

Double-Sided Parisian Options

joint work with J.A.M. van der Weide

Winter School Mathematical Finance - January 22th 2007 – Jasper Anderluh

The Parisian Option Contract : Introduction and notation Contract Pay-off, Parisian Stopping time, Contract types, Applications.

Every Fourier Transform

Transform of damped probability,

Transform of the Parisian stopping time.

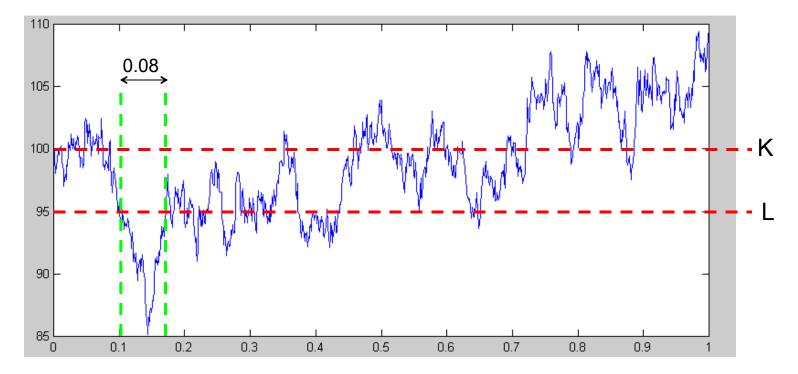
\Rightarrow Numerical Examples

Price behavior of double-sided Parisian in call,

Greek behavior, various contract types.

☆ B	ΙΝΟΚΟ	OMP	LEET						A	0		10		
Home	Orders (Overzichten	Koersen	Research & ni	euws Over I	BinckBank	Instellinger	n Helpcen	iter <mark>Uitlogge</mark>	n				attau iua
24 nov	2006 10:52	***613	Home » Ko	ersen » Eurone:	kt Amsterdam	» Opties	1		Zoeken:		۲	Koersen C	In de site [Zoeker
Optie	s: AEX			AEX	v 0	Optietype	💌 maart	v 2	007 💌	Zoeken	Alle	series	Refre	sh
AE	X Index	AMX Mid	Cap AS	icX Small Cap	Dow Jone	es	Nasdaq	BEI	L 20	CAC40	Xetra	Dax [D]	Euro Sto: [D]	
482,	37 -1,21%	636,48 <mark>-0</mark>),65% é	56,03 <mark>-0,59%</mark>	12326,95 0,0	4% 246	5,98 0,45%	4149,88	-1,07% 53	60,31 <mark>-1,19</mark> %	6403,4	43 -1,11%	4049,17 -(
Fonds			Laatste	Bied	Laat	+/-	%	Tijd	¥ol	Slot	Open	Hoog	Laag	¥al
\star AEX	Index		482,74			-5,90	-1,13%	10:52		488,27	487,08	487,70	482,37	EUR
Opties	erie		Laats	te Bied	Laat	+/-	%	Tijd	¥ol	Slot	Open	Hoog	Laag	¥al
* AEX	CALL mrt '0	7 360,00		125,80	126,40					130,95				EUR
* AEX	CALL mrt '0	7 380,00		106,20	106,80					110,85				EUR
* AEX	CALL mrt '0	7 400,00		86,85	87,40					97,50				EUR
* AEX	CALL mrt '0	7 420,00		68,00	68,40					72,80				EUR
* AEX	CALL mrt '0	7 440,00	52,	00 49,95	50,30	-2,05	-3,79%	10:37	10	54,05	52,00	52,00	52,00	EUR
* AEX	CALL mrt '0	7 460,00		33,45	33,75					37,35				EUR
* AEX	CALL mrt '0	7 480,00	20,	00 19,50	19,60	-2,85	-12,47%	10:50	66	22,85	20,65	20,95	20,00	EUR
* AEX	CALL mrt '0	7 500,00	9,	60 9,00	9,20	-1,60	-14,29%	10:47	121	11,20	10,55	10,55	9,60	EUR
* AEX	CALL mrt '0	7 520,00	3,	40 3,15	3,30	-0,75	-18,07%	10:50	109	4,15	3,95	3,95	3,40	EUR
\star AEX	CALL mrt '0	7 540,00	1,	00 0,85	0,95	-0,15	-13,04%	10:35	47	1,15	1,10	1,10	1,00	EUR
\star AEX	CALL mrt '0	7 560,00	0,	25 0,15	0,25			10:33	40	0,25	0,30	0,30	0,25	EUR
\star AEX	PUT mrt '07	360,00		0,20	0,25					0,20				EUR
* AEX	PUT mrt '07	380,00	0,	45 0,40	0,55	0,10	28,57%	10:47	32	0,35	0,45	0,45	0,45	EUR
* AEX	PUT mrt '07	400,00	0,	85 0,85	1,00	0,20	30,77%	10:46	12	0,65	0,80	0,85	0,80	EUR
* AEX	PUT mrt '07	420,00	1,	75 1,75	1,95	0,25	16,67%	10:48	19	1,50	1,45	1,75	1,45	EUR
* AEX	PUT mrt '07	440,00	3,	50 3,55	3,65	0,90	34,62%	10:51	252	2,60	2,70	3,50	2,70	EUR
* AEX	PUT mrt '07	460,00	6,	50 6,65	6,80	1,40	27,45%	10:50	90	5,10	5,55	6,50	5,55	EUR
* AEX	PUT mrt '07	480,00	11,	95 12,25	12,50	2,25	23,20%	10:50	289	9,70	10,05	11,95	10,05	EUR
* AEX	PUT mrt '07	500,00	20,	10 21,65	21,90	2,35	13,24%	10:33	73	17,75	18,50	20,40	18,45	EUR
* AEX	PUT mrt '07	520,00	34,	30 35,50	35,90	3,20	10,29%	10:47	23	31,10	32,80	34,30	32,80	EUR
* AEX	PUT mrt '07	540,00		52,90						47,85				EUR
* AEX	PUT mrt '07	560,00	70,	65 72,00	72,40	11,95	20,36%	10:18	21	58,70	69,00	70,65	69,00	EUR

In general, the pay-off of a path-dependent option depends on the whole stock price path.



A Parisian option knocks in or out as soon as the stock price S makes an excursion below or above some barrier L for time D.

Let $\{\Omega, \mathcal{F}, \mathbb{P}\}$ be a filtered probability space with $\{W_t, \mathcal{F}_t; t \ge 0\}$ a Brownian motion. We use the Black-Scholes economy, given by the following dynamics :

$$\begin{cases} dS_t = \mu S_t dt + \sigma S_t dW_t \\ S_0 = s_0 \end{cases} \begin{cases} dB_t = B_t r dt \\ B_0 = 1 \end{cases}$$

Using classical results we can compute the value $V_{\Phi}(t)$ at time *t* of a claim , ohe payoff at expiry time *T* by :

$$V_{\Phi}(t) = e^{-r(T-t)} \mathbb{E}_{\mathbb{Q}} \left[\Phi \right]$$

The pay-off Φ should represent the Parisian option pay-off, so we introduce the Parisian stopping time.

Introduce the following notation for the last time before t we hit level L,

$$\gamma_t^L(S) = \sup_{u \le t} \{S_u = L\}$$

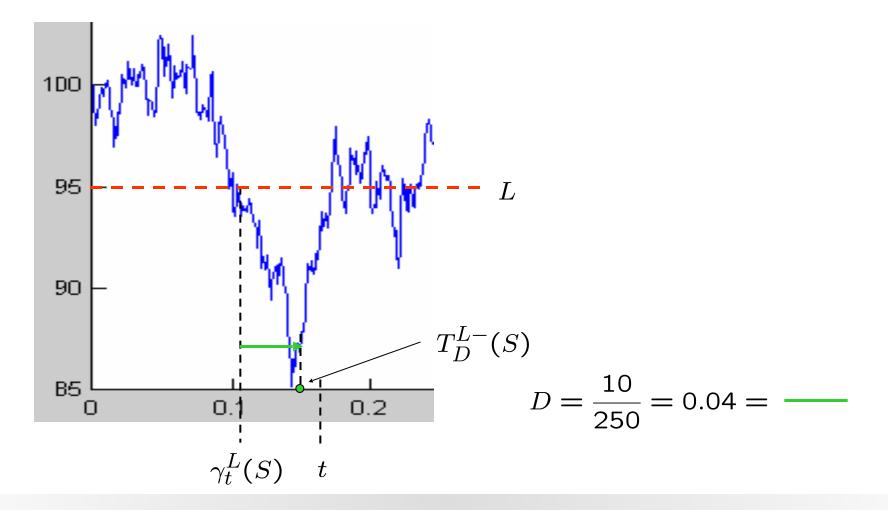
 \implies For the single-sided Parisian stopping time,

$$T_D^{L\pm}(S) = \inf \left\{ t > 0 | (t - \gamma_t^L(S)) \mathbf{1}_{\{S_t \leq L_1\}} > D \right\}.$$

 \implies And for the double-sided Parisian stopping time,

$$T_{D_1,D_2}^{L_1-,L_2+}(S) := \min\left(T_{D_1}^{L_1-}(S), T_{D_2}^{L_2+}(S)\right)$$

 \square Consider the following example *D* is 10 days,



 \implies For the double-sided Parisian in call the pay-off is given by,

$$\Phi = (S_T - K)^+ \mathbb{1}_{\left\{T_{D_1, D_2}^{L_1 + L_2^-} \le T\right\}}$$

For the single-sided Parisian options, the following contract types can be constructed,

	Call						
	down-and	up-and					
in out	$(S_T - K)^+ 1_{\{T_D^{L^-} \le T\}}$ $(S_T - K)^+ 1_{\{T_D^{L^-} \ge T\}}$	$(S_T - K)^+ 1_{\{T_D^L^+ \le T\}}$ $(S_T - K)^+ 1_{\{T_D^L^+ \ge T\}}$					
in	$(K - S_T)^+ 1_{\{T_D^{L^-} \le T\}}$	$(K - S_T)^+ 1_{\{T_D^{L+} \le T\}}$					
out	$(K - S_T)^+ 1_{\{T_D^{L^-} \ge T\}}$	$(K - S_T)^+ 1_{\{T_D^L^+ \ge T\}}$					
	down-and	up-and					
Put							

Introduction and Notation (7)

► ⇒ Laplace Transform

(1997) Chesney, Jeanblanc and Yor,

"Brownian Excursions and Parisian Barrier Options"

PDE approach

(1999) Haber, Schonbucher and Wilmott,

"Pricing Parisian Options"

Even in the Black-Scholes world, obtaining accurate prices is not trivial.

At present time not exchange traded, so are there applications?

- Building block of convertible bonds with soft-call constraint [Kwok].
- Appear in investment problems when considered from the point of view of real options [Gauthier].
- Used in modeling credit risk [Moraux].
 - Application in life-insurance [Chen and Suchanecki].

 \implies It is convenient to use the following short-hand notation,

$$\tau = T_{D_1, D_2}^{L_1, L_2+}(S) = \min\left(T_{D_1}^{L_1-}(S), T_{D_2}^{L_2+}(S)\right) = \min\left(\tau^-, \tau^+\right)$$

In the Black-Scholes world $\{S_t\}_{t\geq 0}$ is given by a GBM. Like Carr and Madan we find by using Girsanov / Change of Numeraire,

$$V_{PIC} = S_0 \mathbb{P}_{r+\frac{1}{2}\sigma^2} \left[S_T > K; \tau \le T \right] - Ke^{-rT} \mathbb{P}_r \left[S_T > K; \tau \le T \right]$$

 \implies So, the quantity of interest is the following,

$$P_r(T) = \mathbb{P}\left[S_0 e^{\left(r - \frac{1}{2}\sigma^2\right)T + \sigma W_T} > K; \tau \le T\right]$$

Note, that in order to proceed, we restate everything in terms of the underlying standard Brownian motion W,

$$P_r(T) = e^{-\frac{1}{2}m^2T} \mathbb{E}\left[e^{mW_T} \mathbf{1}_{\{W_T > k\}} \mathbf{1}_{\{\tau \le T\}}\right]$$

Now we compute the following Fourier Transform,

$$\phi(v) = \int_0^\infty e^{ivT} e^{-aT} P_r(T) dT$$

Substitute $P_r(T)$ and use $\alpha = a + \frac{1}{2}m^2$ we get

$$\phi(v) = \int e^{(iv-\alpha)T} \mathbb{E}\left[e^{mW_T} \mathbf{1}_{\{W_T > k\}} \mathbf{1}_{\{\tau \le T\}} \left(\mathbf{1}_{\{\tau^+ < \tau^-\}} + \mathbf{1}_{\{\tau^- < \tau^+\}}\right)\right] dT$$

= $\phi_+(v) + \phi_-(v).$

Now we have the following lemma,

For the Fourier transforms ϕ_+ and ϕ_- the following holds, $\phi_+(v) = \mathbb{E}\left[e^{(iv-\alpha)\tau}\mathbf{1}_{\{\tau^+ < \tau^-\}}\right] \mathbb{E}\left[\int_0^\infty e^{(iv-\alpha)\rho}h\left(\rho, W_{\tau^+}\right)d\rho\right],$ $\phi_-(v) = \mathbb{E}\left[e^{(iv-\alpha)\tau}\mathbf{1}_{\{\tau^- < \tau^+\}}\right] \mathbb{E}\left[\int_0^\infty e^{(iv-\alpha)\rho}h\left(\rho, W_{\tau^-}\right)d\rho\right].$ where, $h(\rho, w) = \mathbb{E}\left[e^{m(W_\rho+w)}\mathbf{1}_{\{W_\rho+w>k\}}\right]$

Note the independence between $\tau \mathbf{1}_{\{\tau^+ < \tau^-\}}$ and W_{τ} . Where does it come from? Can we compute the left-hand side expectations?

 \implies The Brownian meander at time *t*>0 is defined by,

$$m_u^{(t)} = rac{1}{\sqrt{t-\gamma_t}} |W_{\gamma_t+u(t-\gamma_t)}|, \quad u \le 1,$$

 \implies We are only interested in its final value (*u*=1), denoted by,

$$n_t = \frac{1}{\sqrt{t - \gamma_t}} |W_t|.$$

By CJY this final value is for every *t*>0 independent of the and $(\gamma_t, \operatorname{sgn}(W_t))$ $\stackrel{\circ}{=} N$ ha $n_t \stackrel{d}{=} N$ llowing density,

pair

$$\mathbb{P}[N \in dx] = xe^{-\frac{x^2}{2}} \mathbb{1}_{\{x \ge 0\}} dx$$

 \rightarrow For the double-sided case we introduce,

$$n_t^l = \frac{\mathbf{1}_{\{T_l < t\}}}{\sqrt{t - \gamma_t^l}} |W_t - l| \qquad \mu_t^l = \mathbf{1}_{\{T_l < t\}} \operatorname{sgn}(W_t - l) \sqrt{t - \gamma_t^l}$$

 \implies And we have the following lemma,

For any bounded measurable function *f* we have,

$$\mathbb{E}\left[\mathbf{1}_{\{\tau^+ < \tau^-\}} f(n_{\tau}^{l_2}) \middle| \mathcal{H}_{\tau}\right] = \mathbf{1}_{\{\tau^+ < \tau^-\}} \mathbb{E}\left[f(N)\right] \quad \text{a.s.}$$

where,

$$\mathcal{H}_{\tau} = \sigma(\mu_{\tau}^{l_1}, \mu_{\tau}^{l_2}, \gamma_{\tau}^{l_1}, \gamma_{\tau}^{l_2})$$

 \rightarrow Now we have a martingale argument,

$$1 = \mathbb{E}\left[e^{-\frac{1}{2}\lambda^{2}\tau + \lambda W_{\tau}}\right]$$

= $\mathbb{E}\left[e^{-\frac{1}{2}\lambda^{2}\tau + \lambda W_{\tau}}\mathbf{1}_{\{\tau^{+} < \tau^{-}\}}\right] + \mathbb{E}\left[e^{-\frac{1}{2}\lambda^{2}\tau + \lambda W_{\tau}}\mathbf{1}_{\{\tau^{-} < \tau^{+}\}}\right],$

 \rightarrow And by the previous lemma we can compute,

$$\mathbb{E}\left[e^{-\frac{1}{2}\lambda^{2}\tau+\lambda W_{\tau}}\mathbf{1}_{\{\tau^{+}<\tau^{-}\}}\right] = \mathbb{E}\left[e^{-\frac{1}{2}\lambda^{2}\tau+\lambda\left(\mu_{\tau}^{l_{2}}n_{\tau}^{l_{2}}+l_{2}\right)}\mathbf{1}_{\{\tau^{+}<\tau^{-}\}}\right]$$
$$= e^{\lambda l_{2}}\mathbb{E}\left[e^{-\frac{1}{2}\lambda^{2}\tau}\mathbf{1}_{\{\tau^{+}<\tau^{-}\}}\mathbb{E}\left[e^{\lambda\sqrt{D_{2}}n_{\tau}}\right|\mathcal{H}_{\tau}\right]\right]$$
$$= e^{\lambda l_{2}}\mathbb{E}\left[e^{\lambda\sqrt{D_{2}}N}\right]\mathbb{E}\left[e^{-\frac{1}{2}\lambda^{2}\tau}\mathbf{1}_{\{\tau^{+}<\tau^{-}\}}\right] = e^{\lambda l_{2}}\Psi(\lambda\sqrt{D_{2}})\mathbb{E}_{+}(\lambda),$$

Finally resulting in the following theorem,

For the restricted Laplace transforms of τ the following holds, $\mathbb{E}_{+}(\lambda) = \frac{e^{\lambda l_1} \Psi(-\lambda_1) - e^{-\lambda l_1} \Psi(\lambda_1)}{e^{\lambda (l_1 - l_2)} \Psi(-\lambda_1) \Psi(-\lambda_2) - e^{\lambda (l_2 - l_1)} \Psi(\lambda_1) \Psi(\lambda_2)}$ where, $\mathbb{E}_{+}(\lambda) = \mathbb{E}\left| e^{-\frac{1}{2}\lambda^{2}\tau} \mathbf{1}_{\{\tau^{+} < \tau^{-}\}} \right|$

 \Rightarrow By taking limits, we can show that the probability that a standard Brownian motion makes a positive excursion of length D_2 before making a negative excursion of length D_1 is given by,

$$\frac{\sqrt{D_1}}{\sqrt{D_1} + \sqrt{D_2}}$$

→ also follows from excursion theory

 \implies Combining these results gives,

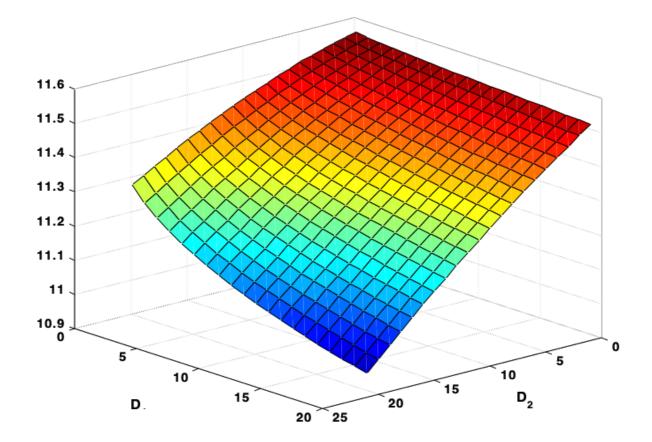
$$\phi_{+}(v) = \mathbb{E}\left[e^{(iv-\alpha)\tau}\mathbf{1}_{\{\tau^{+}<\tau^{-}\}}\right] \mathbb{E}\left[\int_{0}^{\infty} e^{(iv-\alpha)\rho}h\left(\rho, W_{\tau^{+}}\right)d\rho\right]$$
$$\downarrow$$
$$\phi_{+}(v) = \mathbb{E}_{+}(\tilde{v}_{\alpha})\mathbb{E}\left[\int_{0}^{\infty} e^{(iv-\alpha)\rho}h\left(\rho, l_{2}+\sqrt{D_{2}}N\right)d\rho\right], \tilde{v}_{\alpha} = \sqrt{2(\alpha-iv)}$$

Now everything is known and the formulas for Fourier transforms follow by elaborate computation.

$$\phi_{+}(v) = \mathbb{E}_{+}(\tilde{v}_{\alpha}) \left(\frac{e^{(m-\tilde{v}_{\alpha})k+l_{2}\tilde{v}_{\alpha}}\tilde{\Psi}_{u_{2}^{*}}(\tilde{v}_{\alpha}\sqrt{D_{2}})}{\tilde{v}_{\alpha}(\tilde{v}_{\alpha}-m)} + \frac{2e^{ml_{2}}\Psi_{u_{2}^{*}}(m\sqrt{D_{2}})}{\tilde{v}_{\alpha}^{2}-m^{2}} - \frac{e^{(\tilde{v}_{\alpha}+m)k-l_{2}\tilde{v}_{\alpha}}\Psi_{u_{2}^{*}}(-\tilde{v}_{\alpha}\sqrt{D_{2}})}{\tilde{v}_{\alpha}(\tilde{v}_{\alpha}+m)} \right) \qquad k > l_{2},$$

Numerical Examples (1)

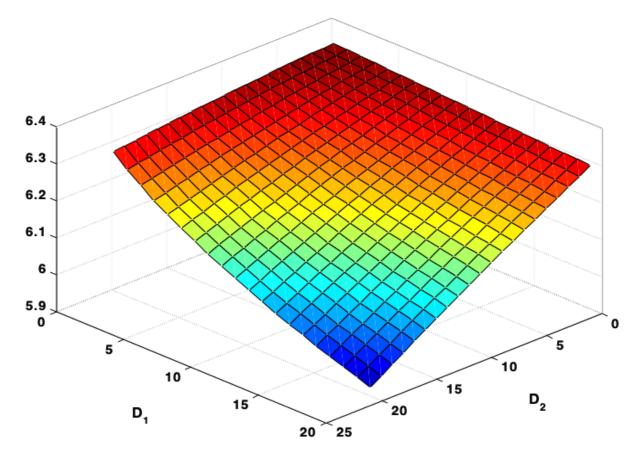
 \square Double-sided Parisian in call prices.



 $S_0 = 100, r = 0.035, \sigma = 0.25, L_1 = 90, L_2 = 110.$

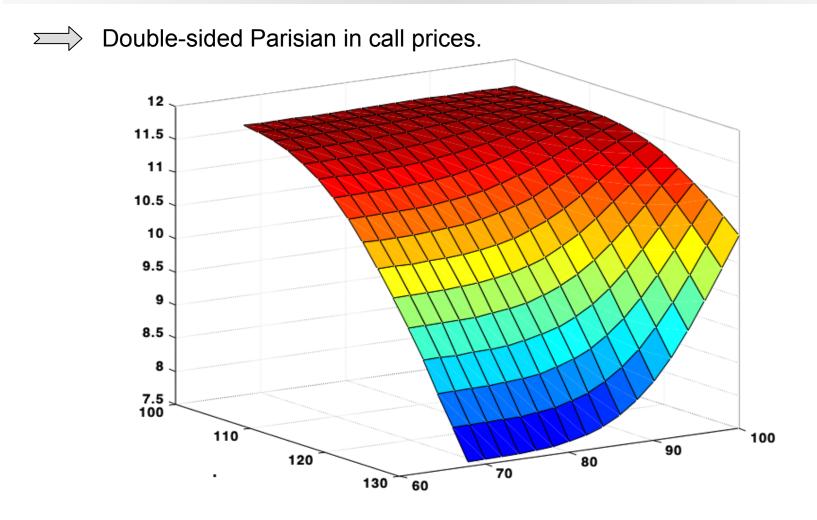
Numerical Examples (2)

 \implies Double-sided Parisian in call prices.

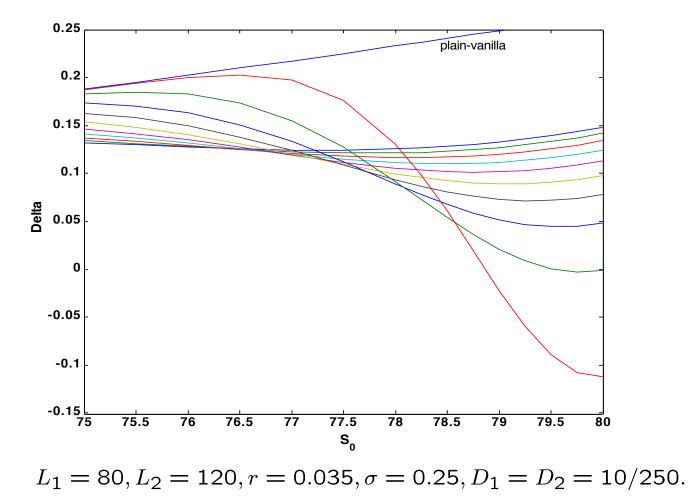


 $S_0 = 90, r = 0.035, \sigma = 0.25, L_1 = 90, L_2 = 110.$

Numerical Examples (3)



 $S_0 = 100, r = 0.035, \sigma = 0.25, D_1 = D_2 = 10/250.$



>>> Negative gamma? Then there should be negative theta.

	$S_0 = 74$	$S_0 = 76$	$S_0 = 78$	$S_0 = 80$		
d	Par Plain	Par Plain	Par Plain	Par Plain		
10	1.474 1.547	1.737 1.923	1.987 2.358	2.257 2.856		
9	1.474 1.536	1.740 1.911	1.984 2.344	2.240 2.841		
8	1.475 1.525	1.744 1.898	1.982 2.330	2.222 2.825		
7	1.476 1.514	1.750 1.885	1.984 2.316	2.205 2.809		
6	1.476 1.503	1.759 1.873	1.988 2.302	2.187 2.794		
5	1.475 1.492	1.770 1.860	1.997 2.288	2.170 2.778		
4	1.472 1.481	1.783 1.848	2.014 2.274	2.152 2.762		
3	1.467 1.470	1.797 1.835	2.041 2.260	2.135 2.747		
2	1.459 1.459	1.809 1.823	2.087 2.245	2.117 2.731		
1	1.448 1.448	1.809 1.810	2.164 2.231	2.100 2.715		

 $L_1 = 80, L_2 = 120, r = 0.035, \sigma = 0.25, D_1 = D_2 = 10/250.$

 \implies Now you can construct the following contract types:

- $\phi = \phi_+ + \phi_-$. The double-sided Parisian in call. Most expensive.
- $\label{eq:phi} \bullet \ \phi = \phi_+ + \phi_- \, \text{with} \quad l_1 \to \infty \ \text{or} \ D_1 \to \infty \ .$

The single-sided Parisian up-and-in call. Price inbetween.

 $\phi = \phi_{-}$. The single-sided Parisian down-before-up-in call. Cheapest.

Contract type	$S_0 = 90$	$S_0 = 95$	$S_0 = 100$	$S_0 = 105$	$S_0 = 110$
Plain-vanilla	6.362	8.768	11.591	14.800	18.349
Double-sided knock-in	6.362	8.767	11.591	14.799	18.349
Double-sided P knock-in (1)	6.236	8.568	11.371	14.608	18.226
Single P up-in (2a)	5.792	8.218	11.113	14.435	18.129
P up-before-down-in (3a)	3.568	6.844	10.284	13.957	17.886
Single P down-in (2b)	2.676	1.742	1.123	0.719	0.457
P down-before-up-in (3b)	2.668	1.723	1.087	0.651	0.339