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Problem definition

Consider the following arithmetic average:

where t1 ≤ … ≤ tN = T and all weights sum to 1.
In this presentation we will consider the problem of 
pricing European calls on A(T), i.e. options paying the 
following amount at time T:
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Problem definition (2)

Pure basket:

Pure Asian:
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Problem definition (3)

In the interest rate market the terminology is less 
straightforward, so we first treat a swap. With a 
receiver swap we pay floating, and receive fixed:

Pay  αiLi(Ti) at Ti+1, i = 1, …, N

Receive αiK at Ti+1, i = 1, …, N

Note that:

and P(t,T) is the time t price of a zero-coupon bond 
maturing at time T.
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Problem definition (4)

Time T (≥ T1) value of a receiver swap:

Usually the swaption maturity (T) coincides with the 
first reset date of the underlying swap (T1), so the 
payoff of a receiver swaption is:

where ci = αiK for i < N and cN = 1+αNK. Clearly, a 
swaption is also an option on an arithmetic average.
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Problem definition (5)

Asians
One underlying

One market
One/several processes

Different times

Baskets
Several underlyings

Several markets
Several processes

Same time

Swaptions
Several underlyings

One market
One/several processes

Same time

Derivatives on arithmetic averages
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The Black-Scholes case

In the Black-Scholes world:

where dWi(t) dWj(t) = ρij(t) dt.  

Closed-form solutions not available for options on 
discretely sampled averages;

Numerical schemes (PDEs, numerical integration,
Laplace/Fourier inversion) can be used, but are too 
cumbersome when no. of factors is high;
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The Black-Scholes case (2)

Conditioning approaches (Curran, Rogers & Shi) use a 
conditioning variable Λ(T) for which we know that:

as the forward price (under the T-forward measure) 
can then be decomposed as:
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The Black-Scholes case (3)

Approximative part:

One of the most successful approximations is the 
Curran/Rogers and Shi lower bound, which uses 
Jensen’s inequality:
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The Black-Scholes case (4)

Lessons from Lord [2005]:

Closed-form expression for lower bound for any 
choice of correlation structure, i.e. also for baskets;

Curran’s “naïve” approximation diverges if K → ∞, 
in the sense that:

This is very noticeable for large vols/maturities.
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The Black-Scholes case (5)

Lessons from Lord [2005] (cont’d):

The following approximation:

is sharply bounded from above and below, if:

The resulting approximations are called partially 
exact and bounded (PEB).
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The Black-Scholes case (6)

30y Eurasian call, yearly averaging, r = 5%, σ = 25%
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The Black-Scholes case (7)

30y Eurasian call, yearly averaging, r = 5%, σ = 25%
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The Black-Scholes case (8)

Lessons from the lognormal/Black-Scholes case:

Unconditional moment matching is not accurate 
enough for practical purposes;

Conditional moment-matching works best;

Conditional moment-matching is facilitated greatly 
by analytically known conditional expectations and 
variances in the multinormal distribution;

Will not be the case in general models
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Pricing with characteristic functions

For many models the density is not known in closed-
form, although the T-forward characteristic function is:

for u ∈ ÑM, XT = (X1, …, XM) = (ln S1, …, ln SM). E.g.:
AJD models (Duffie, Pan and Singleton): Black-Scholes, Merton, 
Heston, Bates, Hull-White, Cox-Ingersoll-Ross, Dai and Singleton;

LQJD models (Gaspar, Cheng and Scaillet): Stein-Stein, Schöbel-Zhu, 
Longstaff, Jamshidian, Brown-Schaefer, Beaglehole-Tenney;

Exponential Lévy models: Normal Inverse Gaussian (NIG), 
Variance Gamma (VG), Carr-Géman-Madan-Yor (CGMY), 
Barndorff-Nielsen-Shepard (BN-S), time-changed Lévy models, 
regime-switching Lévy models (Chourdakis [2005]);
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Pricing with characteristic functions (2)

Pricing in alternative models has been much facilitated 
due to the work of Carr and Madan [1999]. For our 
purposes, consider the following powerdigital:

where k = ln K. Its forward price, C(k,t), satisfies:

which can be calculated using a numerical integration.
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Basket options in general models

Asians
One underlying

One market
One/several processes

Different times

Baskets
Several underlyings

Several markets
Several processes

Same time

Swaptions
Several underlyings

One market
One/several processes

Same time

Derivatives on arithmetic averages
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Basket options in general models (2)

Now consider the following arithmetic average:

where b1 = (1,…,0)T, …, bM = (0,…,0,1)T if we model 
the stock prices directly. Conveniently, G(T) is still 
exponentially affine in the state variables:

so that                                                implies A(T) ≥ K.
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Basket options in general models (3)

If Λ(T) = c + dTX(T) (think of Λ(T) as e.g. ln G(T) ):

so that we can price such payoffs in closed-form as 
linear combinations of powerdigitals. 
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Basket options in general models (4)

Consider again the lower bound of Curran/Rogers and 
Shi, which can conveniently be rewritten as:

This is not a payoff we can price as a linear 
combination of knock-in forwards. To calculate this 
lower bound numerically, we have to know the shape 
of the following set:
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Basket options in general models (5)

Shape of A(Λ,K):

Consider a derivative paying:

Its forward price can be written as:

and is thus a linear combination of powerdigitals, 
which can be priced in closed-form.
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Basket options in general models (6)

Shape of A(Λ,K) (cont’d):

Its first derivative w.r.t. λ equals:

where fΛ(λ) is the density of Λ, evaluated at λ.  
Clearly, A(Λ,K) consists of those λ for which the 
above “delta” is positive. Furthermore, by assumption 
c+dTX(T) ≥ k ⇒ A(T) ≥ K, so [k,∞) ⊂ A(Λ,K). From 
Black-Scholes we know that by far the largest 
remainder comes from an interval of the form [k*, k]. 
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Basket options in general models (7)

Proposed approximation:

Determine k* numerically; important to calculate 
“delta’s” accurately and efficiently;

Then the lower bound is:

which can be priced as a linear combination of 
powerdigitals.
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Swaptions in affine Lévy models

Asians
One underlying

One market
One/several processes

Different times

Baskets
Several underlyings

Several markets
Several processes

Same time

Swaptions
Several underlyings

One market
One/several processes

Same time

Derivatives on arithmetic averages
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Swaptions in affine Lévy models (2)

Unlike basket derivatives, which are “exotic” options, 
swaptions (along with caps), are the plain vanillas of 
the interest rate market.

⇒ For pricing purposes it is of the utmost importance 
to calibrate our preferred model to plain vanillas

Previous approach directly works, provided that:

The underlyings (zero-coupon bonds) to be 
exponentially affine in the state variables;

we know the characteristic function;

⇒ Affine Lévy term-structure models
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Swaptions in affine Lévy models (3)

Such models are often formulated as spot rate models, 
and considered to be superseded. The market standard 
is BGM/J model with skew and SV. However:

Andreasen’s “Back to the future” article in Risk 
September 2005 advocates a return to low-
dimensional HJM models, for efficiency;

Gaspar [2004] and Cheng and Scaillet [2005] have 
shown that, to a certain extent, LQJD models are 
AJD models, so more realistic dynamics are viable;

Zero-coupon bond options (i.e. also caplets and caps) 
can be priced analytically, so focus on swaptions.
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Swaptions in affine Lévy models (4)

Several methods, other than the traditional Asian 
moment-matching schemes exist in these models:

Jamshidian [1989]: closed-form pricing in 1-factor models;

Munk and Wei [1999] use a stochastic duration to price 
swaptions as zero bond options;

Singleton and Umantsev [2002] approximate the exercise 
region (i.e. A(T) ≥ K) by an affine function of the state 
variables. This has to be done for each knock-in forward;

Collin-Dufresne and Goldstein [2002]:Edgeworth expansion;

Schrager and Pelsser [2005]: BGM/J-“freezing” approach;
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Swaptions in affine Lévy models (5)

Aside from our extension of the Curran/Rogers and 
Shi lower bound to these models, we also consider a 
fast alternative to Singleton-Umantsev (FastSU):

Approximate a coupon bond as a shifted  
exponentially affine function of the state variables:

For a “representative” set of values of the state 
vector, fit the coefficients by NLS;

Pricing can be done analytically, speed comparable 
to that of Munk’s stochastic duration approach;
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Swaptions in affine Lévy models (6)

Collin-Dufresne and Goldstein [2002], and Schrager
and Pelsser [2005], use a 2-factor CIR model:

to test their approximation. Contrary to their example 
(Black vols between 4-9.5%), we calibrated the model 
to the USD vol surface on 21-06-2005, resulting in 
Black vols between 18-24%.
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Swaptions in affine Lévy models (7)

Differences with theoretical price (aside from 
calibration error) for 12 ATM swaptions with annual 
payments, swaption maturity equal to 1, 2 or 5 yrs, 
tenor equal to 1, 2, 5 or 10 yrs:

Generally desirable to be within 10 bp of mid-quotes.

 Absolute Black IV error (bp) 
Method Average Maximum 
Lower bound 2.7E-05 9.1E-05 
Singleton-Umantsev 0.02 0.11 
FastSU 0.13 0.71 
Munk 0.36 2.05 
Schrager-Pelsser TransformApprox 1.42 3.41 
Collin-Dufresne and Goldstein 7.52 19.02 
Schrager-Pelsser CEV 8.61 19.31 
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Swaptions in affine Lévy models (8)

5 x 10 swaption:

-300

-200

-100

0

100

200

300

0.5 0.75 1 1.25 1.5

Strike/Forward

B
la

ck
 IV

 e
rr

or
 (b

p)

Singleton and Umantsev

Munk

Schrager-Pelsser CEV

Schrager-Pelsser
TransformApprox



January 200633

Swaptions in affine Lévy models (9)

5 x 10 swaption (zoomed in):
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Swaptions in affine Lévy models (10)

Question is: what is the computational time, given a 
certain accuracy? Chosen accuracy here is 1/1000 bp
in Black implied vol terms. For the 5 x 10 swaption:

Method Time/swaption Swaptions/sec. 
Munk 0.0005 1934 
FastSU 0.0031 321 
Analytic price 0.0046 219 
Lower bound 0.0084 118 
Schrager-Pelsser CEV 0.0087 114 
Singleton-Umantsev 0.0089 113 
Collin-Dufresne and Goldstein 0.2847 4 
Schrager-Pelsser TransformApprox 0.6887 1 
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Asians in affine Lévy models

Asians
One underlying

One market
One/several processes

Different times

Baskets
Several underlyings

Several markets
Several processes

Same time

Swaptions
Several underlyings

One market
One/several processes

Same time

Derivatives on arithmetic averages
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Asians in affine Lévy models (2)

Not a lot has been published on Asians in a non-
Black-Scholes setting:

Večeř and Xu [2004]: 1D PIDE for semimartingale models;

Albrecher et al. [2005] and Albrecher and Schoutens [2005]: 
Upper bound for Lévy models and SV models;

Albrecher and Predota [2002, 2004]: Moment-matching 
approximations and upper bounds for VG and NIG models;

Zhu [2000]: Tries to apply Vorst’s and other approximations 
in SV models, but has to resort to an approximation to price 
options on the geometric average;

Fouque and Han [2003]: use perturbation techniques to 
approximate price of an Asian option with SV;
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Asians in affine Lévy models (3)

If we again focus on affine Lévy models:

Underlyings are exponentially affine in the state 
variables;

… but what about the different timings in Λ(T):

⇒ We need to know the joint characteristic function 
of X(t1), …, X(tN)
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Asians in affine Lévy models (4)

Using the fact that the characteristic function is 
exponentially affine, we have in a 1D model:

Result carries over to models with latent factors, such 
as SV models, Lévy models with stochastic time, etc.
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Asians in affine Lévy models (5)

Note:

This result also allows us to price options on the 
geometric average in closed-form, just as in the Black-
Scholes model. Albrecher and Predota [2002, 2004] 
and Zhu [2000] had to use approximations to find the 
value of such an option. Even in Fouque and Han 
[2004] it is mentioned that closed-form prices only 
exist for geometric average options in a constant 
volatility setting.
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Asians in affine Lévy models (6)

Example from Albrecher et al. [2005] for a VG model, 
where the model was calibrated to S&P 500 options. 
Option maturity of 1y, monthly averaging:

VG4M CUB 
20.5018  (0.78) 20.7937  (29.97) 
11.7075  (1.38) 12.1695  (47.57) 
4.5132  (-2.98) 5.0461  (50.31) 
0.9336  (0.98) 1.2279  (30.41) 
0.2108  (1.09) 0.3382  (13.83) 

 

Strike Moneyness MC LB 
80 -0.19 20.4940  (1.0E-05) 20.4902  (-0.38) 
90 -0.09 11.6938  (7.5E-06) 11.6911  (-0.26) 

100 0.01 4.5430  (3.5E-06) 4.5420  (-0.10) 
110 0.11 0.9238  (2.4E-06) 0.9233  (-0.05) 
120 0.21 0.1999  (3.3E-06) 0.1994  (-0.05) 
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Conclusions

Model-independent algorithm for approximating 
basket options, requiring only the knowledge of the 
characteristic function;

Results carry over to swaptions, credit-default 
swaptions and Asians in affine Lévy models;

For swaptions and Asians, the approximations are 
the most accurate to date;

Room for even better approximations if conditional 
moments can be calculated efficiently.
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