Finance Winterschool 2007, Lunteren NL

Policy iterated lower bounds and linear MC upper bounds for Bermudan style derivatives

Pricing complex structured products

Leibniz
Gemeinschaft

DFG Research Center MATHEON
Mathematics for key technologies

Bermudan callable products

Simple example: (Bermudan) callable interest rate swap
Euribor: Interest rate for a loan between banks

Contract I: A borrows from B 30 Mio. $€$ over a period of 10 years and pays quarterly the 3 M -Euribor.

Contract II: A buys from C a Bermudan swaption, i.e. the right to choose a payment date of contract I, from which on C pays quarterly the 3 M -Euribor to B and receives a fixed payment of 3% from A.

Bank B

Bank A

Bank C

Bermudan callable products

‘Exotic’ example: cancelable snowball swap

Snowball swap: Instead of the floating spot rate the holder pays a starting coupon rate I over the first year and in the forthcoming years

$$
(\mathbf{K}+\text { previous coupon }- \text { spot rate })^{+},
$$

where the first coupon I and the strike rate K are specified in the contract.
Cancelable snowball swap: The holder has the right to cancel this contract.

What is the fair value of this cancelable product?

Optimal stopping

\triangleright Mathematical problem:
Optimal stopping (calling) of a reward (cash-flow) process Z depending on an underlying (e.g. interest rate) process L
\triangleright Typical difficulties:
$-L$ is usually high dimensional, for Libor interest rate models, $d=10$ and up, so PDE methods do not work in general
$-Z$ may only be virtually known, e.g. $Z_{i}=E^{\mathcal{F}_{i}} \sum_{j \geq i} C\left(L_{j}\right)$ for some pay-off function C, rather than simply $Z_{i}=C\left(L_{i}\right)$
$-Z$ may be path-dependent

Optimal stopping

The standard Bermudan pricing problem

Consider an underlying process L in \mathbb{R}^{D}, e.g. a system of asset prices or Libor rates and a set of (future) dates $\mathbb{T}:=\left\{\mathcal{I}_{0}, \mathcal{T}_{1}, \ldots, \mathcal{T}_{k}\right\}$

Bermudan derivative: An option to exercise a cashflow $C\left(\mathcal{T}_{\mathcal{T}}, L\left(\mathcal{I}_{\tau}\right)\right)$ at a future time $\mathcal{I}_{\tau} \in \mathbb{T}$, to be decided by the option holder

Valuation: If N, with $N(0)=1$, is some discounting numeraire and P the with N associated pricing measure, then with $Z_{\tau}:=C\left(\mathcal{T}_{\tau}, L\left(\mathcal{T}_{\tau}\right)\right) / N\left(\mathcal{T}_{\tau}\right)$, the $t=0$ price of the option is given by the optimal stopping problem

$$
V_{0}=\sup _{\tau \in\{0, \ldots, k\}} E^{\mathcal{F}_{0}} Z^{(\tau)}
$$

where the supremum runs over all stopping indexes τ with respect to $\left\{\mathcal{F}_{\mathcal{T}_{i}}, 0 \leq i \leq k\right\}$, where $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is the usual filtration generated by L.

Optimal stopping

At a future time point t, when the option is not exercised before t, the Bermudan option value is given by

$$
V_{t}=N(t) \sup _{\tau \in\{k(t), \ldots, k\}} E^{\mathcal{F}_{t}} Z^{(\tau)}
$$

with $\kappa(t):=\min \left\{m: \mathcal{T}_{m} \geq t\right\}$.
The process

$$
Y_{t}^{*}:=\frac{V_{t}}{N(t)},
$$

called the Snell-envelope process, is a supermartingale, i.e.

$$
E^{\mathcal{F}_{s}} Y_{t}^{*} \leq Y_{s}^{*}
$$

Optimal stopping

Canonical Solution by Backward Dynamic Programming
Set $Y^{*}(i):=Y^{*}\left(\mathcal{T}_{i}\right), \quad \mathcal{F}^{(i)}:=\mathcal{F}_{\mathcal{T}_{i}}$. At the last exercise date \mathcal{T}_{k} we have,

$$
Y^{*(k)}=Z^{(k)}
$$

and for $0 \leq j<k$,

$$
Y^{*(j)}=\max \left(Z^{(j)}, E^{\mathcal{F}_{j}} Y^{*(j+1)}\right)
$$

The first optimal stopping time (index) is then obtained by

$$
\tau_{i}^{*}=\inf \left\{j, i \leq j \leq k: Y^{*(j)} \leq Z^{(j)}\right\}
$$

\longrightarrow Nested Monte Carlo simulation of the price Y_{0}^{*} would thus require N^{k} samples when conditional expectations are computed with N samples

Typically, $N=10000, k=10$ exercise opportunities, give 10^{40} samples!!

Optimal stopping

Finance Winterschool 2007, Lunteren NL 22-24 Jan. 2007

Contents

New approaches:

I A path-by-path policy iteration methodology to improve upon standard methods (e.g. Longstaff-Schwartz, Piterbarg, Andersen)

II Application to complex exotic structures
III A linear Monte Carlo algorithm for price upper bounds via regression estimators of Doob martingale parts

Part I: Iterative methods

Iterative construction of the optimal stopping time

References:
Kolodko, A., Schoenmakers, J. (2006) Iterative construction of the optimal Bermudan stopping time. Finance and Stochastics, 10(1), 27-49

Part I: Iterative construction of the optimal stopping time

Improving upon given input stopping policies

We consider an input stopping family (policy) $\left(\tau_{i}\right)$, which satisfies the consistency conditions:

$$
i \leq \tau_{i} \leq k, \tau_{k}=k, \quad \tau_{i}>i \Rightarrow \tau_{i}=\tau_{i+1}, \quad 0 \leq i<k
$$

and the corresponding lower bound process Y for the Snell envelope Y^{*},

$$
Y^{(i)}:=E^{\mathcal{F}^{(i)}} Z^{\left(\tau_{i}\right)} \leq Y^{*(i)}
$$

Example input policies:
\triangleright The policy, $\tau_{i} \equiv i$. says: exercise immediately!
\triangleright The policy $\tau_{i}:=\inf \left\{j \geq i: L\left(\mathcal{T}_{j}\right) \in G \subset \mathbb{R}^{D}\right\} \quad$ exercises when the underlying process L enters a certain region G
\triangleright The policy $\tau_{i}=\inf \left\{j: i \leq j \leq k, \max _{p: j \leq p \leq k} E^{\mathcal{F}^{(j)}} Z^{(p)} \leq Z^{(j)}\right\}$ waits until the cashflow is at least equal to the maximum of still-alive Europeans ahead

Part I: Iterative construction of the optimal stopping time

One step improvement:

Introduce an intermediate process

$$
\widetilde{Y}^{(i)}:=\max _{p: i \leq p \leq k} E^{\mathcal{F}^{(i)}} Z^{\left(\tau_{p}\right)}
$$

and use $\widetilde{Y}^{(i)}$ as a new exercise criterion to define a new exercise policy

$$
\begin{aligned}
\widehat{\tau}_{i}: & =\inf \left\{j: i \leq j \leq k, Z^{(j)} \geq \widetilde{Y}^{(j)}\right\} \\
& =\inf \left\{j: i \leq j \leq k, Z^{(j)} \geq \max _{p: j \leq p \leq k} E^{\mathcal{F}^{(j)}} Z^{\left(\tau_{p}\right)}\right\}, \quad 0 \leq i \leq k
\end{aligned}
$$

Then consider the process

$$
\widehat{Y}^{(i)}:=E^{\mathcal{F}^{(i)}} Z^{\left(\hat{\tau}_{i}\right)}
$$

as a next approximation of the Snell envelope
Key Proposition It holds

$$
Y^{(i)} \leq \widetilde{Y}^{(i)} \leq \widehat{Y}^{(i)} \leq Y^{*(i)}, \quad 0 \leq i \leq k
$$

Part I: Iterative construction of the optimal stopping time

Iterative construction of the optimal stopping time
Take an initial family of stopping times $\left(\tau_{i}^{(0)}\right)$ satisfying the consistency conditions

$$
i \leq \tau_{i}^{(0)} \leq k, \quad \tau_{k}^{(0)}=k, \quad \tau_{i}>i \Rightarrow \tau_{i}=\tau_{i+1}
$$

and set $Y^{0(i)}:=E^{\mathcal{F}^{(i)}} Z^{\left(\tau_{i}^{(0)}\right)}, 0 \leq i \leq k$. Suppose that for $m \geq 0$ the pair

$$
\left(\left(\tau_{i}^{(m)}\right),\left(Y^{m(i)}\right)\right)
$$

is constructed with $\tau_{i}^{(m)}$ being consistent and $Y^{m(i)}:=E^{\mathcal{F}_{i}} Z^{\left(\tau_{i}^{(m)}\right)}, \quad 0 \leq i \leq k$. Then define

$$
\begin{aligned}
\tau_{i}^{(m+1)} & :=\inf \left\{j: i \leq j \leq k, \max _{p: j \leq p \leq k} E^{\mathcal{F}^{(j)}} Z^{\left(\tau_{p}^{(m)}\right)} \leq Z^{(j)}\right\} \\
& =: \inf \left\{j: i \leq j \leq k, \widetilde{Y}^{m+1}(j) \leq Z^{(j)}\right\}, \quad 0 \leq i \leq k
\end{aligned}
$$

and set

$$
Y^{m+1}(i):=E^{\mathcal{F}^{(i)}} Z^{\left(\tau_{i}^{(m+1)}\right)}
$$

Part I: Iterative construction of the optimal stopping time

By the 'key proposition' we thus have

$$
Y^{0(i)} \leq Y^{m(i)} \leq \widetilde{Y}^{m+1}(i) \leq Y^{m+1}(i) \leq Y^{*(i)}, \quad 0 \leq m<\infty, \quad 0 \leq i \leq k .
$$

and it is shown that for $m \geq 1$,

$$
\tau_{i}^{(m)} \leq \tau_{i}^{(m+1)} \leq \tau_{i}^{*},
$$

where τ_{i}^{*} is the first optimal stopping time.
We so may take limits and it holds,

$$
\begin{gathered}
Y^{\infty(i)}:=\text { (a.s.) } \lim _{m \uparrow \infty} \uparrow Y^{m}(i) \quad \text { and } \quad \tau_{i}^{\infty}:=\left(\text { a.s.) } \lim _{m \uparrow \infty} \uparrow \tau_{i}^{(m)}, \quad 0 \leq i \leq k,\right. \text { and, } \\
Y^{\infty(i)}=\text { (a.s.) } \lim _{m \uparrow \infty} \uparrow E^{\mathcal{F}^{(i)}} Z^{\left(\tau_{i}^{(m)}\right)}=E^{\mathcal{F}^{(i)}} Z^{\left(\tau_{i}^{\infty}\right)}, \quad 0 \leq i \leq k
\end{gathered}
$$

Part I: Iterative construction of the optimal stopping time

Theorem

The constructed limit process Y^{∞} coincides with the Snell envelope process Y^{*} and $\left(\tau_{i}^{\infty}\right)$ coincides with $\left(\tau_{i}^{*}\right)$; the family of first optimal stopping times. We have

$$
Y^{*(i)}=Y^{\infty(i)}=E^{\mathcal{J}^{(i)}} Z^{\left(\tau_{i}^{\infty}\right)}, \quad 0 \leq i \leq k .
$$

Moreover: It even holds

$$
Y^{m(i)}=Y^{*(i)} \quad \text { for } \quad m \geq k-i
$$

\longrightarrow After $k=$ \#exercise dates iterations the Snell Envelope is attained!

Part I: Iterative construction of the optimal stopping time

Iteration procedure vs backward dynamic program

		-	Exercise	date	\rightarrow		
		0	1	\cdots	$k-2$	$k-1$	k
	0	$Y_{0}^{(0)}$	$Y_{1}^{(0)}$	\cdots	$Y_{k-2}^{(0)}$	$Y_{k-1}^{(0)}$	Y_{k}^{*}
I	1	$Y_{0}^{(1)}$	$Y_{1}^{(1)}$	\cdots	$Y_{k-2}^{(1)}$	Y_{k-1}^{*}	Y_{k}^{*}
Iteration	2	$Y_{0}^{(2)}$	$Y_{1}^{(2)}$		Y_{k-2}^{*}	Y_{k-1}^{*}	Y_{k}^{*}
level	\cdot	\cdot	\cdot		\cdot	\cdot	\cdot
\downarrow	\cdot	\cdot	\cdot		\cdot	\cdot	\cdot
	$k-1$	$Y_{0}^{(k-1)}$	\cdot		\cdot	\cdot	\cdot
	k	Y_{0}^{*}	Y_{1}^{*}	\cdots	\cdots	Y_{k-2}^{*}	Y_{k-2}^{*}
				Y_{k-1}^{*}	Y_{k}^{*}		

Part I: Dual upper bounds

Upper approximations of the Snell envelope by Duality

The Dual Method

Consider a discrete martingale $\left(M_{j}\right)_{j=0, \ldots, k}$ with $M_{0}=0$ with respect to the filtration $\left(\mathcal{F}^{(j)}\right)_{j=0, \ldots, k}$. Following Rogers, Haugh and Kogan, we observe that

$$
\begin{aligned}
Y_{0} & =\sup _{\tau \in\{0, \ldots, k\}} E^{\mathcal{F}_{0}} Z^{(\tau)}=\sup _{\tau \in\{0, \ldots, k\}} E^{\mathcal{F}_{0}}\left[Z^{(\tau)}-M_{\tau}\right] \\
& \leq E^{\mathcal{F}_{0}} \max _{0 \leq j \leq k}\left[Z^{(j)}-M_{j}\right]
\end{aligned}
$$

Hence the r.h.s. gives an upper bound for the Bermudan price $V_{0}=Y_{0}$.

Part I: Dual upper bounds

Theorem (Davis Karatzas (1994), Rogers (2001), Haugh \& Kogan (2001))
Let M^{*} be the (unique) Doob-Meyer martingale part of $\left(Y^{*}(j)\right)_{0 \leq j \leq k}$, i.e. M^{*} is an $\left(\mathcal{F}^{(j)}\right)$-martingale which satisfies

$$
Y^{*}(j)=Y_{0}^{*}+M_{j}^{*}-F_{j}^{*}, \quad j=0, \ldots, k,
$$

with $M_{0}^{*}:=F_{0}^{*}:=0$ and F^{*} being such that F_{j}^{*} is $\mathcal{F}^{(j-1)}$ measurable for $j=1, \ldots, k$. Then we have

$$
Y_{0}^{*}=E^{\mathcal{F}_{0}} \max _{0 \leq j \leq k}\left[Z^{(j)}-M_{j}^{*}\right] .
$$

Part I: Converging upper bounds

Convergent upper bounds from a convergent sequence of lower bounds
From our previously constructed sequence of lower bound processes $Y^{m}(i)$ with $Y^{m}(i) \uparrow Y^{*}(i)$, we deduce by duality a sequence of upper bound processes:

$$
Y_{u p}^{m}(i):=E^{\mathcal{F}_{i}} \max _{i \leq j \leq k}\left(Z^{(j)}-\sum_{l=i+1}^{j} Y^{m}(l)+\sum_{l=i+1}^{j} E^{\mathcal{F}^{(l-1)}} Y^{m}(l)\right)=: Y^{m}(i)+\Delta^{m}(i)
$$

Then, by a theorem of (Kolodko \& Schoenmakers 2004),

$$
0 \leq \Delta^{m(i)} \leq E^{\mathcal{F}_{i}} \sum_{j=i}^{k-1} \max \left(E^{\mathcal{F}_{j}} Y^{m(j+1)}-Y^{m(j)}, 0\right) .
$$

Thus, by letting $m \uparrow \infty$ on the r.h.s., (a.s.) $\lim _{m \rightarrow \infty} \Delta^{m(i)}=0, \quad 0 \leq i \leq k$. Hence, the sequence $Y_{u p}^{m}$ converges to the Snell envelope also, i.e.,

$$
\text { (a.s.) } \lim _{m \rightarrow \infty} Y_{u p}^{m}(i)=(\text { a.s. }) \lim _{m \rightarrow \infty} Y^{m}(i)=Y^{*(i)}, \quad 0 \leq i \leq k .
$$

Part I: Application: Bermudan swaptions

A first numerical example: Bermudan swaptions in the LIBOR market model Consider the Libor Market Model with respect to a tenor structure $0<T_{1}<T_{2}<$ $\ldots<T_{n}$, e.g. in the spot Libor measure P^{*} induced by the numeraire

$$
B^{*}(t):=\frac{B_{m(t)}(t)}{B_{1}(0)} \prod_{i=0}^{m(t)-1}\left(1+\delta_{i} L_{i}\left(T_{i}\right)\right)
$$

with $m(t):=\min \left\{m: T_{m} \geq t\right\}$.
The dynamics of the forward Libor $L_{i}(t)$ is given by a system of SDE's

$$
d L_{i}=\sum_{j=m(t)}^{i} \frac{\delta_{j} L_{i} L_{j} \gamma_{i} \cdot \gamma_{j}}{1+\delta_{j} L_{j}} d t+L_{i} \gamma_{i} \cdot d W^{*} .
$$

Here $\delta_{i}=T_{i+1}-T_{i}$ are day count fractions, and

$$
t \rightarrow \gamma_{i}(t)=\left(\gamma_{i, 1}(t), \ldots, \gamma_{i, d}(t)\right)
$$

are deterministic volatility vector functions defined in $\left[0, T_{i}\right]$, called factor loadings.

Part I: Application: Bermudan swaptions

A (payer) Swaption over a period $\left[T_{i}, T_{n}\right], 1 \leq i \leq k$. A swaption contract with maturity T_{i} and strike θ with principal $\$ 1$ gives the right to contract at T_{i} for paying a fixed coupon θ and receiving floating Libor at the settlement dates T_{i+1}, \ldots, T_{n}. So by this definition, its cashflow at maturity is

$$
S_{i, n}\left(T_{i}\right):=\left(\sum_{j=i}^{n-1} B_{j+1}\left(T_{i}\right) \delta_{j}\left(L_{j}\left(T_{i}\right)-\theta\right)\right)^{+} .
$$

A Bermudan Swaption gives the the right to exercise a cashflow

$$
C_{T_{\tau}}:=S_{\tau, n}\left(T_{\tau}\right)
$$

at an exercise date $T_{\tau} \in\left\{T_{1}, \ldots, T_{n}\right\}$ to be decided by the option holder.

Part l: Application: Bermudan swaptions

10 yr. Bermudan swaption: (20 underlying LIBORS)
Comparison of $Y^{1}, \quad Y^{2}, \quad Y^{1}, u p$, where $\tau_{i}^{(0)} \equiv i$ (trivial initial stopping family)

θ	d	$Y^{1}(\mathrm{SD})$	$Y^{2}(\mathrm{SD})$	$Y^{1}, u p(\mathrm{SD})$
	1	$1104.6(0.5)$	$1108.9(2.4)$	$1109.4(0.7)$
0.08	2	$1098.6(0.4)$	$1100.5(2.4)$	$1103.7(0.7)$
$($ ITM $)$	10	$1094.4(0.4)$	$1096.9(2.1)$	$1098.1(0.6)$
	40	$1093.6(0.4)$	$1096.1(2.0)$	$1096.6(0.6)$
	1	$374.3(0.4)$	$381.2(1.6)$	$382.9(0.8)$
0.10	2	$357.9(0.3)$	$364.4(1.5)$	$366.4(0.8)$
(ATM)	10	$337.8(0.3)$	$343.5(1.3)$	$345.6(0.7)$
	40	$332.6(0.3)$	$338.7(1.2)$	$341.2(0.8)$
	1	$119.0(0.2)$	$121.0(0.6)$	$121.3(0.4)$
0.12	2	$112.7(0.2)$	$113.8(0.5)$	$114.9(0.4)$
(OTM)	10	$100.2(0.2)$	$100.7(0.4)$	$101.5(0.3)$
	40	$96.5(0.2)$	$96.9(0.4)$	$97.7(0.3)$

Part I: Application: Bermudan swaptions

Conclusions from the tables:
\triangleright The computed lower bound Y^{2}, hence the second iteration, is within 1% or less (relative to the price) of the Dual upper bound $Y^{1}, u p$
\triangleright Computation times (order of minutes) may be considered low in view of the high-dimensionality of the problem!

Part l: General conclusions

Some more general remarks
\triangleright The iterative approach provides a general method for improving upon any given input stopping policy obtained by other means (e.g. Andersen, LongstaffSchwartz)
\triangleright Computation times may be reduced further by a scenario selection method by Bender, Kolodko, Schoenmakers

Part II: Exotic products

Pricing of path-dependent cancellables

References:
C. Bender, A. Kolodko, and J. Schoenmakers. Iterating cancellable snowballs and related exotics. Risk, pages 126-130, September 2006.

Part II: Exotic products

Consider a path dependent cancelable contract which generates (possibly negative) cash-flows

$$
C_{1}, \ldots, C_{\tau}
$$

up to a cancelation date τ. The cash-flows of this contract are equivalent to an aggregated cash-flow at cancellation date,

$$
B_{*}\left(\mathcal{T}_{\tau}\right) \mathcal{Z}_{\tau}:=B_{*}\left(\mathcal{T}_{\tau}\right) \sum_{j=1}^{\tau} Z_{j}
$$

with $Z_{i}:=C_{i} / B_{*}\left(\mathcal{I}_{i}\right)$ being discounted cash-flows with respect to the numeraire B_{*}. Product price at time zero:

$$
V_{0}^{\text {cancel }}:=\sup _{\tau \in\{1, \ldots, k\}} E^{\mathcal{F}_{0}} \mathcal{Z}_{\tau}=\sup _{\tau \in\{1, \ldots, k\}} E^{\mathcal{F}_{0}} \sum_{j=1}^{\tau} Z_{j},
$$

where the supremum is taken over all stopping indices with values in the set $\{1, \ldots, k\}$.

Part II: Exotic products

Path-dependent callables

A path dependent callable contract generates

$$
C_{\tau+1}, \ldots, C_{k}
$$

when called at τ. It is equivalent to the sum of a non-callable and a cancelable one (and vice versa):

$$
\begin{aligned}
V_{0}^{\text {call }} & :=\sup _{\tau \in\{1, \ldots, k\}} E^{\mathcal{F}_{0}} \sum_{j=\tau+1}^{k} Z_{j} \\
& =E^{\mathcal{F}_{0}} \sum_{j=1}^{k} Z_{j}+\sup _{\tau \in\{1, \ldots, k\}} E^{\mathcal{F}_{0}} \sum_{j=1}^{\tau}\left(-Z_{j}\right)
\end{aligned}
$$

Part II: Snowballs

Example: The cancelable snowball swap

Pays semi-annually a constant rate I over the first year and in the forthcoming years (Previous coupon $+A$ - Libor) ${ }^{+}$, semi-annually, where A is given in the contract. For this case we take

$$
\begin{aligned}
K_{i} & :=I, \quad i=0,1, \\
K_{i} & :=\left(K_{i-1}+A_{i}-L_{i}\left(T_{i}\right)\right)^{+}, \quad i=2, \ldots, n-1,
\end{aligned}
$$

with $A_{2}:=0.03, A_{i+1}=A_{i}$ for even $i, A_{i+1}=A_{i}+0.005$ for odd i. Cancelation is allowed for $2 \leq \tau<n, n=20$ (10 years)

Effective discounted cashflows at T_{j} :

$$
Z_{j}:=\frac{\left(L_{j-1}\left(T_{j-1}\right)-K_{j-1}\right) \delta_{j-1}}{B_{*}\left(T_{j}\right)},
$$

hence aggregated up to cancelation $\mathcal{Z}_{\tau}=\sum_{j=1}^{\tau} Z_{j}$.

Part II: Snowballs

Iterating the snowball swap

Take an input policy satisfying

$$
\begin{gathered}
i \leq \tau_{i} \leq k, \tau_{k}=k \\
\tau_{i}>i \Rightarrow \tau_{i}=\tau_{i+1}, \quad 0 \leq i<k
\end{gathered}
$$

construct the new policy

$$
\begin{aligned}
\widehat{\tau}_{i} & :=\inf \left\{j \geq i: \mathcal{Z}_{j} \geq \max _{p: j \leq p \leq k} E^{\mathcal{F}_{j}} \mathcal{Z}_{\tau_{p}}\right\} \\
& =\inf \left\{j \geq i: 0 \geq \max _{p: j \leq p \leq k} E^{\mathcal{F}_{j}} \sum_{q=j+1}^{\tau_{p}} Z_{q}\right\}
\end{aligned}
$$

and compute the iterated price

$$
\widehat{Y}_{0}:=E^{\mathcal{F}_{0}} \mathcal{Z}_{\widehat{\tau}_{0}}
$$

which is generally an improvement of Y_{0} due to policy τ.

Part II: Snowballs

Numerical results for typical market data

Improved Andersen

d	$Y\left(0 ; \tau_{A}\right)(\mathrm{SD})$	$\widehat{Y}\left(0 ; \tau_{A}\right)(\mathrm{SD})$	$Y_{u p}\left(0 ; \tau_{A}\right)(\mathrm{SD})$
1	$127.77(0.238)$	$129.77(0.318)$	$130.33(0.247)$
2	$114.93(0.231)$	$120.00(0.389)$	$121.92(0.293)$
19	$76.725(0.217)$	$91.600(0.460)$	$98.107(0.476)$

150000 outer and 500 inner paths for \widehat{Y} and 20000 outer (with 500 inner) paths for $Y_{u p}$.

Improved least-squares regression method (Piterbarg)

d	$Y\left(0 ; \tau_{L S}\right)(\mathrm{SD})$	$\widehat{Y}\left(0 ; \tau_{L S}\right)(\mathrm{SD})$	$Y_{u p}\left(0 ; \tau_{L S}\right)(\mathrm{SD})$
1	$117.73(0.243)$	$128.81(0.632)$	$132.28(0.313)$
2	$103.70(0.238)$	$120.73(0.466)$	$123.54(0.346)$
19	$74.913(0.224)$	$93.515(0.469)$	$97.479(0.379)$

200000 outer and 500 inner paths for \widehat{Y} and 20000 outer (with 500 inner) paths for $Y_{u p}$.

Part II: Snowballs

Improving an Andersen-like optimization of the LS exercise boundary

d	$Y\left(0 ; \tau_{L S-A}\right)(\mathrm{SD})$	$\widehat{Y}\left(0 ; \tau_{L S-A}\right)(\mathrm{SD})$	$Y_{u p}\left(0 ; \tau_{L S-A}\right)(\mathrm{SD})$
1	$129.58(0.237)$	$128.70(0.349)$	$130.24(0.244)$
2	$119.58(0.230)$	$118.95(0.345)$	$120.77(0.244)$
10	$92.201(0.219)$	$97.376(0.456)$	$100.20(0.418)$
19	$87.787(0.217)$	$94.487(0.445)$	$95.843(0.430)$

150000 outer and 100 inner paths for \widehat{Y} and 5000 outer (with 500 inner) paths for $Y_{u p}$.

$$
\tau_{L S-A, i}=\inf \left\{j \geq i: \mathcal{Z}_{j} \geq H_{j}+Y_{L S, j}\right\}
$$

with optimized constants H_{j}.

Part II: Snowballs

Message:

(i) Price the callable using Pitterbarg's version of Longstaff-Schwartz;
(ii) Improve the obtained exercise boundary with an Andersen-like optimization;
(iii) Compute the Dual upperbound due to the stopping time $\tau_{L S-A, 0}$;
(iv) If there is still a significant gap between lower and upper bound, then improve the policy $\tau_{L S-A, i}$ by the iteration method.

Part III: Fast upper bounds

True upper bounds via non-nested Monte Carlo

Joint work with D. Belomestny and C. Bender

Part III: Fast upper bounds

For any martingale $M_{T_{j}}, 0 \leq j \leq k$ with respect to the filtration $\left(\mathcal{F}_{T_{j}} ; 0 \leq j \leq k\right)$ starting at $M_{0}=0$

$$
Y_{0}^{u p}(M):=E^{\mathcal{F}_{0}}\left[\max _{0 \leq j \leq k}\left(Z_{T_{j}}-M_{T_{j}}\right)\right]
$$

is an upper bound for the price of the Bermudan option with discounted cashflow $Z_{T_{j}}$.

Exact Bermudan price is attained at the martingale part M^{*} of the Snell envelope,

$$
Y_{T_{j}}^{*}=Y_{T_{0}}^{*}+M_{T_{j}}^{*}+F_{T_{j}}^{*},
$$

$M_{T_{0}}^{*}=F_{T_{0}}^{*}=0$ and $F_{T_{j}}^{*}$ is $\mathcal{F}_{T_{j-1}}$ measurable

Part III: Fast upper bounds

(I) Assume the underlying process L to be Markovian, and the filtration \mathcal{F} to be generated by a d-dimensional Brownian motion W.
(II) Assume $Y_{T_{j}}=u\left(T_{j}, L\left(T_{j}\right)\right)$ is some approximation of the Snell envelope $Y_{T_{j}}^{*}$, $0 \leq j \leq k$, with Doob decomposition

$$
Y_{T_{j}}=Y_{T_{0}}+M_{T_{j}}+F_{T_{j}},
$$

$M_{T_{0}}=F_{T_{0}}=0$ and $F_{T_{j}}$ is $\mathcal{F}_{T_{j-1}}$ measurable.
It then holds:

$$
\begin{aligned}
Y_{T_{j+1}}-Y_{T_{j}} & =M_{T_{j+1}}-M_{T_{j}}+F_{T_{j+1}}-F_{T_{j}} \\
M_{T_{j+1}}-M_{T_{j}} & =Y_{T_{j+1}}-E^{T_{j}}\left[Y_{T_{j+1}}\right],
\end{aligned}
$$

with

$$
M_{T_{j}}=: \int_{0}^{T_{j}} H_{t} d W_{t}=: \int_{0}^{T_{j}} \mathfrak{h}(t, L(t)) d W_{t}, j=0, \ldots, k .
$$

Part III: Fast upper bounds

We are going to estimate $\mathfrak{h}(\cdot, \cdot)$ (hence H) at the finite partition $\pi=\left\{t_{0}, \ldots, t_{\mathcal{I}}\right\}$ such that $t_{0}=0, t_{\mathcal{I}}=T$, and $\left\{T_{0}, \ldots, T_{k}\right\} \subset \pi$. We may write formally,

$$
Y_{T_{j+1}}-Y_{T_{j}} \approx \sum_{t_{l} \in \pi ; T_{j} \leq t_{l}<T_{j+1}} H_{t_{l}}\left(W_{t_{l+1}}-W_{t_{l}}\right)+F_{T_{j+1}}-F_{T_{j}}
$$

By multiplying both sides with $\left(W_{t_{i+1}}^{d}-W_{t_{i}}^{d}\right), T_{j} \leq t_{i}<T_{j+1}$, and taking $\mathcal{F}_{t_{i}}{ }^{-}$ conditional expectations, we get by the $\mathcal{F}_{T_{j+1}}$-measurability of $F_{T_{j}}$,

$$
H_{t_{i}}^{d} \approx \frac{1}{t_{i+1}-t_{i}} E^{\mathcal{F}_{t_{i}}}\left[\left(W_{t_{i+1}}^{d}-W_{t_{i}}^{d}\right) Y_{T_{j+1}}\right]
$$

and so define

$$
H_{t_{i}}^{\pi}:=\frac{1}{\Delta_{i}^{\pi}} E^{\mathcal{F}_{t_{i}}}\left[\left(\Delta^{\pi} W_{i}\right)^{\top} Y_{T_{j+1}}\right], T_{j} \leq t_{i}<T_{j+1},
$$

with $\Delta_{i}^{\pi}:=t_{i+1}-t_{i}$ and $\Delta^{\pi} W_{i}^{d}:=W_{t_{i+1}}^{d}-W_{t_{i}}^{d}$.

Part III: Fast upper bounds

The corresponding approximation of the martingale M is

$$
M_{T_{j}}^{\pi}:=\sum_{t_{i} \in \pi ; 0 \leq t_{i}<T_{j}} H_{t_{i}}^{\pi}\left(\Delta^{\pi} W_{i}\right) .
$$

Theorem:

$$
\lim _{|\pi| \rightarrow 0} E\left[\max _{0 \leq j \leq k}\left|M_{T_{j}}^{\pi}-M_{T_{j}}\right|^{2}\right]=0
$$

where $|\pi|$ denotes the mesh of π.

Part III: Fast upper bounds

The conditional expectations in the definition of H^{π} are, in fact, functions of $L\left(t_{i}\right)$. Precisely,

$$
H_{t_{i}}^{\pi}=\mathfrak{h}^{\pi}\left(t, L\left(t_{i}\right)\right)=\frac{1}{\Delta_{i}^{\pi}} E^{\left(t_{i}, L\left(t_{i}\right)\right)}\left[\left(\Delta^{\pi} W_{i}\right)^{\top} u\left(T_{j+1}, L\left(T_{j+1}\right)\right)\right], T_{j} \leq t_{i}<T_{j+1} .
$$

which may be computed by regression: Take basis functions

$$
\psi\left(t_{i}, \cdot\right)=\left(\psi_{r}\left(t_{i}, \cdot\right), r=1, \ldots, R\right)
$$

and N independent samples $\left(t_{i},{ }_{n} L\left(t_{i}\right)\right), n=1, \ldots, N$ of $L\left(t_{i}\right)$ constructed from the Brownian increments $\Delta_{n}^{\pi} W_{i}, n=1, \ldots, N$.

Construct the regression matrix

$$
A_{t_{i}}^{\oplus}:=\left(A_{t_{i}}^{\top} A_{t_{i}}\right)^{-1} A_{t_{i}}^{\top},
$$

where

$$
A_{t_{i}}=\left(\psi_{r}\left(t_{i},{ }_{n} L\left(t_{i}\right)\right)\right)_{n=1, \ldots, N, r=1, \ldots, R}
$$

Part III: Fast upper bounds

Result:

$$
\begin{aligned}
\widehat{\mathfrak{h}}^{\pi}\left(t_{i}, x\right) & =\psi\left(t_{i}, x\right) A_{t_{i}}^{\oplus}\left(\frac{\Delta_{.}^{\pi} W_{i}}{\Delta_{i}^{\pi}} \cdot Y_{T_{j+1}}\right), T_{j} \leq t_{i}<T_{j+1} \\
& =: \psi\left(t_{i}, x\right) \widehat{\beta}_{t_{i}}
\end{aligned}
$$

where

$$
\left(\frac{\Delta_{\cdot}^{\pi} W_{i}}{\Delta_{i}^{\pi}} \cdot Y_{T_{j+1}}\right)=\left(\frac{\Delta_{n}^{\pi} W_{i}^{d}}{\Delta_{i}^{\pi}}{ }_{n} Y_{T_{j+1}}\right)_{n=1, \ldots, N, d=1, \ldots, D}
$$

${ }_{n} \widetilde{Y}_{T_{j+1}}:=u\left(T_{j+1},{ }_{n} L\left(T_{j+1}\right)\right)$, and $\widehat{\beta}_{t_{i}}$ is the $R \times D$ matrix of estimated regression coefficients at time t_{i}.

Part III: Fast upper bounds

True linear Monte Carlo upperbound:

$$
\widehat{Y}^{u p}\left(\widehat{M}^{\pi}\right)=\frac{1}{\widetilde{N}} \sum_{n=1}^{\widetilde{N}} \max _{0 \leq j \leq k}[z\left(T_{j},{ }_{n} \widetilde{L}\left(T_{j}\right)\right)-\underbrace{\sum_{t_{i \in \pi ; 0 \leq t_{i}<T_{j}}} \widehat{\mathfrak{h}}^{\pi}\left(t_{i},{ }_{n} \widetilde{L}\left(T_{j}\right)\right)\left(\Delta^{\pi} \widetilde{W}_{i}\right)}_{(*)}],
$$

by doing a new simulation ${ }_{n} \widetilde{L}\left(T_{j}\right), \Delta_{n}^{\pi} \widetilde{W}_{i} n=1, \ldots, \widetilde{N}$.
$(*)$ is always a martingale, so the upper bound is true!

Black-Scholes model:

$$
d X_{t}^{d}=(r-\delta) X_{t}^{d} d t+\sigma X_{t}^{d} d W_{t}^{d}, \quad d=1, \ldots, D
$$

Pay-off:

$$
Z_{t}:=z\left(X_{t}\right):=\left(\max \left(X_{t}^{1}, \ldots, X_{t}^{D}\right)-\kappa\right)^{+} .
$$

$T_{k}=3 \mathrm{yr}, k=9$ (ex. dates), $\kappa=100, r=0.05, \sigma=0.2, \delta=0.1$, different D and x_{0}

D	x_{0}	Lower Bound Y_{0}	Upper Bound $Y_{0}^{u p}\left(\widehat{M^{\pi}}\right)$	Upper Bound $Y_{104}^{u p}, 2000$$(0)$	Upper Bound $Y_{104}^{u p}(0)$
	90	7.9751 ± 0.139	8.6963 ± 0.052	8.231	8.70 ± 0.06
2	100	13.883 ± 0.177	14.515 ± 0.073	14.18	14.43 ± 0.07
	110	21.291 ± 0.205	21.972 ± 0.095	21.68	22.00 ± 0.11
	90	16.523 ± 0.194	18.134 ± 0.069	17.46	18.21 ± 0.06
5	100	26.042 ± 0.232	27.976 ± 0.085	27.33	28.05 ± 0.09
	110	36.526 ± 0.263	38.882 ± 0.098	38.27	39.0 ± 0.12

Part I+II+III: Literature

D. Belomestny, C. Bender, J. Schoenmakers. True upper bounds for Bermudan products via non-nested Monte Carlo. Working paper 2006.
C. Bender and J. Schoenmakers. An iterative method for multiple stopping: Convergence and stability. Adv. Appl. Prob., 38(3):729-749, 2006.
C. Bender, A. Kolodko, and J. Schoenmakers. Iterating cancellable snowballs and related exotics. Risk, pages 126-130, September 2006.
C. Bender, A. Kolodko, and J. Schoenmakers. Enhanced policy iteration for American options via scenario selection. Quantitative Finance, tent. accepted
A. Kolodko and J. Schoenmakers. Iterative construction of the optimal Bermudan stopping time. Finance and Stochastics, 10:27-49, 2006.
J. Schoenmakers. Robust Libor modelling and pricing of derivative products. Chapman \& Hall - CRC Press, Boca Raton London New York Singapore, 2005.

