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A conceptual definition of an option

• An Optioncan be viewed as a pairO = (T,O) consisting

of anExpiryT and aPayoff O (in base currency) paid atT .

• For a European option, the expiryT is deterministic.

• In general,T is a stopping time bounded by somem > 0.

• American and Bermudan options:T is the optimal

exercise time.

• Barrier options with rebate:T is the first passage time

to the barrier.

• Credit derivatives with recovery :T is the default time.

• The payoffO is known at timeT : random variableO is

measurable w.r. toσ-algebraFT of events at or beforeT :

FT := {Λ ∈ F : Λ ∩ {T ≤ t} ∈ Ft}.
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A conceptual definition of an option· · ·

• The definition so far depends only on the underlying

filtration (Ft). To talk about the option price, a probability

measureP and an integrability condition are required.

• Think of aNumeraireβ as a claim which pays no dividend

and has a positive priceβt > 0 at all timest ≤ m, e.g., a

zero-dividend stock, or them-maturity zero-coupon bond.

• To each numeraireβ, there is associated aNumeraire

MeasurePβ, characterized by the property that ifB is any

other numeraire, then the relative price process(Bt/βt) is a

(right-continuous)Pβ-martingale.

• The required integrability condition on optionO = (T,O)

is this:O/βT is P
β-integrable for some numeraireβ.
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Numeraire invariance of the option definition

The important aspect of this integrability condition is that if it

holds for some numeraire, then it holds forall numeraires:
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Price processOt of an option

Consider investing the option payoffO at expiryT in a

numeraireβ and holding this position until the terminal datem.

We end up with a claim that paysβmO/βT at timem.

At a time and state before expiry (i.e.,t < T (ω)), the option has

not yet been invested in the numeraire, so this claim is identical

with the option itself. We are thus forced to define the option

priceOt to be the price of this claim, i.e.,βtE
β[O/βT | Ft].

After expiry, the option has ceased to exist and has no price.

In this case it is convenient to define the option price to be zero.

We thus arrive at the following definition of an option price:

Ot := 1t≤T βtE
β[

O

βT

| Ft].

As before,this definition is independent of choice of numeraire.
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Price Transitivity Law

Using the optional sampling theorem, the option price at any

stopping timeτ (bounded bym) is given by

Oτ = 1τ≤T βτE
β[

O

βT

| Fτ ] a.s.

The pair(τ,Oτ ) is aτ -expiry option with payoffOτ . Let S be

another stopping time. What can we say about the timeS price

(τ,Oτ )S of this option? WhenS ≤ τ ≤ T , we simply have

(τ,Oτ )S = OS.

That is, pricing to timeτ and then pricing to timeS is the same

as pricing directly to timeS. This follows from the fact that if

(Mt) is a martingale, then optional sampling theorem and the law

of iterated expectations combine to yieldMS = E[MT | Fτ | FS].
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Practical operations on options

LetO1 = (T1, O
1) andO2 = (T2, O

2) be two options. Define

• Sum: O1 + O2 := (T1 ∧ T2,O
1
T1∧T2

+ O2
T1∧T2

).

By price transitivity law, the sum operator is associative

and the price operator is linear: ifT ≤ T1 ∧ T2, then

(O1 + O2)T = O1
T + O2

T .

• Rollover: O1
� O2 := (T2, O

1O2/O2
T1

).

“Rolling O1 overO2”, i.e., investing atT1 the first option

payoffO1 in the second optionO2, assuming here

T1 ≤ T2, O2 > 0.

• T -expiry swaption: (T, (O1
T −O2

T )+), T ≤ T1 ∧ T2.

Option to swap, i.e., exchange,O2 with O1 atT .
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Indistinguishable options

LetO1 = (T1, O
1) andO2 = (T2, O

2) be two options.

• O1 andO2 areEquivalentif T1 = T2 a.s. andO1 = O2 a.s.

• O1 andO2 areIndistinguishableif price processes(O1
t )

and(O2
t ) are indistinguishable, i.e., a.s.O1

t = O2
t all t.

• Easy to see two equivalent options are indistinguishable.

• Converse is not true, e.g.,O2 is obtained fromO1 by

“postponing zero payments”of O1.

Theorem: OptionsO1 andO2 are indistinguishable if and only if

O1 = O2 a.s. and{T1 6= T2} ⊂ {O1 = 0} a.s.

So,T1 andT2 need not be the same, but they differ only at zero payments.
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Nonnegative options and nonnegative arbitrage

Assume optionO = (T,O) is Nonnegative, i.e.,O ≥ 0 a.s. Then

(In practice, most options are nonnegative, but are not positive either, for they can have zero

payoff in some states (i.e.,P[O = 0] > 0) , e.g., call and put options and swaptions.)

• Obviously,Ot ≥ 0 a.s. allt, andO0 > 0 if P[O > 0] > 0.

• Right continuity implies: a.s.Ot ≥ 0 all t.

• Nonnegative Arbitrage: Once the option price becomes

zero, it stays zero thereafter. More precisely, for almost all

pathsω, if Ot(ω) = 0, thenOs(ω) = 0 for all s ≥ t.

• In particular, for almost all pathsω, if O(ω) > 0, then

Ot(ω) > 0 for all t ≤ T (ω).

• In particular, ifβ is a numeraire, then a.s.βt > 0 all t.
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Semipositive options

A nonnegative optionO is Semipositiveif its price is positive

before expiryT , i.e., at each timet, Ot > 0 a.s. on{t < T}.

Theorem: If O is a semipositive , then a.s.Ot > 0 on{t < T} all

t, i.e., for almost all pathsω, Ot(ω) > 0 at all timest < T (ω).

A basic result on nonnegative options:

LetO = (T,O) be a nonnegative option. Then, there exists

up to equivalence a unique semipositive option that is

indistinguishable fromO, namely the option(T 0, O), where

T 0 := inf{t > 0 : Ot = 0}.

(It turns out thatO is automaticallyF
T0 -measurable - in fact,O = O

T0 .)
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Trigger options

A progressively measurable process(Zt) is aPayoff Processif

a.s.|Zt| ≤ βt all t for some numeraireβ.

Example:Zt = (βt − K)+, K > 0.

Proposition: Let (Zt) be a payoff process. Then for any

numeraireβ, theβ-deflated process(Zt/βt) is P
β-class D. In

particular, for any stopping timeT , the pair(T, ZT ) is an option.

If (Zt) is a payoff process andT a stopping time, we refer to the

T -expiry option(T, ZT ) as aZ·-Trigger Option.

Examples: American and Bermudan options, barrier options,

credit derivatives with recovery.
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Trigger option convergence theorem

Right-continuous version: Let (Zt) be a right continuous payoff

process and(Tn)∞n=1 be adecreasingsequence of stopping times

converging to a stopping timeT , i.e.,Tn ↘ T . Then, a.s.,

(Tn, ZTn
)t → (T, ZT )t, all t.

Continuous version: Let (Zt) be a continuous adapted process

that is dominated by a continuous numeraire, and(Tn)∞n=1 be a

sequence of stopping times converging to a stopping timeT .

Then, a.s.,(Tn, ZTn
)t → (T, ZT )t, all t.

These follow from a similar statement about convergence of prices of a sequence of options,

which in turn is a simple consequence of the dominated convergence theorem.
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The Snell envelope

TheSnell Envelopeprocess of a right continuous payoff process

(Zt) is defined by

Vt := sup
T≥t

(T, ZT )t,

where supremum is taken over the set all stopping timesT

satisfyingt ≤ T ≤ m.

Theorem: (Vt) is a right continuous payoff process, and for all

t ≤ s,

(s, Vs)t = sup
T≥s

(T, ZT )t.

Corollary: (Vt) is a “superclaim”, i.e., fort ≤ s, we have

Vt := sup
T≥t

(T, ZT )t ≥ sup
T≥s

(T, ZT )t = (s, Vs)t.
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Definition of American option

Fix t ∈ [0, m]. In the definition of Snell envelop, the supremumsupT≥t(T, ZT )t is not

necessarily attained at any stopping timeT . If not, the American option is not defined. However,

if the supreme is attained at some stopping time, the “first” stopping time at which it is attained is

the “postt-optimal stopping time” Tt, defined as the first times ≥ t such thatZs reachesVs.

A payoff process(Zt) is Americanif for eacht, the supremum

supT≥t(T, ZT )t is attained at some stopping time. The supremum

will then actually be attainedTt, i.e.,Vt = (Tt, ZTt
)t, where

Tt := inf{s ∈ [t,m] : Zs = Vs}.

For eachs, we then refer to the trigger optionAs := (Ts, ZTs
) as

thePost-s American Option. Note,At
t = Vt.

The American optionAs can be exercised only at or afters. So,A0 := (T0, ZT0
) is the

American option that can be exercised at any time. IfA0 is not exercised by times, then it

becomes the same asAs. TheAmerican Stream(As) is “regenerative" in this sense.
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American option stream pricing formula

Theorem: Let (Zt) be an American payoff process.
Then fort ≤ s, we have a.s.

As

t
= sup

T≥s

(T, ZT )t, t ≤ s;

while for s ≤ t, we have a.s.

As

t
= 1t≤Ts

Vt, s ≤ t.

In particular,A0

t
= 1t≤T0

Vt, all t.

The first formula follows from the formula(s, Vs)t = supT≥s(T, ZT )t valid for t ≤ s. The

second formula follows from the easily verified fact that1t≤Ts
= 1t≤Ts=Tt

for s ≤ t.
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Doob-Meyer decomposition of superclaims

A Superclaimis a right-continuous payoff process(Vt) such that

Vt ≥ (s, Vs)t a.s. for allt ≤ s. A Supernumeraireis a positive

superclaim.

• As we saw, the Snell envelope is a superclaim.

Proposition: A right-continuous payoff process(Vt) is a

superclaim if and only if the process(Vt/βt) is a right-continuous

P
β-supermartingale for some (hence all) numeraireβ.

Theorem: Let (Vt) be a supernumeraire andβ be a numeraire.

Then there exist a unique numeraireB with B0 = V0 and a

decreasing predictable process(At) such that a.s.

Vt = βtAt + Bt all t.
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Multiplicative minimax duality

Let (Zt) be apositiveright-continuous payoff process.

We know the Snell envelope(Vt) is then a supernumeraire.

We call a numeraireB aDomineering Numeraireif B0 = V0 and

Bt ≥ Vt for all t. The Doob-Meyer decomposition above implies

that there are many domineering numeraires.

Lemma: Let B be a domineering numeraire. Then

sup
t≥0

(
Zt

Bt

) = 1.

Theorem: We have a.s. allt,

Vt = inf
β∈C+

βtE
β[sup

s≥t

(
Zs

βs

) | Ft].
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Multiplicative minimax duality· · ·

• In particular,V0 = infβ β0E
β[supt≥0(Zt/βt)].

• The infimum is attained at any domineering numeraire.

• So,β0E
β[supt≥0(Zt/βt)] is anupper boundfor the

American option priceV0, for any numeraireβ.

• Such an upper bound can be computed by Monte-Carlo

simulation. An suitable numeraire must first be chosen.

• These results extend to nonnegative payoff processes (Zt).

• An “additive version” of minimax duality was previously

derived by Rogers (2001) and Haugh & Kogan (2001), and

further studied in Andersen & Broadie (2001), Joshi &

Theis (2002), and Kolodko & Schoenmakers (2003).

– p.18/20



Multiplicative Doob-Meyer decomposition

A Local Numeraireis an adapted, right continuous, positive

process(Bt) such that(Bt/βt) is aP
β-local martingale for some

(hence all) numeraireβ.

Theorem: Let (Vt) be a supernumeraire. Then there exists a

unique decompositionVt = DtBt, where(Dt) is a decreasing

predictable process and(Bt) is a local numeraire withB0 = V0.

A supernumeraire(Vt) Multiplicative, if the local numeraire(Bt)

in the multiplicative decompositionVt = DtBt is actually the

price process of a numeraireB. We then refer to this numeraire

B as theRollover Numeraireassociated to(Vt). It is clearly a

domineering numeraire, and as such relevant to minimax duality.
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An application of multiplicative decomposition

Corollary: Assume that discount factors satisfy(s, 1)t ≤ 1 for all

t ≤ s. Then there exists a unique increasing, predictable, local

numeraire(Bt) with B0 = 1.

The assumption is equivalent to the identically one processbeing

a supernumeraire. Applying the multiplicative Doob-Meyer

decomposition, we obtain a decomposition1 = DtBt. The

resulting local numeraire(Bt) is increasing, as it equals(1/Dt).

This increasing local numeraire(Bt) can be interpreted as the

“continuous money market account”. If it is further assumed to

be absolutely continuous, then, taking its logarithmic derivative,

we obtain the “instantaneous interest-rate process” rt, which is

nonnegative and satisfiesBt = exp(
∫ t

0
rsds). – p.20/20
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