Expected utility models

and optimal investments

Lecture 1l



Market uncertainty, risk preferences
and investments




Portfolio choice and stochastic optimization

Maximal expected utility models

Preferences are given exogeneously

Methods
Primal problem (HJB eqn under stringent model assumptions)
Dual problem (Linearity under market completeness)

Optimal policies: consumption and portfolios



Maximal expected utility models

e Market uncertainty
(Q,F,P), W=W! . . W%H*ddim Brownian motion
Trading horizon: [0, 7], (0, 400)
Asset returns:  dR; = g dt + o dW4
p e L1(R™), 0 € Lo(RP™M)
riskless asset
Wealth process: dX; = mpdRy — Cydt

Control processes: consumption rate (Y, asset allocation ¢



Maximal expected utility models

e Preferences: U : R — R

increasing, concave, asymptotically elastic....

1
Ulx)=—x2", logx, —e 77
Y

e Objective: maximize intermediate utility of consumption and
utility of terminal wealth

T
Vi t) = sup Ep ( [ vi(Cds + Un(xp)/ X - )
(C)m) ¢

e Generalizations: infinite horizon, long-term average, ergodic criteria...

Recall that Uy, Us are not related
to the investment opportunities



Primal maximal expected utility problem

V' solves the Hamilton-Jacobi-Bellman eqn

V(z,T) = Us(x)

Viscosity theory (Crandall-Lions)
/., Soner, Touzi, Duffie-Z., Elliott, Davis-Z., Bouchard

Optimal policies in feedback form

~

C; - C((‘/Zzz_l),(X;ka)) ) ﬂfsk - ﬁ<V$<X§78>7V$$<X§78>>

Degeneracies, discontinuities, state and control constraints



Dual maximal expected utility problem
in complete markets

e Dual utility functional

U*(y) = max(U(z) — xy)

i

e Dual problem becomes linear — direct consequence of market completeness
and representation, via risk neutrality, of replicable contingent claims

e Problem reduces to an optimal choice of measure — intuitive connection with
the so-called state prices

Cox-Huang, Karatzas, Shreve, Cvitanic, Schachermayer, Zitkovic,
Kramkov, Delbaen et al, Kabanov, Kallsen, ...



Extensions
e Recursive utilities and Backward Stochasticc Differential Equations (BSDEs)

Kreps-Porteus, Duffie-Epstein, Duffie-Skiadas, Schroder-Skiadas, Skiadas,
El Karoui-Peng-Quenez, Lazrak and Quenez, Hamadene, Ma-Yong,
Kobylanski

e Ambiguity and robust optimization

Ellsberg, Chen-Epstein, Epstein-Schneider, Anderson et al.,
Hansen et al, Maenhout, Uppal-Wang, Skiadas



Mental accounting and prospect theory

Discontinuous risk curvature
Huang-Barberis, Barberis et al., Thaler et al., Gneezy et al.

Large trader models

Feedback effects
Kyle, Platen-Schweizer, Bank-Baum, Frey-Stremme, Back, Cuoco-Cvitanic

Social interactions

Continuous of agents — Propagation of fronts
Malinvaud, Schelling, Glaesser-Scheinkman, Horst-Scheinkman, Foellmer

Fund management and fee structure

Non-zero sum stochastic differential games
Huggonier-Kaniel



Optimal portfolios

e HJB equation yields the optimal policy in feedback form

T = m(X5,s)

7T<ZIZ, t) — H(CC, Vi, Vag, - >

e Duality yields the optimmal policy via a martingale representation theorem
or via replicating strategies of a dual “pseudo-claim”

These representations, albeit general, offer very little intuition

and are of very low practical importance, if any
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Incomplete markets

Duality “breaks” down

HJB equation too complex and stringent assumptions are needed
Portfolios consist of the myopic and the non-myopic component
Myopic portfolio is the investment as if the Sharpe ratio were constant

Non-myopic component is the excess risky demand, known as the hedging
component

Notion of hedging opaque

11



An example with myopic and
non-myopic portfolios
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Optimal investments under CRRA preferences

Market environment
dSS — ]\4(5/57 S)Ss dS + Z<Y57 S)Ss dwsl
dYS — B(Ys, S) dS —l_ A(Ys, S) dWS

riskless bond of zero interest rate

Preferences

Ur) =— (<0, 0<a<)
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Value function
XCK
V(I,y,t) — SUpE <—T ‘ Xt = T, }/t — y)
m (87
State controlled wealth process

dXs = M(Ys, s)wsds + S (Ys, s)ms AW

Xe=2, x>0

Objective
Characterize the optimal investment process 7

Feedback controls 7} = 7% (X7, Ys, s)

(Wachter, Campell and Viciera, Liu, ... )

14



The Hamilton-Jacobi-Bellman equation
1

1
—I—§A2(y, t)Vyy + Bly, )V, = 0

sz

Vig,y T)="; (wyt)€D=R"xRx[0,T]
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Optimal policies

mr =7 (X5, Ys,s)

_ <M<Y873)> VI(X;kaYSaS) B (RA<YS7S)) VCUy(X;<7YS7S)
22<Y87S) VQ?Q?(X;kyYS?S) Z<Y87S> VQ?Q?(X;?YS?S)

AdXF = M(Ys, s)mkds + S(Ys, s)wt dW}



e Normalized HJB Equation (Krylov, Lions)

Non-compact set of admissible controls

1 1l 9 9
ma = (Vi + max (GE3y, O72Vaw + 7(RA(, (. )V

+M(y, )Vy)) —I—%Az(y, t)Vyy + Bly, t)Vy) — 0

xCK

U<x7y7T> — E

V' is the unique constrained viscosity solution of the normalized HJB
equation

V' is a constrained viscosity solution of the original HJB equation

(Duffie-Z.)

V' is unique in the appropriate class
(Ishii-Lions, Duffie-Z., Katsoulakis, Touzi, Z.)
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Solution

(07

xXr 1 — a
V(ﬂf,y,t) — E’U(y,t)g e

T 1-—a+ R

L 0

. 2 _
M(y,t)
Hot) = Sy, t)
sy 1) = L Mly.t) oo Alyt) vyly. )
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Structural and characterization
results on optimal policies

e Long-term horizon problems
Logarithmic utilities, approximations for other utilities (Campbell)

e Finite horizon and exponential utilities
The excess hedging demand (non-myopic is identified with the
indifference delta of a pseudo-claim with payoff depending on
risk aversion and aggregate Sharpe ratio
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Other limitations

20



Time horizon

e How do we know our utility say 30 years from now?

e How do we manage our liabilities beyond the time the utility is prespecified?

e Are our portfolios consistent across different units?
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Units, numeraires and expected utility

22



A toy incomplete model

e Probability space

() = {w17w27w37w4}7 P{Wz} = Pi, L= 17 74

Su yu
5 ( %
Sd yd

e Random variables S7 and Y7

e [wo risks

23



Investment opportunities
We invest the amount 3 in bond (r = 0) and the amount « in stock
Wealth variable
Xo=2z, Xp=p+aSr=x+a(Sr—9)
Indifference price

For a general claim C7 , we define the value function

VOT(g) = max E(—e_V(XT_CT))

The indifference price is the amount v(C7) for which,

VO(2) = VO (z + v(Cy))

24



The indifference price (MZzZ

2004)

1
/(Cr) = Bo (L log Eole (51 | s

Q(Yr | St) =P(Yr | S7)

) = &Eo(Cr)
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Static arbitrage

26



Indifference prices in spot and forward units

Spot units

Wealth: X5 =2 +a(£L - S)

s C
Value function: VCT(a:) = sup Ep <— gl T_1—-E;)>
8%

Pricing condition: VV(z) = VS’CT($ +v5(C7))

Pricing measure:  Egs (15;5) =Sy and Q°(Y7|St) = P(Y7|ST)

Indifference price: 1%(Cp) = Egs (1+r> Eis ( log Es (671+T‘ST>>
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Wealth:

Value function:

Pricing condition:

Pricing measure:

Indifference price:

Forward units

X, = X5(1+7r)=f+alFr—Fy): f=z(+r)
VOr() s (Kb

VO(f) = Ver(f +vl(Cr)

Eqs(Fr) = Fy and Q/(Y7|Fr) = P(Y7|Fp)

v (Cp) = Eg(Cr) = Egy ($log Eg (e7°7| Fp))
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Inconsistency across prices expressed in spot and forward units

Pricing measures: Q° = Q/
Ot
Spot price; v*(Cr) = Eg (# log B <€VW|ST>>

Forward price: vl (Cr) = Lq (% log L (GWCT‘ST»

v/ (Cp) # (1+7)v3(Cr)
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(WWW) What went wrong?

e Risk preferences were not correctly specified!
e Risk preferences need to be consistent across units

e Risk aversion is not a constant

30



Indifference prices in spot and forward units

Spot units
Wealth: X5 =2 +a(£L - S)
S CT
Value function: VSvCT(a:) = sup Ep <— 7°( T_1—+7~)>
(87

Pricing condition: V5'(x VS’CT(JU +v5(Cr))

) =
Pricing measure: E@s(s ) Sp and Q°(Y7|St) = P(Y7|ST)

Indifference price: v°(Cp) = Egs (1+r> Eis ( log Eqs <€W 1+7"|ST>>
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Forward units

Wealth: Xf=X§(14+7) = f+a(Pp—R); f=a2(+7)
f
Value function: Vf’CT<f> = sup EIP) (_e_fyf(XT_CT))
(87

Pricing condition: Vf’o(f) = Vf’CT(f + Vf(CT))

Pricing measure: EQf(FT) — Fy and Q/(Yp|Fp) = P(Yp|Fp)

Indifference price: Vf(CT) = SQf(C’T) = E@f (Wif log EQf (efoT‘FT))

32



Consistency across spot and forward units

v/ (Cr) = (1413 (Cr) <= 6° = =0/

6% = — | 5= spot and forward risk tolerance

Risk tolerance is not a number. It is expressed in wealth units.



e Utility functions

U’(x)=—e 77" : x inspot units

_~f : :
Ul(z)=—e"7"" . 2z in forward units
e Value function representations

VECT(z) = —e= 7 = (C)=HQIF) _ 175 (7 — 15(Cy) + 65 H(Q|P))
VICr () — _ o= (@=(Cr)-H(QIP) _ 7/ (:I: — vl (Cr) + 5fH<@‘P>)

Q=0 =0/
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Static no arbitrage constraint

Appropriate dependence across units needs to be

built into the risk preference structure

35



The stock as the numeraire

e Indifference price is a unitless quantity
(number of stock shares)

e The “utility argument” fy%fg(—f needs to be unitless as well

e Static no arbitrage constraint strongly suggests that
risk aversion needs to be stochastic

36



Stochastic risk preferences

37



Indifference prices and state dependent risk tolerance

yr =y (S7) f%—measurable random variable

(in reciprocal to wealth units)
Risk tolerance (in units of wealth)

Risk tolerance (in units of wealth)

Should 7 be allowed to be ]:j(ﬂs’m-measurable?
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Random utility and its value function

e Value function without the claim

e Value function and utility

X

V(x,0;T) = —e Falyr)

|
0
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e Two minimal entropy measures

dQ* B o
dQ  Eg(é7)

Eg(Sp—(1+7)Sp) =0

Egx (yr (ST — (1 +71).5))) =0

Structural constraints between the market environment

and the risk preferences

40



Indifference price and value function
e The indifference price of C'p is given by

C'
v (CT; ’yT) — EQ (% log EQ <€’YT% ‘ST)>

e The utility
UXp;T) = —e 12T

e Value function with the claim

VOT (3 77) = — exp (— ( —v(Or; WT)) _H(Q |1P>>)

Eq (07)
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Optimal policies for stochastic risk preferences

(in the presence of the claim)

Cr,*

o _ a(),* —I—Cvl’* —|—o¢27>k

e Optimal demand due to market incompleteness: a*

OH (Q* |P)
0% _
8% = — 8S0 EQ <5T)
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e Optimal demand due to changes in risk tolerance: al*

al,* _ dlog E@ (5T)
05,

X

e Optimal demand due to liability: o**
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Numeraire independence
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Indifference prices and general numeraires

e [he stock as the numeraire

Wealth: Xp=""ta (1 - —)

_AS s_Cr
Value function: V2T (2°) = sup Ep (e 7T ST))
«

Pricing condition: VS>O(:1:S) = VS>CT(:CS + VS<CT>>

B
Pricing measure:  Q°(Yp|S7) = P(Yq|S7) Ft martingale w.r.t. Q°
t
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Indifference price

1 S
V2 (Cp) = Eqs ( log Eys (e7 (o1

72 (St)

Numeraire consistency

v(Crivr) _ V(O

)
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The term structure of risk preferences
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Fundamental questions

What is the proper specification of the investors’ risk preferences?

Are risk preferences static or dynamic?

Are they affected by the market environment and the trading horizon?

Are there endogenous structural conditions on risk preferences?

How does the choice of risk preferences affect the indifference prices
and the risk monitoring policies?
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Requirements for a consistent indifference pricing system

(work in progress MZ)

Risk preferences need to be consistent across units
and trading horizons

Dynamic utilities

Martingality of risk tolerance process
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