, we have by the lemma,

|CO,B+εβ| ≤ C |O|,B + C |O|,εβ = C |O|,B + C |O|,β =: A.

So numeraire A dominates all numeraires B + εβ. Since B + εβ → B
a.s., as ε → 0, the result follows from Theorem 4.1. �

4.2. Payoff processes and trigger options. A Payoff Process is a
dominated progressively measurable process.

Proposition 4.5. Let (Zt) be a payoff process. Then for any numeraire
β, the β-deflated process (Zt/βt) is Pβ-class D.16

In particular, ZT ∈ CT for any stopping time T . So, (T, ZT ) is an
option, one dominated by any option that dominates (Zt).

Proof. Progressive measurability of process Z· implies ZT is FT -measurable
for any stopping time T . By the domination assumption, a.s. |Zt| ≤ Bt

all t for some numeraire B. Let β be any numeraire and T a stopping
time. Then a.s. |Zt|/βt ≤ Bt/βt all t. So |ZT /βT | ≤ BT /βT a.s. But
BT /βT is Pβ-integrable as BT ∈ CT . Thus ZT /βT is Pβ-integrable, i.e.,
ZT ∈ CT . More strongly, the process (Bt/βt) is Pβ class D because it is
a (closed) Pβ-martingale (closed by B/β). Hence so is process (Zt/βt),
as |ZT /βT | ≤ BT /βT a.s. for any stopping time T . �

If (Zt) is a payoff process and T a stopping time, we refer to the
option (T, ZT ) as a Z·-Trigger Option.

16That is, the set {ZT /βT : T ∈ T } is Pβ-uniformly integrable.
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4.3. Trigger option convergence. This simple but important con-
sequence of dominated option convergence will be used several times
in Part II, both for approximating american options by bermudan op-
tions and for establishing the right-continuity of the Snell envelop. Its
paramount assumption is the right continuity of the payoff process.

Theorem 4.6. (Trigger Option Convergence) Let (Zt) be a right con-
tinuous payoff process and (Tn)∞n=1 be a sequence of decreasing stop-
ping times converging to a stopping time T . Then, a.s. (Tn, ZTn

)t →
(T, ZT )t, all t.

Proof. By right continuity and the assumption that (Tn) is decreasing,
ZTn

→ ZT a.s. Since (Zt) is dominated by some option O, by previous
proposition each (Tn, ZTn

) is an option, and is dominated by same
option O. Hence the result follows from Theorem 4.1. �

Trigger convergence immediately implies certain right continuity:

Corollary 4.7. Let (Zt) be a right continuous payoff process. Then
a.s. Zt = lims↘t(s, Zs)t, all t.

The following version of trigger convergence is based on the domi-
nated option convergence Theorem 4.2 rather than Theorem 4.1, re-
placing the assumption of (Tn) decreasing by a continuity assumption.

Proposition 4.8. Let (Zt) be a continuous adapted process that is dom-
inated by a continuous numeraire, and (Tn)∞n=1 be a sequence of stop-
ping times converging to a stopping time T . Then, a.s. (Tn, ZTn

)t →
(T, ZT )t, all t.

5. Semipositivity

5.1. Nonnegative arbitrage. If O is a nonnegative option, then ob-
viously Oτ ≥ 0 a.s. for any stopping time τ . Slightly more strongly, we
have a.s. Ot ≥ 0 all t. (This follows from the right continuity of option
price process before expiry and approximation of any t on the right by
a rational number). Also, clearly a nonnegative option whose time-0
price is 0 must have a.s. 0 payoff. These may be viewed as no-arbitrage
statements, albeit quite weak ones.

To prepare for stronger no-arbitrage statements, for any option O =
(T,O), define the stopping time T 0

O, abbreviated T 0, by

T 0 :=: T 0
O := inf{t > 0 : Ot = 0}.

Clearly, T 0 ≤ T . The following result is strengthened later in Theorem
5.12, but already the way it is will be adequate for us.

Theorem 5.1. Let O = (T,O) be a nonnegative option and S ≥ T 0 a
stopping time. Then 1T 0<TOS = 0 a.s. In particular, 1T 0<T O = 0 a.s.
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Proof. By the right-continuity of the price process (Ot) on the set
{t < T} and definition of T 0, we have 1T 0<TOT 0 = 0 a.s. Note also,
1T 0=T is FS-measurable for it is FT 0-measurable and S ≥ T 0. Also,
as 1S>TOS = 0, we may assume S ≤ T , by replacing S with S ∧ T if
necessary. Using these three observations and price transitivity, a.s.,

(S,OS)T 0 = OT 0 = 1T 0<TOT 0 + 1T 0=TOT 0

= 1T 0=TOT 0 = 1T 0=T (S,OS)T 0 = (S, 1T 0=TOS)T 0 .

Therefore, a.s. (again employing price transitivity a few of times)

(S,OS)0 = O0 = (T 0, (S,OS)T 0)0

= (T 0, (S, 1T 0=TOS)T 0)0 = (S, 1T 0=TOS)0.

But OS ≥ 1T 0=TOS. It follows, OS = 1T 0=TOS a.s., i.e., 1T 0<TOS = 0
a.s. Applied to S = T gives 1T 0<T O = 0 a.s. �

The three consequences below are more-or-less immediate.

Corollary 5.2. Let O = (T,O) be a nonnegative option and S be a
stopping time with T 0 ≤ S ≤ T . Then, OS = O a.s. Moreover, options
O and (S,OS) are indistinguishable.

Proof. By the theorem, 1T 0<T O = 0, a.s., so O = 1T 0=T O a.s. Again
by the theorem, 1T 0<TOS = 0. As 1T 0=T = 1T 0=S=T , this implies

OS = 1T 0=TOS = 1T 0=S=TOS = 1T 0=T O = O.

Since, 1T 0<TOS = 0 a.s., we also have 1S<TOS = 0 a.s. But, OS = O
a.s. Hence, 1S<T O = 0 It follows {S 6= T} = {S < T} ⊂ {O = 0} a.s.
Thus O and (S,OS) are indistinguishable. �

In particular, the zero-payoffs of a nonnegative option are previsible
at time T 0, that is, {O = 0} ∈ FT 0 .

The following two consequences of 1{T 0<T}O = 0 make a definitive
positivity statement without reference to the stopping time T 0

O.

Corollary 5.3. Let O = (T,O) be a nonnegative option. Then there
exist an event Λ of probability 1 such that such that Ot(ω) > 0 for all
states ω ∈ Λ with O(ω) > 0 and all times t ≤ T (ω).

Equivalently, then the option price process O· is positive on [[0, T ]]∩
[0,m] × {O > 0} outside of an evanescent subset.

Proof. By the proposition, 1{T 0<T}O = 0 a.s. So {O > 0} ⊂ {T 0 = T}
a.s., i.e., there is an event Λ of probability 1 be such that for any ω ∈ Λ
with O(ω) > 0, we have T 0(ω) = T (ω). Now let ω ∈ Λ with O(ω) > 0,
and let t ≤ T (ω). If t = T (ω) then obviously Ot(ω) = O(ω) > 0.
Otherwise, if t < T (ω), then t < T 0(ω) (because T 0(ω) = T (ω)); hence
by the definition of T 0, Ot(ω) > 0. �

The following conclusion for positive options is immediate.
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Corollary 5.4. Let O = (T,O) be a positive option. Then there exist
an event Λ of probability 1 such that such that Ot(ω) > 0 for all states
ω ∈ Λ and times t ≤ T (ω). Put another way, the price process of a
positive T -expiry option is positive on [[0, T ]] less an evanescent set.

5.2. Semipositive options. A nonnegative option O = (T,O) is
Semipositive if its price process (Ot) is positive on the stochastic in-
terval [[0, T [[ := {(t, ω) : 0 ≤ t < T (ω)} outside an evanescent set,
or equivalently, if there exists an event Λ of probability 1 such that
Ot(ω) > 0 for all states ω ∈ Λ and all times t < T (ω).

As short way of saying this goes like: “a.s. Ot > 0 on {t < T} all t.”
Note, this definition requires that the event Λ above can be chosen

independent of time t. An apparently weaker property would allow Λ
to depend on t, which is like saying for each t, Ot is positive a.s on
the set {t < T}. The result below shows that this apparently weaker
positivity statement actually implies the strong positivity statement of
the definition. (Recall T 0 :=: T 0

O := inf{t > 0 : Ot = 0}.)

Theorem 5.5. Let O be a nonnegative option. Then the following
conditions are equivalent. (a) O is semipositive, (b) T 0

O = TO a.s.,
(c) {S < T} ⊂ {OS > 0} a.s for any stopping time S (or S ≤ T ),
(d) for each t, {t < T} ⊂ {Ot > 0} a.s.

Proof. That (a) implies (c) and (c) implies (d) is clear. That (b) im-
plies (a) is easy too. Indeed assume (b) and set Λ = {T 0 = T}. By
assumption, P [Λ] = 1. Let ω ∈ Λ and t < T (ω). Then t < T 0(ω) as
T 0(ω) = T (ω). But, then definition of T 0 gives Ot(ω) > 0. It remains
to show (d) implies (b).

Assume (d). Let Q be the set of rationals in [0,m]. As Q is dense,

{T 0 < T} =
⋃
t∈Q

{T 0 < t < T}

As Q is countable, it suffices to show P [T 0 < t < T ] = 0 for each
t ∈ Q. By (d), {T 0 < t < T} ⊂ {Ot > 0} a.s. But, Theorem 5.1
applied to S = t ∧ T 0 implies {T 0 < t < T} ⊂ {Ot = 0} a.s.17 Hence,
P [T 0 < t < T ] = 0 a.s.. �

Proposition 5.6. Let O be a nonnegative option. Then the option
(T 0,OT 0) is semipositive.

Proof. By part (d) above, it suffices to show (T 0,OT 0)t is a.s. positive
on the set {t < T 0} for any t. But, by price transitivity, (T 0,OT 0)t = Ot

on this set, and Ot is positive on this set by the definition of T 0. �

Proposition 5.7. Any two indistinguishable semipositive options O
and O′ are equivalent.

17In fact, more strongly it implies {T 0 < T} ∩ {T 0 ≤ t} ⊂ {Ot = 0} a.s.
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Proof. Say O = (T,O) and O′ = (T ′, O). Since O′ is semipositive,
O′

T > 0 on {T < T ′}. But O′
T = OT by Theorem 3.8 because O and

O′ are indistinguishable. Hence O = OT = O′
T > 0 on {T < T ′}. By

symmetry, it follows O > 0 on the set {T 6= T ′}. But as O and O′ are
indistinguishable, {T 6= T ′} ⊂ {O = 0} a.s. Thus, T = T ′ a.s. �

Corollary 5.2 says O and (T 0,OT 0) are indistinguishable options.
Proposition 5.6 says the latter is semipositive. Proposition 5.7 states
uniqueness. We conclude

Theorem 5.8. Let O = (T,O) be nonnegative option. Then, there
exists up to equivalence a unique semipositive option that is indistin-
guishable from O, namely the option (T 0, O) = (T 0,OT 0).

This result will prove effective for deriving some properties for non-
negative option which are more easily established for positive options,
such as minimax duality for american options in Part II and the asso-
ciativity of the rollover operator and its consequences in Part III.

5.3. Tight events and semipositivity. Our purpose here to show
semipositivity is a property only of the zero set of the payoff - not of
the entire payoff. A useful result in this connection is

Theorem 5.9. Let O = (T,O) be a nonnegative option and E = (T,E)
a semipositive option. If {O = 0} ⊂ {E = 0}, then O is semipositive.

The theorem, proved below, follows readily from the proposition be-
low, which is immediate, and the lemma following it, which gives an
interesting new characterization of semipositivity. Basically it says, an
option is semipositive if its zero-payoff set is tight at expiry.

Let T be a stopping time. “Tightness” is a property of events in FT :
An event Γ ∈ FT is Tight at T if Λ ⊂ {S = T} a.s. for every subset

Λ ⊂ Γ and every stopping time S ≤ T such that Λ ∈ FS.
Note then, Γ /∈ FS for any stopping time S < T unless Γ is null.
In effect, the definition states that no portion of Γ is previsible at

any time before T . It is designed so that a subevent of a tight event is
tight - and this is obvious and requires no proof.

Proposition 5.10. Let T be a stopping time, and Γ, Λ be two FT -
measurable events, Λ ⊂ Γ. If Γ is tight at T then so is Λ.

We now tie this notion of tightness to semipositivity:

Lemma 5.11. A nonnegative option O = (T,O) is semipositive if and
only if its zero-payoff set {O = 0} is tight at expiry T .

Proof. Assume {O = 0} is tight at T . This then implies {O = 0} ⊂
{T 0 = T} a.s. because {O = 0} ∈ FT 0 by Corollary 5.2. Set T 0 = T 0

O.
But {T 0 < T} ⊂ {O = 0} a.s. by Theorem 5.1. It follows T 0 = T a.s.,
which by Theorem 5.5 part (b) implies O is semipositive.
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Conversely assume O be semipositive. Let Λ ⊂ {O = 0} and S ≤ T
be a stopping time with Λ ∈ FS. Then, 1ΛO = 0 a.s. Hence, 1ΛOS =
1Λ(T,O)S = (T, 1ΛO)S = 0 a.s., i.e., OS = 0 on Λ a.s. But by definition
of semipositivity, OS > 0 on {S < T} a.s. So Λ ⊂ {S = T} a.s. �

Proof. of Theorem 6.9. By the lemma {E = 0} is tight at T . By
assumption {O = 0} ⊂ {E = 0}. The proposition then implies {O =
0} is tight at T . By the lemma again, O is semipositive now. �

5.4. Discussion: settling zero payoffs as soon as possible. Non-
semipositive nonnegative options are not oddities and often arise in
practice. It is just that they are indistinguishable from semipositive
ones. To clarify this point, let s < m, and B be a numeraire such
that 0 < P[B ≤ 1] < 1. Consider the european s-expiry call option
E = (s, (Bs − 1)+). Let β be a numeraire. Then the nonnegative
rollover claim C = CE,β := (Bs −1)+β/βt is certainly not semipositive.
In fact if Bs(ω) ≤ 1, then Ct(ω) = 0 for all t ∈ [s,m]. Now, assume E
is semipositive. The indistinguishable semipositive version of C is then
given by (T 0, C), where T 0 = 1Bs≤1s + 1Bs>1m.

Of course, a.s. Ct = (T 0, C)t all t, because claim C and option
(T 0, C) are indistinguishable. For the study of nonnegative option price
processes, we can choose either version, but as we shall see, a semipos-
itive version displays superior analytic and algebraic properties.

Semipositivity is achieved by settling zero payoffs and expiring the
option as soon as its price becomes zero, for it is then certain that payoff
will end zero at expiry as well. This is the opposite of postponing zero
payoffs as discussed in section 3. It is a welcome relief on fragile back
office settlement systems to mark the trade as deleted and archive it
then, rather than keeping it live as a trade with no cashflow.

For example consider a 9-year knockout call option which knockouts
with 0 payoff when a level is first crossed. Suppose this actually comes
to pass in year 2. Efficient settlement calls for legally expiring the
contract then at year 2, rather than wait until year 9 and then do it.

5.5. Further on nonnegative arbitrage. The theorem below states
in a rather strong way that once the price of a nonnegative option O be-
comes zero it stays zero. Actually, it is already subsumed by Corollary
5.2 saying O is indistinguishable from (T 0, O), which combined with
Theorem 3.8, implies a.s., Ot = (T 0, O)t all t, for such property clearly
holds for the semipositive option (T 0, O). However, for pedagogical
reasons we provide a more direct proof using Theorem 5.1. The result
strengthens Theorem 5.1, though no doubt, it can further be improved
along the lines of Theorem 4.16 in [E]. (See also Corollary 7.4.)

Theorem 5.12. (Nonnegative arbitrage) Let O = (T,O) be a nonneg-
ative option. Then a.s.

1T 0<T 1T 0≤tOt = 0, ∀t.



NUMERAIRE-INVARIANT OPTION PRICING AND STREAM ROLLOVER 25

In particular, a.s. 1{T 0≤t<T}Ot = 0 all t.
Equivalently, there exists an event Λ of probability 1 such that Ot(ω) =

0 for all states ω ∈ Λ with T 0(ω) < T (ω) and all times t ≥ T 0(ω), i.e.,
such that Λ ∩ {T 0 < T} ∩ {T 0 ≤ t} ⊂ {Ot = 0} for all t ∈ [0,m].

Proof. By Theorem 5.1, for any s, there exists an event Λs of probability
1 such that Λs ∩ {T 0 < T} ⊂ {Os∨T 0 = 0}. This implies

(5.1) Λs ∩ {T 0 < T} ∩ {T 0 ≤ s} ⊂ {Os = 0}.

Now set Λ =
⋂

s∈Q Λs, where Q is the set of rational numbers in [0,m].
Note P [Λ] = 1 as Q is countable. Let t ∈ [0,m]. Choose a decreasing
sequence (tn)∞n=1, tn ∈ Q such that tn ↘ t. Then,

Λ ∩ {T 0 < T} ∩ {T 0 ≤ t}

⊂
∞⋂

n=1

Λ ∩ {T 0 < T} ∩ {T 0 ≤ tn} (since t ≤ tn)

⊂

∞⋂
n=1

Λtn ∩ {T 0 < T} ∩ {T 0 ≤ tn} (since Λtn ⊂ Λ)

⊂ {T 0 < T} ∩
∞⋂

n=1

{Otn = 0} (by Eq. 5.1)

⊂ {T 0 < T ≤ t}
⋃

({t < T} ∩
∞⋂

n=1

{Otn = 0})

⊂ {Ot = 0},

where the last step follows because {T 0 < T ≤ t} ⊂ {Ot = 0} by again
Theorem 5.1, and because {t < T} ∩

⋂∞
n=1{Otn = 0} ⊂ {Ot = 0} since

price process (Ot) is right-continuous at t on the set {t < T}. �

For pedagogical reasons, we also give a direct proof of another result
subsumed by Corollary 5.2

Proposition 5.13. Let O = (T,O) be a nonnegative option. Then
{O = 0} ∈ FT 0

O
.

Proof. We must show that {O = 0}∩{T 0
O ≤ t} ∈ Ft, ∀t. Since T 0

O ≤ T ,
{T ≤ t} ⊂ {T 0

O ≤ t}. So, {T 0
O ≤ t} = {T ≤ t} ∪ ({T 0

O ≤ t} ∩ {T > t}).
But {O = 0}∩{T ≤ t} ∈ Ft since O ∈ FT . Hence, to show {O = 0} ∈
FT 0

O
, it is enough to show {O = 0} ∩ {T 0

O ≤ t < T} ∈ Ft ∀t.

Since O is nonnegative, {Ot = 0}∩{t < T} ⊂ {O = 0} by Theorem,
5.1. Hence by definition of T 0

O, {T 0
O ≤ t < T} ⊂ {O = 0}. Therefore

{O = 0} ∩ {T 0
O ≤ t < T} = {T 0

O ≤ t < T}, and this set is Ft

measurable because T 0
O and T are stopping times. �

Part II: Snell Envelop, American Options, Minimax Duality
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6. Snell envelop and the american stream

6.1. Snell Envelop. Throughout this subsection, let Z· = (Zt)t∈[0,m]

be a right-continuous, payoff process. Equivalently, (Zt) is adapted,
right-continuous, and |Zt| ≤ βt a.s. all t for some numeraire β.

The Snell Envelop of (Zt) is the function V· :=: (V Z·

t ) = (Vt)t∈[0,m]

on [0,m] × Ω defined by

Vt :=: V Z·

t := sup
t≤T∈T

(T, ZT )t.

Clearly Zt ≤ Vt. Also, any numeraire that dominates (Zt) also domi-
nates (Vt), as it dominates all Z·-trigger options (T, ZT ).

The measurability of (Vt) is not evident because the supremum is
taken over an uncountable set. A related apparent problematic is with
versioning: if we replace each trigger option price process (T, ZT )t by
an indistinguishable process, then, again because of uncountability of
T , it is not apparent that we a get a modification of (Vt), let alone an
indistinguishable version of it. But, in fact, regardless

Theorem 6.1. The Snell envelop (V Z·

t ) of a right-continuous payoff
process Z· is a right-continuous payoff process. Further, for t ≤ s, a.s.

(s, Vs)t = sup
s≤T∈T

(T, ZT )t =: V s
t , t ≤ s.

In particular, since V s
t is decreasing in s, Vt ≥ (s, Vs)t a.s. all t ≤ s.

The proof is in stages and given below. It approximates by bermu-
dan options to establish the measurability of (Vt), and uses additional
trigger convergence arguments for its right-continuity. To emphasize
the delicacy of the latter, we first give an example of a continuous pay-
off process whose Snell envelop is not (left) continuous.

Continuity Counterexample: This is an example of an american
put option on an stock with a stochastic volatility that jumps when
an event occurs. Choose ξt = exp(−rt), r > 0. Let (wt) be P-
Brownian motion and τ be the first jump of a Poisson process with
0 < ε := P [τ < m] < 1. Let 0 ≤ σ2 < σ1 (e.g., σ1 = 0.2, σ2 = 0.05,
ε = 0.01, r = 0.05,). Set σt = 1t<τσ1 + 1t≥τσ2. Consider the stock
with volatility σt: dSt/St = r dt + σtdwt, S0 = 1, and the american
put Zt = (1 − St)

+ (struck at 1). Then, (Zt), is a continuous payoff
process, but we claim Vτ− < Vτ . (The reverse inequality holds when
σ2 > σ1.). Indeed, let V 1

t (resp. V 2
t ) denote the price at time t of the

american put option issued at time t on a stock with constant volatility
σ1 (resp. σ2). Choose σ1 and σ2 such that V 1

t > V 2
t (This is especially

clear with σ2 = 0). Clearly, Vτ = V 2
τ . Further, by choosing ε small

enough Vt become close to V 1
t and away from V 2

τ for t < τ sufficiently
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close to τ . This gives Vτ− < Vτ , as claimed.

The rest of this subsection is devoted to the proof of the theorem.

A Finite Exercise Date Approximation is an increasing sequence
U· = (Un)∞n=1 of finite subsets of [0,m] whose union is dense in [0,m].
So, Un ⊂ Un+1 all n, and

⋃
n Un ⊂ [0,m] is dense.

(Think of successively approximating an american option with a se-
quence of ever closer bermudan options.)

For example the dyadic approximation is defined by Un = {jm/2n, j =
1, · · · , 2n}. (So, U1 = {m/2,m}, U2 = {m/4,m/2, 3m/4,m}, etc.)

Fix a finite exercise approximation (Un)∞n=1, e.g., the dyadic one.

Lemma 6.2. For any stopping time T , the sequence of stopping times
(TU·

n )∞n=1 is decreasing and converges to T , where TU·

n := min{t ∈ Un :
t ≥ T}. Hence by trigger convergence, (TU·

n , ZT U·
n

)t → (T, ZT )t, all t.

Proof. That (TU·

n ) is decreasing follows because (Un) is increasing, and
the convergence to T is because

⋃
n Un is dense. The last statement

follows by Theorem 4.6 because (Zt) is assumed right continuous. �

For each n, set T n := {T ∈ T : T (ω) ∈ Un ∀ω}. And for t ≤ s, set

V s,n
t := sup

s≤T∈T n

(T, ZT )t, t ≤ s.

Obviously V s,n
t ≤ V s

t and V s,n
t is decreasing in s. Also, V s,n

t is
increasing in n because (Un) is an an increasing sequence of sets.

Corollary 6.3. We have V s
t = limn→∞ V s,n

t a.s. for t ≤ s. In partic-
ular, Vt = limn→∞ V t,n

t a.s.

Proof. As V s,n
t is increasing in n and bounded by V s

t , the sequence
(V s,n

t )∞n=1 is convergent and V s
t ≥ limn→∞ V s,n

t . On the other hand,
Lemma 6.2 implies that (T, VT )t ≤ supn(V s,n

t ) for any stopping time
T ≥ s, because TU·

n ∈ Tn. Hence V s
t ≤ supn(V s,n

t ) = limn→∞ V s,n
t . �

It follows from the corollary that (Vt) is progressively measurable if
we knew that (V t,n

t ) is so for each n. But, the latter is well known as
(V t,n

t ) represents the time t-price of bermudan option issued at time t
with exercise dates in Un, and this will be shown in Part III under a
more general setting. Specifically, for each s ∈ [0,m] and each n, set

T n
s := inf{s ≤ t ∈ Un : Zt = V t,n

t }.

Then T n
s is a stopping time as (V t,n

t ) is progressively measurable. Hence,
Bs,n := (T n

s , ZT n
s
) is an option as (Zt) is a payoff process. We will also

show that price of this bermudan option Bs,n is given by Bs,n
t = V s,n

t .18

18This assertion is easy for bermudan options because of (backward) induction.
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As (Bs,n
t ) and (Bt,n

t ) are progressively measurable, it follows from pre-
vious corollary that (V s

t )t∈[0,s] and (Vt) are progressively measurable
too.19 As (Vt) is dominated, it is therefore a payoff function. Next,

Proposition 6.4. For all n and t ≤ s, we have (s, V s,n
s )t = V s,n

t a.s.

Proof. Applying the pricing formula Bs,n
t = V s,n

t and the definition of
Bs,n, each twice, and price transitivity once,

(s, V s,n
s )t = (s,Bs,n

s )t := (s, (T n
s , ZT n

s
)s)t

= (T n
s , ZT n

s
)t =: Bs,n

t = V s,n
t .

�

Corollary 6.5. For all t ≤ s, we have (s, Vs)t = V s
t a.s.

Proof. Using the above corollary and above proposition,

V s
t = lim

n→∞
V s,n

t = lim
n→∞

(s, V s,n
s )t.

By above corollary and dominated option convergence Theorem 4.1,

(s, Vs)t = (s, lim
n→∞

V s,n
s )t = lim

n→∞
(s, V s,n

s )t.

Hence (s, Vs)t = V s
t , as desired. �

It remains to show that the snell envelop (Vt) is right continuous.

Lemma 6.6. Snell envelop (Vt) has a right limit (Vt+) and Vt ≥ Vt+

a.s. all t.

Proof. Corollary 6.5 and the fact that V s
t is decreasing in s immediately

imply that (s, Vs)t ≤ Vt a.s. for all t ≤ s. This in turn immediately im-
plies Xt := (Vt/βt) is a Pβ-supermartingale for any numeraire β. (See
also Proposition 7.2). Now, Theorem 4.6 of [E] says any supermartin-
gale (Xt) has a right limit and its satisfies Xt+ ≤ Xt a.s. As numeraire
price (βt) is right-continuous, the desired result follows. �

It remains to show Vt ≤ Vt+ a.s. all t. For this we first show a related
right-continuity result of independent interest.

Proposition 6.7. Almost all sample paths V s
t (ω) are right continuous

in s for fixed t ≤ s.20

Proof. Let sn ↘ s. As V sn

t increases with n and V sn

t ≤ V s
t , (the limit

exists and) V s
t ≥ limn→∞ V sn

t . Next, let s ≤ T ∈ T . Set Tn = T ∨ sn.
Then Tn ↘ T ; hence by trigger option convergence,

(T, ZT )t = lim(Tn, ZTn
)t ≤ sup

sn≤T∈T
(T, ZT )t =: V sn

t ,

19Note however, Bt,n
t = V t,n

t (ω) is not right-continuous at t = Tn
t (ω).

20A related and even easier statement is: Vt = supt<T∈T (T,ZT )t. Indeed, Vt =
max(Zt, supt<T∈T (T,ZT )t). But, Corollary 5.5, Zt ≤ supt<T∈T .
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where the inequality followed because Tn ≥ sn. Hence,

V s
t := sup

s≤T∈T
(T, ZT )t ≤ sup

n
V sn

t = lim
n→∞

V sn

t .

(The last equality is again because V sn

t is increasing in n.) �

Using the proposition, and the fact that (V s
t ) is decreasing in s, we

now show Vt ≤ Vt+ , completing the proof of the theorem.

Lemma 6.8. We have Vt ≤ Vt+ a.s. all t.

Proof. It is sufficient to show that ∀ε > 0,∃δ > 0 such that t < s < t+δ
implies (*) Vt ≤ Vs + ε. Let ε > 0. By the above proposition, there is a
u > t so that 0 ≤ Vt − V u

t < ε/2. Next, by Corollary 6.5, (V u
t ) is right

continuous at t, so there is a 0 < δ < u − t such that |V u
t − V u

s | < ε/2
whenever t < s < t+ δ. Combining the two inequalities, it follows that
|Vt − V u

s | < ε for t < s < t + δ. There are two possibilities. If V u
s ≤ Vt,

then we get Vt ≤ V u
s + ε ≤ Vs + ε, and (*) holds. While if V u

s > Vt,
then (*) holds trivially, because then Vs ≥ V u

s > Vt. �

This concludes the proof of Theorem 6.1.21 �

6.2. The american option stream. Let Z· = (Zt) be a right-continuous
payoff process, and (Vt) :=: (V Z·

t ) be its Snell envelope.
For each t, define the Post-t-Optimal Exercise Time associated to

payoff process (Zt) by

Tt :=: TZ·

t := inf{t ≤ s ≤ m : Zs = Vs}, t ∈ [0,m].

Note, t ≤ Tt ≤ Ts for t ≤ s. The adaptability and right continuity of
(Vt) shown in Theorem 6.1 implies each Tt is a stopping time.

Proposition 6.9. (a) Each Tt is a stopping time.
(b) a.s. ZTt

= VTt
all t.

(c) The (non-adapted) process (Tt) is“regenerative”: for t ≤ s,

1s≤Tt
Tt = 1s≤Tt

Ts, (or, 1s≤Tt
= 1s≤Tt=Ts

) t ≤ s.

Proof. (a) Since Tt is a hitting time of the right-continuous adapted
process (Vt − Zt), it is a stopping time.22 (b) For any ω, there is a
sequence tn → Tt(ω) such that t ≤ tn and Ztn(ω) = Vtn(ω). Hence,
ZTt(ω)(ω) = VTt(ω)(ω) at all ω where (Zt−Vt) is right continuous for all t,

21Lemma 6.6 above used Theorem 4.6 of [E]. We now outline another proof for
right continuity of (Vt) that does not depend on that result. Lemma 6.8 actually
shows Vt ≤ lims↘t inf(Vs). So, it suffices to show Vt ≥ lims↘t supVs. But,

lim
s↘t

sup(Vs) = lim
s↘t

sup(sup
n

V s,n
s ) = sup

n
(lim
s↘t

supV s,n
s ) ≤ sup

n
V t,n

t = Vt.

The second equality above follows from interchanging the order of supremum. In-
deed, chasing definition, it is easy to show that for any doubly indexed sequences
(aij)

∞
i,j=1 increasing in j, we have lim supi(supj aij) = supj(lim supi aij).

22Actually, according to Corollary 6.12 of [E], all we need to know is that (Vt−Zt)
is progressively measurable to conclude Tt is a stopping time.
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a set of measure 1. (c) Set u = Tt(ω). Note u ≤ Ts(ω) as t ≤ s. By (b)
Zu(ω) = Vu(ω). So Ts(ω) ≤ u if u ≥ s, implying thus Ts(ω) = u. �

Counterexample to right continuity of process (Tt): Consider a se-
quence tn ↘ t. Then sequence (Ttn) is decreasing and above Tt, so
it has a limit and limn→∞ Ttn ≥ Tt. If (Vt − Zt) is a semimartingale
with infinite variation, we expect equality to hold, but otherwise not
in general. For instance, take ξt = 1 all t, and let (Zt) be deterministic
and smooth. Then Vt = maxs∈[t,m] Zs. Now assume Z1 = 1 = Z2 and
Zt < 1 for t /∈ {1, 2}. Then Tt = 1 for t ≤ 1, while Tt = 2 for 1 < t ≤ 2.

The right-continuous payoff process (Zt) is American if Vt = (Tt, ZTt
)t

a.s. all t. This means that the supremum in the definition of the Snell
envelop (Vt) is reached at Tt, implying Vt = maxt≤T∈T (T, ZT )t.

The “superclaim property” of Snell envelop is particularly easy for
american payoffs: for t ≤ s, using price transitivity, then that t ≤ Ts,

(s, Vs)t = (Ts, ZTs
)t ≤ sup

t≤T∈T
(T, ZT )t =: Vt.

Given an american payoff process (Zt), for any s, the Z·-trigger op-
tion As := (Ts, ZTs

) is the Post-s American Option associated to (Zt):

As :=: As,Z· := (Ts, ZTs
).

As (Zt) is assumed american, this gives immediately At
t = Vt a.s. all t.

The following gives a pricing formula for As at any time t.

Theorem 6.10. Let (Zt) be an american payoff process. Then a.s.

As
t = sup

s≤T∈T
(T, ZT )t =: V s

t , t ≤ s;

As
t = 1t≤Ts

Vt, s ≤ t.

So, for all t and s we have, a.s.,

As
t = 1t≤sV

s
t + 1s<t≤Ts

Vt.

Moreover, for s ≤ u ≤ t we have the following regenerative property:

As
t = 1t≤Ts

At
t = 1t≤Ts

Au
t , s ≤ u ≤ t.

Proof. Since (Zt) is american, Vs = As
s by definition. Hence, by price

transitivity, As
t = (s, Vs)t for t ≤ s. But, (s, Vs)t = V s

t for t ≤ s by
Theorem 6.1. The first formula follows. As for second, assume s ≤ t.
Then 1t≤Ts

= 1t≤Ts=Tt
by above proposition part (c). Hence,

As
t = 1t≤Ts

As
t = 1t≤Ts=Tt

As
t = 1t≤Ts=Tt

(Ts, ZTs
)t

= (Ts, 1t≤Ts=Tt
ZTs

)t = (Tt, 1t≤Ts=Tt
ZTt

)t

= 1t≤Ts=Tt
(Tt, ZTt

)t = 1t≤Ts
Vt.
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This gives the second formula. The third is now immediate. The fourth
follows from twice application of the second:

1t≤Ts
Au

t = 1t≤Ts
1t≤Tu

Vt = 1t≤Ts
Vt = As

t .

�

We next show a continuous payoff process (Zt) is american.
But, first we give an example of a right-continuous (but not left con-

tinuous) payoff process that is not american.

Counterexample to (Zt) being american: Let S be a numeraire, such
that P [St > 1] > 0, all t, e.g., a lognormally distributed stock. Set
Zt = 1t<1(St − 1)+. Clearly, (Zt) is a right-continuous payoff process
(dominated by S). But, it is not an american payoff process if we as-
sume positive interest rates, meaning (s, 1)t ≤ 1 for t ≤ s. Indeed then,
by put-call parity, Zt < (s, Zs)t for any t < s < 1. Hence Zt < Vt for
t < 1. On the other hand, Z1 = V1 = 0. Hence Tt = 1 for any t < 1. It
follows that ZTt

= 0. But, Vt > 0 for t < 1 because P [St > 1] > 0.

As in section 6.1, let (Un)∞n=1 be a finite exercise date approximation,
and recall the definition of bermudan options Bs,n := (T n

s , ZT n
s
), where

T n
s := inf{s ≤ t ∈ Un : Zt = V t,n

t } with V t,n
t := supt≤T∈T n(T, ZT )t.

Lemma 6.11. If (Zt) is right continuous, then T n
s → Ts a.s. all s. 23

Proof. We show (a) Ts ≥ lim supn T n
s and (b) Ts ≤ lim infn T n

s . It then
follows sequence (T n

s ) has a limit, and that limit equals Ts. (a): Since
U =

⋃
n Un is dense, it suffices to show any s ≤ t ∈ U which satisfies

t < lim sup T n
s also satisfies t < Ts. If these conditions hold, then by

definition of T n
s , there exists an integer n0 such that Zt < V t,n0

t . As
V t,n

t is increasing in n, it follows Zt < V t,n
t for all n ≥ n0. Hence, by

Corollary 6.3, Zt < lim V t,n
t = Vt. Thus t < Ts by definition of Ts.

(b): Set Yt = Vt − Zt. Note YT n
s

= 0 for all s and n. Now let ω ∈ Ω.
Set u = uω = infn T n

s (ω). There is a subsequence (T ni

s (ω))∞i=1 such that
T ni

s (ω)) ↘ u. Since (Yt) is right-continuous, it follows Yu(ω) = 0. Since
u ≥ s, this implies u ≥ Ts(ω) by definition of Ts. �

Theorem 6.12. Let (Zt) be a continuous payoff process which is dom-
inated by a continuous numeraire. Then (Zt) is american.

Proof. Using the lemma and the continuous version of trigger option
convergence (Prop. 4.8), we get a.s. Bs,n

t → (Ts, ZTs
)t all t. In particu-

lar, Bt,n
t → (Tt, ZTt

)t a.s. But, as in section 6.1, Bt,n
t = V t,n

t , and Corol-
lary 6.3 gives Bt,n

t → Vt. Hence, (Tt, ZTt
)t = Vt a.s., as desired. �

Remark : Assume (Zt) is american. It would be desirable that the
(non-adapted) process (Ts) be right continuous. For then trigger option

23It is not the case that Tn
s is monotone in n.
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convergence would imply As
t is right continuous in s. Using this and

that As
t is decreasing in s, an argument similar to Corollary 6.8 implies

(At
t) is right-continuous. Now, by the definition of the american op-

tion, (At
t) is a modification of (Vt). As both are now right-continuous,

it would follow (At
t) and (Vt) are indistinguishable.

Of special interest is A :=: A0 :=: AZ· , the American Option as-
sociated to (Zt). As the above analysis suggests, its properties are
intertwined with those of the other american options As, s > 0.

This tentatively prompts for a new notion, a generalization of a sto-
chastic process, where an Option Stream is defined as a curve O. :
[0,m] −→ O of options, s 7→ Os = (Ts, O

s), such that the stopping
time process (Ts) is increasing. A Right-Continuous Stream may then
be defined as a stream O. such that the processes (Ts) and (Os) are right
continuous (but in general not necessarily adapted, although Os ∈ CTs

).
Right-continuous option streams are beyond the scope of this paper.

But, Part III is devoted to finitely supported option streams.

7. Multiplicative minimax duality

The minimax-duality formulae of this section are valid for any right-
continuous payoff processes, not just american ones. But, first we need
a consequence of the (additive) Doob-Meyer decomposition theorem.

7.1. Superclaims and Domineering numeraires. A Superclaim (Vt)
= (Vt)

m
t=0 is a right-continuous payoff process such that Vt ≥ (s, Vs)t

a.s. for all t ≤ s. Clearly, (price process of) any claim is a superclaim.

Proposition 7.1. The Snell envelop of a right continuous payoff pro-
cess is a superclaim, as evident in the statement of Theorem 6.1.

An obvious reformulation in terms of numeraires justifies the jargon.

Proposition 7.2. A right-continuous payoff process (Vt) is a super-
claim if and only if process (Vt/βt) is a right-continuous Pβ super-
martingale for some (hence all) numeraire β.

Proof. Let t ≤ s. For any numeraire β, we have (s, Vs)t = βtE
β[Vs/βs | Ft].

Therefore (s, Vs)t ≤ Vt if and only if Eβ[Vs/βs | Ft] ≤ Vt/βt. �

In particular, almost all sample paths of a superclaim have left limits.
Below is a formulation of the additive Doob-Meyer decomposition

for superclaims. Like a later multiplicative version, it involves a claim
and a decreasing process, but references an additional numeraire.

Corollary 7.3. (Additive Doob-Meyer Decomposition) Let (Vt) be a
superclaim and β be a numeraire. Then there exist a unique claim
C and decreasing predictable process (At) with A0 = 0 such that a.s.
Vt = βtAt + Ct all t. Moreover, C0 = V0 , a.s. Vt ≤ Ct all t, and if
Vm > 0 a.s., then C is a numeraire dominating (Vt).
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Proof. By above proposition (Vt/βt) is a Pβ supermartingale, and it is
Pβ-class D by Proposition 4.5. Hence, it has a Doob-Meyer decomposi-
tion, i.e., there exists a unique decomposition Vt/βt = At + Mt, where
(Mt) is a Pβ-martingale and (At) is a decreasing predictable process
with A0 = 0. The claim C := βMm has the requisite properties. �

A Supernumeraire (Vt) is a superclaim such that Vm > 0 a.s.
Then Vt ≥ (m,Vm)t > 0 a.s. all t. In fact a well-known property of

right-continuous nonnegative supermartingales (c.f., [E] Theorems 4.3
and 4.16) coupled with Proposition 7.2 immediately implies

Corollary 7.4. Almost all sample paths of a supernumeraire (Vt) are
bounded below strictly above zero. So, a.s. Vt > 0 and Vt− > 0, all t.24

Minimax duality hinges on the following notion. A numeraire B
Domineers a superclaim (Vt) if B dominates (Vt) and B0 = V0.

The additive Doob-Meyer decomposition supplies plenty of domi-
neering numeraires, in fact one for each numeraire. Namely, let β
be a numeraire and B be the unique numeraire with B0 = V0 and
((Vt − Bt)/βt) decreasing and predictable. Then clearly B domineers
(Vt), as also stated in the last part of above Corollary 7.3.

But the above notion suffices only for the minimax duality formula at
time 0. More generally, given any time t, say a numeraire B Domineers
a superclaim V· at t, if Vt = Bt a.s. and Vs ≤ Bs a.s. for all s > t.

Again there are plenty of them:

Proposition 7.5. Let (Vt) be supernumeraire and β be a numeraire.
Let B be the numeraire in the Doob-Meyer decomposition Vt = Atβt+Bt

of (Vt) given by Corollary 7.3. For any time t, set Bt = B+Atβ. Then,
Bt is a numeraire that domineers the supernumeraire (Vt) at t.

Proof. Clearly for s ≥ t (though not for s < t), we have Bt
s = Bs+Atβs.

Thus, Bt
t = Bt+Atβt = Vt, and Bt

s ≥ Bs+Asβs = Vs > 0 for s > t. �

7.2. Positive minimax duality. Throughout this subsection, let (Zt)
be a positive right-continuous payoff process, that is Zt > 0 a.s. all t.

As before, (Vt) :=: (V Z·

t ) denotes the Snell envelope associated to
payoff process (Zt). It is supernumeraire because Zt > 0.25

The main step leading to the multiplicative dual formula is

Proposition 7.6. Let B be a numeraire that domineers V· at t. Then

sup
s≥t

(
Zs

Bs

) = 1 a.s.

24In particular, this hold for (price process of) a numeraire, furnishing in this
case a stronger positivity statement than that of Corollary 5.4.

25It is worth recalling that numeraire B dominates (Vt) if (and only if) it dom-
inates (Zt) (because if it dominates (Zt) it dominates all trigger options (T,ZT ),
hence their supremum (Vt)).
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Proof. Since B domineers V·, at t and Zs ≤ Vs.

sup
s≥t

(
Zs

Bs

) ≤ sup
s≥t

(
Zs

Vs

) ≤ 1.

To prove equality, it suffices to show EB[sups≥t(Zs/Bs) | Ft] ≥ 1. Clearly

Eβ[ZT /BT | Ft] ≤ Eβ[sups≥t(Zs/βt) | Ft] for any stopping time T ≥ t.
Thus by definition of option price with B chosen as numeraire,

Bt = Vt = Bt sup
t≤T∈T

EB[
ZT

BT

| Ft] ≤ BtE
B[sup

s≥t
(
Zs

Bs

) | Ft].

Hence, 1 ≤ EB[sups≥t(Zs/Bs) | Ft], as desired. �

For reference in the next subsections, we will refer to the two formulae
below as the first and second minimax duality formula.

Corollary 7.7. (Multiplicative Minimax Duality) We have a.s. all t,

Vt = inf
β∈C+

βtE
β[sup

s≥t
(
Zs

βs

) | Ft].
26

Moreover, the infimum is attained at any numeraire B that domineers
V· at t. Since such numeraires exist for any t, we may also write a.s.

Vt = min
β∈C+

βtE
β[sup

s≥t
(
Zs

βs

) | Ft].

Proof. Clearly Eβ[ZT /βT | Ft] ≤ Eβ[sups≥t(Zs/βt) | Ft] for any stopping

time T ≥ t. Hence, Vt ≤ βtE
β[sups≥t(Zs/βt) | Ft]. Next, let B be

any numeraire that domineers V· at t. The above proposition gives
sups≥t(Zs/Bs) = 1 for numeraire B. So, Bt = BtE

β[sups≥t(Zs/Bs) | Ft].
But, Bt = Vt because B is domineering at t. Hence the infimum is
actually attained by this numeraire B, implying equality. �

Comparison with Additive Minimax Duality. [R], and in the bermu-
dan case [H-K], formulate the original additive version under a fixed
numeraire in terms of martingales rather than claims. In our context,
a formulation, noted similarly in [A-B], is as follows. Let (Zt) be a
right-continuous payoff process (not necessarily positive) and β be a
numeraire. Then, V0 = infC∈C(C0 +β0E

β[supt((Zt−Ct)/βt)]), with the
infimum attained at the claim C in Corollary 7.3.27

26For any t and numeraire β, X∗ := sups≥t(Zs/βs) is measurable. Indeed, by
right continuity, X∗ = sups≥t∈Q(Zs/βs), where Q is the set of rationals. And,

whenever, as here or in the sequel, (Zt) is nonnegative, Eβ [X∗ | Ft] is well-defined
and satisfies 0 ≤ Eβ [X∗ | Ft] ≤ ∞. Of course, X∗β is a claim if and only if
Eβ [X∗] < ∞, in which case then also Eβ [X∗ | Ft] = (X∗β)t/βt < ∞. Whether or
not Eβ [X∗ | Ft] < ∞, the formula remains valid. (The infumum over β of these ex-
pectation is taken, and numeraires inducing infinite exepectation do not contribute
to infumum.) Note further, by Doob’s Lp inequality, X∗β is a claim if there exist
a p > 1 and a numeraire B dominating (Zt) such that sups Eβ [(Bs/βs)

p] < ∞.
27This follows by an argument similar to that of Corollary 7.7.
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By contrast, our result (applicable only to nonnegative payoffs) states
rather more simply, V0 = infB∈C+ B0E

B[supt(Zt/Bt)]. While closely re-
lated, these two statements are evidently different. The main difference
is that the additive version relies on a reference numeraire β, while the
multiplicative version does not. In this sense, the additive version is
not as numeraire-invariant as the multiplicative one. In the additive
version, selection of a good approximating claim C depends not just on
the payoff process (Zt) but also on the choice of reference numeraire β.

7.3. Preliminary nonnegative minimax duality. Here we extend
the first minimax duality formula to nonnegative payoff processes as
preparation for next the subsection.28

Proposition 7.8. Let C be a claim. If (Zt) is a right-continuous payoff
process, then so is (Zt + Ct), and for all t

TZ·+C·
t = TZ·

t ; V Z·+C·
t = V Z·

t + Ct.

Moreover, if (Zt) is american, then so is (Zt + Ct), and for all s, t,

As,Z·+C·
t = As,Z·

t + Ct.

Proof. Using price linearity and price transitivity

V Z·+C·
t := sup

t≤T∈T
(T, ZT + CT )t = sup

t≤T∈T
((T, ZT )t + (T,CT )t)

= sup
t≤T∈T

((T, ZT )t + Ct) = sup
t≤T∈T

((T, ZT )t) + Ct = V Z·

t + Ct.

The remaining statements are immediate from this.29 �

Using this, the first minimax duality formula in Corollary 7.7 for
positive options easily generalizes to nonnegative options.

Corollary 7.9. Let (Zt) be a nonnegative right-continuous payoff pro-
cess, i.e., Zt ≥ 0 a.s. all t. We then have a.s. all t,

V Z·

t = inf
β∈C+

βtE
β[sup

s≥t
(
Zs

βs

) | Ft].

Proof. Let ε > 0 and B be any numeraire. Then,

inf
β∈C+

βtE
β[sup

s≥t
(
Zt

βs

) | Ft] ≤ inf
β∈C+

βtE
β[sup

s≥t
(
Zs + εBt

βs

) | Ft]

= V Z·+εB·

t (by Corollary 7.7)

= V Zt

t + εBt (by above proposition).

28Curiously, when Zt ≥ 0 a.s. all t, we have Vt = supT∈T (T,ZT )t. Indeed, then
1t≤T ZT ≤ (T ∨ t, ZT∨t)T . Hence by price transitivity, (T,ZT )t = (T, 1t≤T ZT )t ≤
(T ∨ t, ZT∨t)t. So supT∈T (T,ZT )t ≤ Vt, as t ≤ (T ∨ t) ∈ T .

29Similarly if (Z ′
t) is another right-continuous payoff process, we clearly have

V
Z·+Z′

·

t ≤ V Z·

t + V
Z′

·

t .
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Since ε > 0 was arbitrary, infβ∈C+ βtE
β[sups≥t(

Zs

βs
) | Ft] ≤ Vt. The

reverse inequality is clear as before by the definition of (V Z·

t ). �

7.4. Semipositive minimax duality. Let C+ denote the set of all
semipositive claims. So, C+ ⊂ C+.

We first show that in the first minimax duality formula for nonneg-
ative options above, we can replace the infimum over C+ by infimum
over this larger set C+. Then we present our main minimax duality
result, that the infimum is achieved if the m-expiry european option
(m,Zm) is semipositive. As any nonnegative option is indistinguishable
from a semipositive one, this is not a stringent restriction at all.

Let O = (T,O) be an option and B ∈ C+ be a semipositive claim.
Define the rollover claim CO,B by 30

CO,B := O(1T=m + 1T<m
B

BT

), B ∈ C+.

Note, the ratio is well-defined, as, B being a semipositive claim, BT > 0
a.s. on {T < m}. Note also, the definition agrees with the earlier one
when B is a numeraire. It is easy to see that CO,B is a claim.

Proposition 7.10. Let O be an option and B and B′ be two semipos-
itive claims. Then, a.s. all t,

lim
ε↘0

CO,B+εB′

t = CO,B
t .

Proof. A similar argument as in Proposition 4.3 gives

|CO,B+εB′

| ≤ C |O|,B + C |O|,εB′

= C |O|,B + C |O|,B′

.

The desired result now follows by dominated option convergence. �

Clearly, a nonnegative random variable F is not a claim if and only
if Eβ[F/β] = ∞ for some hence all numeraire β. As such, for any
nonnegative random variable F ≥ 0, define F0 = β0E

β[F/β]. If F is a
claim, then this is just its time-0 price as before. If not, then F0 = ∞.

Now, let (Zt) be a nonnegative payoff process and B be a semipositive
claim. For each s, C(s,Zs),B is a nonnegative claim. Set

C∗B := sup
0≤s≤m

C(s,Zs),B = max(Zm, sup
0≤s<m

C(s,Zs),B).

If B happens to dominate (Zt), then clearly C∗B is a claim dominated
by B. If C∗B is not a claim, then C∗B

0 = ∞ because C∗B ≥ 0.31

In the present notation, Corollary 7.9 for t = 0 states V0 = infβ∈C+ C∗β
0 .

It can be improved by replacing C+ with C+:

30More generally in Part III, will define the “rollover option” O � O′ for any
option O and any nonnegative option O′, and study its associativity.

31See also footnote 26.
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Proposition 7.11. Let (Zt) be a nonnegative right-continuous payoff
process. Then

V0 = inf
B∈C+

C∗B
0 .

Proof. By Corollary 7.9 V0 = infβ∈C+ C∗β
0 . Since C+ ⊂ C+, it follows

V0 ≥ infB∈C+
C∗B

0 . As for the reverse equality, let B ∈ C+. By Proposi-

tion 7.10, C∗B
0 = limε↘0 C∗B+ε

0 ≥ infβ∈C+ C∗β
0 , the inequality following

since B + ε ∈ C+ for ε > 0. The reverse inequality follows. �

We now show the infimum is attained if the claim Zm is semipositive.

Theorem 7.12. Let (Zt) be a nonnegative right-continuous payoff pro-
cess. If the european option (m,Zm) is semipositive, then

V0 = min
B∈C+

C∗B
0 .

Proof. Since claim Zm is semipositive, a.s. Vt ≥ (m,Zm)t > 0 for all
t < m. Let β be a numeraire and Vt = Dtβt + Bt be the additive
Doob Meyer decomposition of superclaim (Vt) given in Corollary 7.3.
We have Bt ≥ Vt > 0 a.s. for t < m. Hence, (Bt) is semipositive. The
same argument as in Theorem 7.6 yields sups<m(Zs/Bs) = 1. Now, let
β a numeraire. Then, by this and the definition of time-0 price,

C∗B
0 = β0E

β[
1

β
max(Zm, sup

0≤s<m
C(s,Zs),B)]

= β0E
β[

1

β
max(Zm, sup

0≤s<m
(
Zs

Bs

B)]

= β0E
β[

1

β
max(Zm, B)] = β0E

β[
B

β
] = B0 = V0.

(For the third equality we used Zm ≤ Vm ≤ B). �

A similar statement is readily formulated for Vt at any time t > 0,
as done previously, or even by a time translation argument.

8. Multiplicative Doob-Meyer decomposition of

supernumeraires

8.1. Discussion. In addition to the additive Doob-Meyer decomposi-
tion, supernumeraries satisfy a unique local multiplicative decomposi-
tion as product of a decreasing process and a “local numeraire” defined
below. When this local numeraire is actually a numeraire, it can for
instance be used as a domineering numeraire for minimax duality.

For the finite nonnegative option streams in Part III, this numeraire
has a simple and interesting financial interpretation as a self-financing
trading strategy which we call “stream rollover.” There, its construc-
tion is explicit, resulting in properties which could possibly carry over
to right-continuous option streams by trigger option convergence argu-
ments similar to those we employed for the american stream.
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The multiplicative Doob-Meyer decomposition is discussed much less
than the additive version, and sources are scare. A 1965 paper of Ito
is hard to find. Its application to financial mathematics seems growing
though. One known application, repeated below in the present context,
is extraction of the instantaneous interest rates and risk-neutral mea-
sure from the state price density. Another example is its use by [D-Y]
in analysis of the passport option, a complex american-style option.

8.2. Local claims and the multiplicative decomposition. A pro-
cess C· = (Ct)

m
t=0 is a Local Claim if it is adapted, right continuous with

left limits, and there exists a increasing sequence (Tn)∞n=1 of stopping
times converging to m such that 1t≤Tn

Ct = (Tn, CTn
)t a.s all t.

The terminology is justified by choosing a reference numeraire.

Proposition 8.1. An adapted, right continuous process with left limits
(Ct) is a local claim if and only if process (Ct/βt) is a Pβ-local martin-
gale for some (hence all) numeraire β.

Proof. Suppose (Ct) is a local claim and set On = (Tn, CTn
), as in the

definition. The condition 1t≤Tn
Ct = On

t is equivalent to Ct∧Tn
= Ot∧Tn

.
But, since O is an option, process (Ot∧Tn

/βt∧Tn
) is a Pβ-martingale,

implying (Ct/βt) is a Pβ-local martingale. The converse is similar. �

It follows easily from price transitivity that (the price process of) a
claim is a local claim. Conversely,

Proposition 8.2. A local claim is a claim if it is dominated.32

Proof. This is the counterpart of the statement that a uniformly inte-
grable local martingale is a martingale. �

A Local Numeraire is an a.s. positive local claim process.33

Theorem 8.3. (Local Multiplicative Doob-Meyer Decomposition) Let
(Vt) be a supernumeraire. Then there exists (up to indistinguishabil-
ity) a unique decomposition Vt = DtBt, where (Dt) is a decreasing
predictable process with D0 = 1 and (Bt) is a local numeraire.34

32Put another way, a local claim is a claim if (and only if) it is a payoff process.
33As positive local martingales are supermartingales, a local numeraire (Bt)

satisfies (a) Bt ∈ Ct all t, and (b) Bt ≥ (s,Bs)t a.s. all t ≤ s. (Superclaim property
requires (b) plus domination). If a local numeraire (Bt) is the (price process of) a
numeraire then clearly a.s. Bt = (m,Bm)t all t. Conversely, if a local numeraire
(Bt) satisfies B0 ≤ (m,Bm)0 then it is a numeraire. Indeed, we must show that
Ot := (t, Bt−(m,Bm)t) is a zero option for each t . As each option Ot is nonnegative
by (b), it suffices to show Ot

0 = 0. But, using (b) twice and price transitivity once,
(t, Bt)0 ≤ B0 ≤ (m,Bm)0 = (t, (m,Bm)t)0 ≤ (t, Bt)0. Hence Ot

0 = 0.
34Actually, the conclusion holds for any positive right-continuous, adapted, pro-

cess (Vt) satisfying (s, Vs) ≤ Vt a.s. all t ≤ s. This is weaker than being super-
numeraire as it does not require (Vt) be dominated. The proof shows this, for it
only relies on Xt := Vt/βt to have a (unique) local Doob-Meyer decomposition
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Proof. Let β be a numeraire, and set Xt := Vt/βt. Note, a.s., Xt > 0,
Xt− > 0, all t. As (Xt) is a Pβ-class D supermartingale, there exists a
Pβ-martingale Mt and a decreasing predictable process At, A0 = 0, such
that Xt = At + Mt. Letting Et(Y·) denote the stochastic exponential of
any semimartingale (Yt), we have

Xt = Et(

∫ ·

0

dXs

Xs−

) = Et(

∫ ·

0

dAs

Xs−

)Et(

∫ ·

0

dMs

Xs−

),

where, for the second equality we used [
∫ ·

0
dAs/Xs− ,

∫ ·

0
dMs/Xs− ] = 0,

because
∫ ·

0
dAs/Xs− is decreasing and predictable and

∫ ·

0
dMs/Xs− is

a Pβ local martingale.35 Stochastic exponentiation preserve both these
properties, so, the desired decomposition is given by Dt = Et(

∫ ·

0
dAs/Xs−)

and Bt = βtEt(
∫ ·

0
dMs/Xs−). Uniqueness is similar.36 �

We refer to the local numeraire (Bt) given by the theorem as the
Rollover Local Numeraire associated to supernumeraire (Vt).

The following relates our approach to a more traditional formulation.

Corollary 8.4. Assume that the discount factors satisfy (s, 1)t ≤ 1, all
t ≤ s (which implies they are decreasing in maturity s), and that there
exists a numeraire B such that a.s. Bt ≥ 1 all t. Then there exists a
unique increasing, predictable, local numeraire valued 1 at time 0.37

Proof. The assumption is equivalent to saying that identically one pro-
cess is a superclaim (which in turn is equivalent to state price density
(ξt) being a P-supermartingale of class D). The desired result now fol-
lows by applying the theorem to the identically one process. �

The increasing, predictable, local numeraire alluded to above is often
called the continuous money market numeraire. It is the rollover local
numeraire associated to the identically one process. When this local
numeraire is an actual numeraire, its associated numeraire measure is
often called the risk-neutral measure. So, the risk-neutral measure ex-
ists if there exists a numeraire whose price is increasing and predictable.
Further assumption of absolute continuity of this increasing numeraire
yields the instantaneous interest rate by logarithmic differentiation.

At + Mt (with Mt a Pβ-local martingale), which decomposition is guaranteed for
any right-continuous supermartingale (class D or not) by Theorem 8.22 in [E].

35Generally, E(A + B + [A,B]) = E(A)E(B) (c.f. Corollary 13.8 in [E].) . So,
E(A + B) = E(A)E(B) when [A,B] = 0.

36Indeed say Xt = DtNt with (Dt) a positive, decreasing, predictable process
valued 1 at 0, and (Nt) a positive Pβ-local martingale. Both processes are semi-
martingales with positive left limits. Taking stochastic logarithm, we get a de-
composition of stochastic logarithm of (Xt) as sum of a local martingale and a
decreasing, predictable process, valued 0 at 0. But such a decomposition is unique.

37Actually, because of footnote 34, the conclusion holds without assuming the
existence of such a numeraire Bt ≥ 1, or equivalently without requiring (P-
supermartingale) (ξt) be class D.
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8.3. Multiplicative supernumeraires. If Dt is a positive decreasing
process and B is a numeraire, then the product process (DtBt) is obvi-
ously a supernumeraire. We call such a supernumeraire multiplicative.
Note, if D0 = 1, then numeraire B domineers supernumeraire (DtBt).

Formally, a supernumeraire (Vt) is Multiplicative if its rollover local
numeraire (Bt) is actually (the price process of) a numeraire, i.e., if a.s.
Bt = (Bm)t, all t. ( (Bm)t :=: (m,Bm)t.) We then call the numeraire
Bm the Rollover Numeraire associated to supernumeraire (Vt).

By definition, the rollover local numeraire (Bt) of a multiplicative
supernumeraire is the price process of its rollover numeraire Bm.

Multiplicativity is easily characterized by anyone of several relation-
ships between the supernumeraire (Vt) and the numeraire Bm:

Proposition 8.5. Let (Vt) be a supernumeraire and (Bt) be its rollover
local numeraire. Then the following conditions are equivalent.

(a) (Vt) is multiplicative; (b) Numeraire Bm dominates process (Vt);
(c) V0 ≤ (Bm)0; (d) V0 = (Bm)0.

38

Proof. It is obvious that (a) implies (b) and (d), (b) implies (c), and
(d) implies (c). Also, (c) implies implies (a) by footnote 33. In-
deed, any positive local numeraire (Bt) satisfies a.s. (m,Bm)t ≤ Bt

all t, and moreover, because of this, it is (the price process of a) nu-
meraire if B0 ≤ (m,Bm)0. Applied to the rollover local numeraire
Bt = βtEt(

∫ ·

0
dMs/Xs−), the result follows, as B0 = V0. �

I am indebted to Freddy Delbaen for the following example of a
continuous supernumeraire which is not multiplicative.

Counterexample to Multiplicativity . Let β be a numeraire. Let (Mt)
be a positive Pβ local martingale (hence also a Pβ-supermartingale) that
is not a martingale (e.g., Mt = 1/|xt|, where (xt) is a three-dimensional
Pβ Brownian motion, x0 6= 0). Set Dt = exp(sups∈[0,t](M0 − Ms)).

Then, (Dt) is decreasing, so (DtMt) is a Pβ-supermartingale as (Mt) is
so. Moreover, DtMt ≤ 1. Set Vt := DtMtβt. Then (Vt) is a supernu-
meraire (dominated by β) that is not multiplicative.39

The following provides a sufficient Novikov-type integrability condi-
tion in the continuous case for a supernumeraire to be multiplicative.

Proposition 8.6. Let (Vt) be a continuous supernumeraire. Assume

there exists a continuous numeraire β such that Eβ[exp(
∫ m

0
d[Xt,Xt]

2X2
t

)] <

∞, where Xt = Vt/βt. Then (Vt) is multiplicative.

38Note, by Theorem 8.3, (c) is equivalent to V0 ≤ β0Eβ [Em(
∫ ·

0
dMs/Xs−

)] for

some, hence all, numeraire β, where Xt = Vt/βt, and (Mt) is the Pβ- local martin-
gale in the additive Doob-Meyer decomposition of (Xt) with M0 = X0.

39For otherwise Vt = D′
tBt for some predictable decreasing process D′

t and nu-
meraire B, which would imply that DtMt = D′

tM
′
t , where M ′

t = Bt/βt. But, (M ′
t)

is Pβ-martingale, and uniqueness of the (local) decomposition of this kind implies
implies Mt = M ′

t , contradicting the assumption that (Mt) is not a Pβ-martingale.
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Proof. Set Nt =
∫ t

0
dMs/Xs, where (Mt) is the Pβ-martingale in the

additive Doob-Meyer decomposition of the Pβ supermartingale (Xt).
By Theorem 8.3, we must show (Et(N·)) is a Pβ-martingale. As (Xt)
is continuous by assumption, (Mt) and hence also (Nt) are continuous.
Thus, by Novikov Theorem (c.f. [E], Theorem 13.27) (Et(N·)) will be a
Pβ-martingale if Eβ[exp([N·, N·]m/2)] < ∞. But, this holds by assump-
tion, because [N·, N·]m =

∫ m

0
d[M·,M·]t/X

2
t ] =

∫ m

0
d[X·, X·]t/X

2
t ]. �

Unfortunately, the above integrability condition is not numeraire
invariant - if it holds for one numeraire, it need not hold for another.

Part III: Bermudan and regenerative trigger stream rollover
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